//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveRange and LiveInterval classes. Given some // numbering of each the machine instructions an interval [i, j) is said to be a // live interval for register v if there is no instruction with number j' >= j // such that v is live at j' and there is no instruction with number i' < i such // that v is live at i'. In this implementation intervals can have holes, // i.e. an interval might look like [1,20), [50,65), [1000,1001). Each // individual range is represented as an instance of LiveRange, and the whole // interval is represented as an instance of LiveInterval. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVAL_H #define LLVM_CODEGEN_LIVEINTERVAL_H #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/AlignOf.h" #include #include #include namespace llvm { class MachineInstr; class MachineRegisterInfo; class TargetRegisterInfo; class raw_ostream; /// VNInfo - Value Number Information. /// This class holds information about a machine level values, including /// definition and use points. /// /// Care must be taken in interpreting the def index of the value. The /// following rules apply: /// /// If the isDefAccurate() method returns false then def does not contain the /// index of the defining MachineInstr, or even (necessarily) to a /// MachineInstr at all. In general such a def index is not meaningful /// and should not be used. The exception is that, for values originally /// defined by PHI instructions, after PHI elimination def will contain the /// index of the MBB in which the PHI originally existed. This can be used /// to insert code (spills or copies) which deals with the value, which will /// be live in to the block. class VNInfo { private: enum { HAS_PHI_KILL = 1, REDEF_BY_EC = 1 << 1, IS_PHI_DEF = 1 << 2, IS_UNUSED = 1 << 3, IS_DEF_ACCURATE = 1 << 4 }; unsigned char flags; public: /// Holds information about individual kills. struct KillInfo { bool isPHIKill : 1; unsigned killIdx : 31; KillInfo(bool isPHIKill, unsigned killIdx) : isPHIKill(isPHIKill), killIdx(killIdx) { assert(killIdx != 0 && "Zero kill indices are no longer permitted."); } }; typedef SmallVector KillSet; /// The ID number of this value. unsigned id; /// The index of the defining instruction (if isDefAccurate() returns true). unsigned def; MachineInstr *copy; KillSet kills; VNInfo() : flags(IS_UNUSED), id(~1U), def(0), copy(0) {} /// VNInfo constructor. /// d is presumed to point to the actual defining instr. If it doesn't /// setIsDefAccurate(false) should be called after construction. VNInfo(unsigned i, unsigned d, MachineInstr *c) : flags(IS_DEF_ACCURATE), id(i), def(d), copy(c) {} /// VNInfo construtor, copies values from orig, except for the value number. VNInfo(unsigned i, const VNInfo &orig) : flags(orig.flags), id(i), def(orig.def), copy(orig.copy), kills(orig.kills) {} /// Used for copying value number info. unsigned getFlags() const { return flags; } void setFlags(unsigned flags) { this->flags = flags; } /// Returns true if one or more kills are PHI nodes. bool hasPHIKill() const { return flags & HAS_PHI_KILL; } void setHasPHIKill(bool hasKill) { if (hasKill) flags |= HAS_PHI_KILL; else flags &= ~HAS_PHI_KILL; } /// Returns true if this value is re-defined by an early clobber somewhere /// during the live range. bool hasRedefByEC() const { return flags & REDEF_BY_EC; } void setHasRedefByEC(bool hasRedef) { if (hasRedef) flags |= REDEF_BY_EC; else flags &= ~REDEF_BY_EC; } /// Returns true if this value is defined by a PHI instruction (or was, /// PHI instrucions may have been eliminated). bool isPHIDef() const { return flags & IS_PHI_DEF; } void setIsPHIDef(bool phiDef) { if (phiDef) flags |= IS_PHI_DEF; else flags &= ~IS_PHI_DEF; } /// Returns true if this value is unused. bool isUnused() const { return flags & IS_UNUSED; } void setIsUnused(bool unused) { if (unused) flags |= IS_UNUSED; else flags &= ~IS_UNUSED; } /// Returns true if the def is accurate. bool isDefAccurate() const { return flags & IS_DEF_ACCURATE; } void setIsDefAccurate(bool defAccurate) { if (defAccurate) flags |= IS_DEF_ACCURATE; else flags &= ~IS_DEF_ACCURATE; } }; inline bool operator<(const VNInfo::KillInfo &k1, const VNInfo::KillInfo &k2) { return k1.killIdx < k2.killIdx; } inline bool operator<(const VNInfo::KillInfo &k, unsigned idx) { return k.killIdx < idx; } inline bool operator<(unsigned idx, const VNInfo::KillInfo &k) { return idx < k.killIdx; } /// LiveRange structure - This represents a simple register range in the /// program, with an inclusive start point and an exclusive end point. /// These ranges are rendered as [start,end). struct LiveRange { unsigned start; // Start point of the interval (inclusive) unsigned end; // End point of the interval (exclusive) VNInfo *valno; // identifier for the value contained in this interval. LiveRange(unsigned S, unsigned E, VNInfo *V) : start(S), end(E), valno(V) { assert(S < E && "Cannot create empty or backwards range"); } /// contains - Return true if the index is covered by this range. /// bool contains(unsigned I) const { return start <= I && I < end; } bool operator<(const LiveRange &LR) const { return start < LR.start || (start == LR.start && end < LR.end); } bool operator==(const LiveRange &LR) const { return start == LR.start && end == LR.end; } void dump() const; void print(std::ostream &os) const; void print(std::ostream *os) const { if (os) print(*os); } void print(raw_ostream &os) const; void print(raw_ostream *os) const { if (os) print(*os); } private: LiveRange(); // DO NOT IMPLEMENT }; std::ostream& operator<<(std::ostream& os, const LiveRange &LR); raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR); inline bool operator<(unsigned V, const LiveRange &LR) { return V < LR.start; } inline bool operator<(const LiveRange &LR, unsigned V) { return LR.start < V; } /// LiveInterval - This class represents some number of live ranges for a /// register or value. This class also contains a bit of register allocator /// state. class LiveInterval { public: typedef SmallVector Ranges; typedef SmallVector VNInfoList; unsigned reg; // the register or stack slot of this interval // if the top bits is set, it represents a stack slot. float weight; // weight of this interval Ranges ranges; // the ranges in which this register is live VNInfoList valnos; // value#'s struct InstrSlots { enum { LOAD = 0, USE = 1, DEF = 2, STORE = 3, NUM = 4 }; static unsigned scale(unsigned slot, unsigned factor) { unsigned index = slot / NUM, offset = slot % NUM; assert(index <= ~0U / (factor * NUM) && "Rescaled interval would overflow"); return index * NUM * factor + offset; } }; LiveInterval(unsigned Reg, float Weight, bool IsSS = false) : reg(Reg), weight(Weight) { if (IsSS) reg = reg | (1U << (sizeof(unsigned)*CHAR_BIT-1)); } typedef Ranges::iterator iterator; iterator begin() { return ranges.begin(); } iterator end() { return ranges.end(); } typedef Ranges::const_iterator const_iterator; const_iterator begin() const { return ranges.begin(); } const_iterator end() const { return ranges.end(); } typedef VNInfoList::iterator vni_iterator; vni_iterator vni_begin() { return valnos.begin(); } vni_iterator vni_end() { return valnos.end(); } typedef VNInfoList::const_iterator const_vni_iterator; const_vni_iterator vni_begin() const { return valnos.begin(); } const_vni_iterator vni_end() const { return valnos.end(); } /// advanceTo - Advance the specified iterator to point to the LiveRange /// containing the specified position, or end() if the position is past the /// end of the interval. If no LiveRange contains this position, but the /// position is in a hole, this method returns an iterator pointing the the /// LiveRange immediately after the hole. iterator advanceTo(iterator I, unsigned Pos) { if (Pos >= endNumber()) return end(); while (I->end <= Pos) ++I; return I; } void clear() { while (!valnos.empty()) { VNInfo *VNI = valnos.back(); valnos.pop_back(); VNI->~VNInfo(); } ranges.clear(); } /// isStackSlot - Return true if this is a stack slot interval. /// bool isStackSlot() const { return reg & (1U << (sizeof(unsigned)*CHAR_BIT-1)); } /// getStackSlotIndex - Return stack slot index if this is a stack slot /// interval. int getStackSlotIndex() const { assert(isStackSlot() && "Interval is not a stack slot interval!"); return reg & ~(1U << (sizeof(unsigned)*CHAR_BIT-1)); } bool hasAtLeastOneValue() const { return !valnos.empty(); } bool containsOneValue() const { return valnos.size() == 1; } unsigned getNumValNums() const { return (unsigned)valnos.size(); } /// getValNumInfo - Returns pointer to the specified val#. /// inline VNInfo *getValNumInfo(unsigned ValNo) { return valnos[ValNo]; } inline const VNInfo *getValNumInfo(unsigned ValNo) const { return valnos[ValNo]; } /// copyValNumInfo - Copy the value number info for one value number to /// another. void copyValNumInfo(VNInfo *DstValNo, const VNInfo *SrcValNo) { DstValNo->def = SrcValNo->def; DstValNo->copy = SrcValNo->copy; DstValNo->setFlags(SrcValNo->getFlags()); DstValNo->kills = SrcValNo->kills; } /// getNextValue - Create a new value number and return it. MIIdx specifies /// the instruction that defines the value number. VNInfo *getNextValue(unsigned MIIdx, MachineInstr *CopyMI, bool isDefAccurate, BumpPtrAllocator &VNInfoAllocator) { assert(MIIdx != ~0u && MIIdx != ~1u && "PHI def / unused flags should now be passed explicitly."); VNInfo *VNI = static_cast(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo), alignof())); new (VNI) VNInfo((unsigned)valnos.size(), MIIdx, CopyMI); VNI->setIsDefAccurate(isDefAccurate); valnos.push_back(VNI); return VNI; } /// Create a copy of the given value. The new value will be identical except /// for the Value number. VNInfo *createValueCopy(const VNInfo *orig, BumpPtrAllocator &VNInfoAllocator) { VNInfo *VNI = static_cast(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo), alignof())); new (VNI) VNInfo((unsigned)valnos.size(), *orig); valnos.push_back(VNI); return VNI; } /// addKill - Add a kill instruction index to the specified value /// number. static void addKill(VNInfo *VNI, unsigned KillIdx, bool phiKill) { VNInfo::KillSet &kills = VNI->kills; VNInfo::KillInfo newKill(phiKill, KillIdx); if (kills.empty()) { kills.push_back(newKill); } else { VNInfo::KillSet::iterator I = std::lower_bound(kills.begin(), kills.end(), newKill); kills.insert(I, newKill); } } /// addKills - Add a number of kills into the VNInfo kill vector. If this /// interval is live at a kill point, then the kill is not added. void addKills(VNInfo *VNI, const VNInfo::KillSet &kills) { for (unsigned i = 0, e = static_cast(kills.size()); i != e; ++i) { const VNInfo::KillInfo &Kill = kills[i]; if (!liveBeforeAndAt(Kill.killIdx)) { VNInfo::KillSet::iterator I = std::lower_bound(VNI->kills.begin(), VNI->kills.end(), Kill); VNI->kills.insert(I, Kill); } } } /// removeKill - Remove the specified kill from the list of kills of /// the specified val#. static bool removeKill(VNInfo *VNI, unsigned KillIdx) { VNInfo::KillSet &kills = VNI->kills; VNInfo::KillSet::iterator I = std::lower_bound(kills.begin(), kills.end(), KillIdx); if (I != kills.end() && I->killIdx == KillIdx) { kills.erase(I); return true; } return false; } /// removeKills - Remove all the kills in specified range /// [Start, End] of the specified val#. static void removeKills(VNInfo *VNI, unsigned Start, unsigned End) { VNInfo::KillSet &kills = VNI->kills; VNInfo::KillSet::iterator I = std::lower_bound(kills.begin(), kills.end(), Start); VNInfo::KillSet::iterator E = std::upper_bound(kills.begin(), kills.end(), End); kills.erase(I, E); } /// isKill - Return true if the specified index is a kill of the /// specified val#. static bool isKill(const VNInfo *VNI, unsigned KillIdx) { const VNInfo::KillSet &kills = VNI->kills; VNInfo::KillSet::const_iterator I = std::lower_bound(kills.begin(), kills.end(), KillIdx); return I != kills.end() && I->killIdx == KillIdx; } /// isOnlyLROfValNo - Return true if the specified live range is the only /// one defined by the its val#. bool isOnlyLROfValNo(const LiveRange *LR) { for (const_iterator I = begin(), E = end(); I != E; ++I) { const LiveRange *Tmp = I; if (Tmp != LR && Tmp->valno == LR->valno) return false; } return true; } /// MergeValueNumberInto - This method is called when two value nubmers /// are found to be equivalent. This eliminates V1, replacing all /// LiveRanges with the V1 value number with the V2 value number. This can /// cause merging of V1/V2 values numbers and compaction of the value space. VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); /// MergeInClobberRanges - For any live ranges that are not defined in the /// current interval, but are defined in the Clobbers interval, mark them /// used with an unknown definition value. Caller must pass in reference to /// VNInfoAllocator since it will create a new val#. void MergeInClobberRanges(const LiveInterval &Clobbers, BumpPtrAllocator &VNInfoAllocator); /// MergeInClobberRange - Same as MergeInClobberRanges except it merge in a /// single LiveRange only. void MergeInClobberRange(unsigned Start, unsigned End, BumpPtrAllocator &VNInfoAllocator); /// MergeValueInAsValue - Merge all of the live ranges of a specific val# /// in RHS into this live interval as the specified value number. /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the /// current interval, it will replace the value numbers of the overlaped /// live ranges with the specified value number. void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo); /// MergeValueInAsValue - Merge all of the live ranges of a specific val# /// in RHS into this live interval as the specified value number. /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the /// current interval, but only if the overlapping LiveRanges have the /// specified value number. void MergeValueInAsValue(const LiveInterval &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo); /// Copy - Copy the specified live interval. This copies all the fields /// except for the register of the interval. void Copy(const LiveInterval &RHS, MachineRegisterInfo *MRI, BumpPtrAllocator &VNInfoAllocator); bool empty() const { return ranges.empty(); } /// beginNumber - Return the lowest numbered slot covered by interval. unsigned beginNumber() const { if (empty()) return 0; return ranges.front().start; } /// endNumber - return the maximum point of the interval of the whole, /// exclusive. unsigned endNumber() const { if (empty()) return 0; return ranges.back().end; } bool expiredAt(unsigned index) const { return index >= endNumber(); } bool liveAt(unsigned index) const; // liveBeforeAndAt - Check if the interval is live at the index and the // index just before it. If index is liveAt, check if it starts a new live // range.If it does, then check if the previous live range ends at index-1. bool liveBeforeAndAt(unsigned index) const; /// getLiveRangeContaining - Return the live range that contains the /// specified index, or null if there is none. const LiveRange *getLiveRangeContaining(unsigned Idx) const { const_iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : &*I; } /// getLiveRangeContaining - Return the live range that contains the /// specified index, or null if there is none. LiveRange *getLiveRangeContaining(unsigned Idx) { iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : &*I; } /// FindLiveRangeContaining - Return an iterator to the live range that /// contains the specified index, or end() if there is none. const_iterator FindLiveRangeContaining(unsigned Idx) const; /// FindLiveRangeContaining - Return an iterator to the live range that /// contains the specified index, or end() if there is none. iterator FindLiveRangeContaining(unsigned Idx); /// findDefinedVNInfo - Find the VNInfo that's defined at the specified /// index (register interval) or defined by the specified register (stack /// inteval). VNInfo *findDefinedVNInfo(unsigned DefIdxOrReg) const; /// overlaps - Return true if the intersection of the two live intervals is /// not empty. bool overlaps(const LiveInterval& other) const { return overlapsFrom(other, other.begin()); } /// overlaps - Return true if the live interval overlaps a range specified /// by [Start, End). bool overlaps(unsigned Start, unsigned End) const; /// overlapsFrom - Return true if the intersection of the two live intervals /// is not empty. The specified iterator is a hint that we can begin /// scanning the Other interval starting at I. bool overlapsFrom(const LiveInterval& other, const_iterator I) const; /// addRange - Add the specified LiveRange to this interval, merging /// intervals as appropriate. This returns an iterator to the inserted live /// range (which may have grown since it was inserted. void addRange(LiveRange LR) { addRangeFrom(LR, ranges.begin()); } /// join - Join two live intervals (this, and other) together. This applies /// mappings to the value numbers in the LHS/RHS intervals as specified. If /// the intervals are not joinable, this aborts. void join(LiveInterval &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVector &NewVNInfo, MachineRegisterInfo *MRI); /// isInOneLiveRange - Return true if the range specified is entirely in the /// a single LiveRange of the live interval. bool isInOneLiveRange(unsigned Start, unsigned End); /// removeRange - Remove the specified range from this interval. Note that /// the range must be a single LiveRange in its entirety. void removeRange(unsigned Start, unsigned End, bool RemoveDeadValNo = false); void removeRange(LiveRange LR, bool RemoveDeadValNo = false) { removeRange(LR.start, LR.end, RemoveDeadValNo); } /// removeValNo - Remove all the ranges defined by the specified value#. /// Also remove the value# from value# list. void removeValNo(VNInfo *ValNo); /// scaleNumbering - Renumber VNI and ranges to provide gaps for new /// instructions. void scaleNumbering(unsigned factor); /// getSize - Returns the sum of sizes of all the LiveRange's. /// unsigned getSize() const; /// ComputeJoinedWeight - Set the weight of a live interval after /// Other has been merged into it. void ComputeJoinedWeight(const LiveInterval &Other); bool operator<(const LiveInterval& other) const { return beginNumber() < other.beginNumber(); } void print(std::ostream &OS, const TargetRegisterInfo *TRI = 0) const; void print(std::ostream *OS, const TargetRegisterInfo *TRI = 0) const { if (OS) print(*OS, TRI); } void print(raw_ostream &OS, const TargetRegisterInfo *TRI = 0) const; void print(raw_ostream *OS, const TargetRegisterInfo *TRI = 0) const { if (OS) print(*OS, TRI); } void dump() const; private: Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From); void extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd); Ranges::iterator extendIntervalStartTo(Ranges::iterator I, unsigned NewStr); LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT }; inline std::ostream &operator<<(std::ostream &OS, const LiveInterval &LI) { LI.print(OS); return OS; } inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { LI.print(OS); return OS; } } #endif