//===- FunctionResolution.cpp - Resolve declarations to implementations ---===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Loop over the functions that are in the module and look for functions that // have the same name. More often than not, there will be things like: // // declare void %foo(...) // void %foo(int, int) { ... } // // because of the way things are declared in C. If this is the case, patch // things up. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/DerivedTypes.h" #include "llvm/Pass.h" #include "llvm/iOther.h" #include "llvm/Constants.h" #include "llvm/Target/TargetData.h" #include "llvm/Assembly/Writer.h" #include "Support/Statistic.h" #include namespace { Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved"); Statistic<> NumGlobals("funcresolve", "Number of global variables resolved"); struct FunctionResolvingPass : public Pass { virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } bool run(Module &M); }; RegisterOpt X("funcresolve", "Resolve Functions"); } Pass *createFunctionResolvingPass() { return new FunctionResolvingPass(); } static bool ResolveFunctions(Module &M, std::vector &Globals, Function *Concrete) { bool Changed = false; for (unsigned i = 0; i != Globals.size(); ++i) if (Globals[i] != Concrete) { Function *Old = cast(Globals[i]); const FunctionType *OldMT = Old->getFunctionType(); const FunctionType *ConcreteMT = Concrete->getFunctionType(); if (OldMT->getParamTypes().size() > ConcreteMT->getParamTypes().size() && !ConcreteMT->isVarArg()) if (!Old->use_empty()) { std::cerr << "WARNING: Linking function '" << Old->getName() << "' is causing arguments to be dropped.\n"; std::cerr << "WARNING: Prototype: "; WriteAsOperand(std::cerr, Old); std::cerr << " resolved to "; WriteAsOperand(std::cerr, Concrete); std::cerr << "\n"; } // Check to make sure that if there are specified types, that they // match... // unsigned NumArguments = std::min(OldMT->getParamTypes().size(), ConcreteMT->getParamTypes().size()); if (!Old->use_empty() && !Concrete->use_empty()) for (unsigned i = 0; i < NumArguments; ++i) if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) if (OldMT->getParamTypes()[i]->getPrimitiveID() != ConcreteMT->getParamTypes()[i]->getPrimitiveID()) { std::cerr << "WARNING: Function [" << Old->getName() << "]: Parameter types conflict for: '" << OldMT << "' and '" << ConcreteMT << "'\n"; return Changed; } // Attempt to convert all of the uses of the old function to the concrete // form of the function. If there is a use of the fn that we don't // understand here we punt to avoid making a bad transformation. // // At this point, we know that the return values are the same for our two // functions and that the Old function has no varargs fns specified. In // otherwords it's just (...) // if (!Old->use_empty()) { // Avoid making the CPR unless we really need it Value *Replacement = Concrete; if (Concrete->getType() != Old->getType()) Replacement = ConstantExpr::getCast(ConstantPointerRef::get(Concrete), Old->getType()); NumResolved += Old->use_size(); Old->replaceAllUsesWith(Replacement); } // Since there are no uses of Old anymore, remove it from the module. M.getFunctionList().erase(Old); } return Changed; } static bool ResolveGlobalVariables(Module &M, std::vector &Globals, GlobalVariable *Concrete) { bool Changed = false; Constant *CCPR = ConstantPointerRef::get(Concrete); for (unsigned i = 0; i != Globals.size(); ++i) if (Globals[i] != Concrete) { Constant *Cast = ConstantExpr::getCast(CCPR, Globals[i]->getType()); Globals[i]->replaceAllUsesWith(Cast); // Since there are no uses of Old anymore, remove it from the module. M.getGlobalList().erase(cast(Globals[i])); ++NumGlobals; Changed = true; } return Changed; } static bool ProcessGlobalsWithSameName(Module &M, TargetData &TD, std::vector &Globals) { assert(!Globals.empty() && "Globals list shouldn't be empty here!"); bool isFunction = isa(Globals[0]); // Is this group all functions? GlobalValue *Concrete = 0; // The most concrete implementation to resolve to assert((isFunction ^ isa(Globals[0])) && "Should either be function or gvar!"); for (unsigned i = 0; i != Globals.size(); ) { if (isa(Globals[i]) != isFunction) { std::cerr << "WARNING: Found function and global variable with the " << "same name: '" << Globals[i]->getName() << "'.\n"; return false; // Don't know how to handle this, bail out! } if (isFunction) { // For functions, we look to merge functions definitions of "int (...)" // to 'int (int)' or 'int ()' or whatever else is not completely generic. // Function *F = cast(Globals[i]); if (!F->isExternal()) { if (Concrete && !Concrete->isExternal()) return false; // Found two different functions types. Can't choose! Concrete = Globals[i]; } else if (Concrete) { if (Concrete->isExternal()) // If we have multiple external symbols...x if (F->getFunctionType()->getNumParams() > cast(Concrete)->getFunctionType()->getNumParams()) Concrete = F; // We are more concrete than "Concrete"! } else { Concrete = F; } } else { GlobalVariable *GV = cast(Globals[i]); if (!GV->isExternal()) { if (Concrete) { std::cerr << "WARNING: Two global variables with external linkage" << " exist with the same name: '" << GV->getName() << "'!\n"; return false; } Concrete = GV; } } ++i; } if (Globals.size() > 1) { // Found a multiply defined global... // If there are no external declarations, and there is at most one // externally visible instance of the global, then there is nothing to do. // bool HasExternal = false; unsigned NumInstancesWithExternalLinkage = 0; for (unsigned i = 0, e = Globals.size(); i != e; ++i) { if (Globals[i]->isExternal()) HasExternal = true; else if (!Globals[i]->hasInternalLinkage()) NumInstancesWithExternalLinkage++; } if (!HasExternal && NumInstancesWithExternalLinkage <= 1) return false; // Nothing to do? Must have multiple internal definitions. std::cerr << "WARNING: Found global types that are not compatible:\n"; for (unsigned i = 0; i < Globals.size(); ++i) { std::cerr << "\t" << *Globals[i]->getType() << " %" << Globals[i]->getName() << "\n"; } if (!Concrete) Concrete = Globals[0]; else if (GlobalVariable *GV = dyn_cast(Concrete)) { // Handle special case hack to change globals if it will make their types // happier in the long run. The situation we do this is intentionally // extremely limited. if (GV->use_empty() && GV->hasInitializer() && GV->getInitializer()->isNullValue()) { // Check to see if there is another (external) global with the same size // and a non-empty use-list. If so, we will make IT be the real // implementation. unsigned TS = TD.getTypeSize(Concrete->getType()->getElementType()); for (unsigned i = 0, e = Globals.size(); i != e; ++i) if (Globals[i] != Concrete && !Globals[i]->use_empty() && isa(Globals[i]) && TD.getTypeSize(Globals[i]->getType()->getElementType()) == TS) { // At this point we want to replace Concrete with Globals[i]. Make // concrete external, and Globals[i] have an initializer. GlobalVariable *NGV = cast(Globals[i]); const Type *ElTy = NGV->getType()->getElementType(); NGV->setInitializer(Constant::getNullValue(ElTy)); cast(Concrete)->setInitializer(0); Concrete = NGV; break; } } } if (isFunction) return ResolveFunctions(M, Globals, cast(Concrete)); else return ResolveGlobalVariables(M, Globals, cast(Concrete)); } return false; } bool FunctionResolvingPass::run(Module &M) { SymbolTable &ST = M.getSymbolTable(); std::map > Globals; // Loop over the entries in the symbol table. If an entry is a func pointer, // then add it to the Functions map. We do a two pass algorithm here to avoid // problems with iterators getting invalidated if we did a one pass scheme. // for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) if (const PointerType *PT = dyn_cast(I->first)) { SymbolTable::VarMap &Plane = I->second; for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end(); PI != PE; ++PI) { GlobalValue *GV = cast(PI->second); assert(PI->first == GV->getName() && "Global name and symbol table do not agree!"); if (!GV->hasInternalLinkage()) Globals[PI->first].push_back(GV); } } bool Changed = false; TargetData &TD = getAnalysis(); // Now we have a list of all functions with a particular name. If there is // more than one entry in a list, merge the functions together. // for (std::map >::iterator I = Globals.begin(), E = Globals.end(); I != E; ++I) Changed |= ProcessGlobalsWithSameName(M, TD, I->second); // Now loop over all of the globals, checking to see if any are trivially // dead. If so, remove them now. for (Module::iterator I = M.begin(), E = M.end(); I != E; ) if (I->isExternal() && I->use_empty()) { Function *F = I; ++I; M.getFunctionList().erase(F); ++NumResolved; Changed = true; } else { ++I; } for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ) if (I->isExternal() && I->use_empty()) { GlobalVariable *GV = I; ++I; M.getGlobalList().erase(GV); ++NumGlobals; Changed = true; } else { ++I; } return Changed; }