//===- ValueTracking.cpp - Walk computations to compute properties --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains routines that help analyze properties that chains of // computations have. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ValueTracking.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/GlobalVariable.h" #include "llvm/IntrinsicInst.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include <cstring> using namespace llvm; /// getOpcode - If this is an Instruction or a ConstantExpr, return the /// opcode value. Otherwise return UserOp1. static unsigned getOpcode(const Value *V) { if (const Instruction *I = dyn_cast<Instruction>(V)) return I->getOpcode(); if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) return CE->getOpcode(); // Use UserOp1 to mean there's no opcode. return Instruction::UserOp1; } /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bit sets. This code only analyzes bits in Mask, in order to short-circuit /// processing. /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that /// we cannot optimize based on the assumption that it is zero without changing /// it to be an explicit zero. If we don't change it to zero, other code could /// optimized based on the contradictory assumption that it is non-zero. /// Because instcombine aggressively folds operations with undef args anyway, /// this won't lose us code quality. void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, TargetData *TD, unsigned Depth) { assert(V && "No Value?"); assert(Depth <= 6 && "Limit Search Depth"); uint32_t BitWidth = Mask.getBitWidth(); assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) && "Not integer or pointer type!"); assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) && (!isa<IntegerType>(V->getType()) || V->getType()->getPrimitiveSizeInBits() == BitWidth) && KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && "V, Mask, KnownOne and KnownZero should have same BitWidth"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { // We know all of the bits for a constant! KnownOne = CI->getValue() & Mask; KnownZero = ~KnownOne & Mask; return; } // Null is all-zeros. if (isa<ConstantPointerNull>(V)) { KnownOne.clear(); KnownZero = Mask; return; } // The address of an aligned GlobalValue has trailing zeros. if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { unsigned Align = GV->getAlignment(); if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) Align = TD->getPrefTypeAlignment(GV->getType()->getElementType()); if (Align > 0) KnownZero = Mask & APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); else KnownZero.clear(); KnownOne.clear(); return; } KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything. if (Depth == 6 || Mask == 0) return; // Limit search depth. User *I = dyn_cast<User>(V); if (!I) return; APInt KnownZero2(KnownZero), KnownOne2(KnownOne); switch (getOpcode(I)) { default: break; case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); APInt Mask2(Mask & ~KnownZero); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; return; } case Instruction::Or: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); APInt Mask2(Mask & ~KnownOne); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; return; } case Instruction::Xor: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; return; } case Instruction::Mul: { APInt Mask2 = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If low bits are zero in either operand, output low known-0 bits. // Also compute a conserative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. KnownOne.clear(); unsigned TrailZ = KnownZero.countTrailingOnes() + KnownZero2.countTrailingOnes(); unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + KnownZero2.countLeadingOnes(), BitWidth) - BitWidth; TrailZ = std::min(TrailZ, BitWidth); LeadZ = std::min(LeadZ, BitWidth); KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | APInt::getHighBitsSet(BitWidth, LeadZ); KnownZero &= Mask; return; } case Instruction::UDiv: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. APInt AllOnes = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero2, KnownOne2, TD, Depth+1); unsigned LeadZ = KnownZero2.countLeadingOnes(); KnownOne2.clear(); KnownZero2.clear(); ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, TD, Depth+1); unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); if (RHSUnknownLeadingOnes != BitWidth) LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; return; } case Instruction::Select: ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::SIToFP: case Instruction::UIToFP: return; // Can't work with floating point. case Instruction::PtrToInt: case Instruction::IntToPtr: // We can't handle these if we don't know the pointer size. if (!TD) return; // FALL THROUGH and handle them the same as zext/trunc. case Instruction::ZExt: case Instruction::Trunc: { // Note that we handle pointer operands here because of inttoptr/ptrtoint // which fall through here. const Type *SrcTy = I->getOperand(0)->getType(); uint32_t SrcBitWidth = TD ? TD->getTypeSizeInBits(SrcTy) : SrcTy->getPrimitiveSizeInBits(); APInt MaskIn(Mask); MaskIn.zextOrTrunc(SrcBitWidth); KnownZero.zextOrTrunc(SrcBitWidth); KnownOne.zextOrTrunc(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, Depth+1); KnownZero.zextOrTrunc(BitWidth); KnownOne.zextOrTrunc(BitWidth); // Any top bits are known to be zero. if (BitWidth > SrcBitWidth) KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); return; } case Instruction::BitCast: { const Type *SrcTy = I->getOperand(0)->getType(); if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) { ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, Depth+1); return; } break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); uint32_t SrcBitWidth = SrcTy->getBitWidth(); APInt MaskIn(Mask); MaskIn.trunc(SrcBitWidth); KnownZero.trunc(SrcBitWidth); KnownOne.trunc(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); return; } case Instruction::Shl: // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); APInt Mask2(Mask.lshr(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= ShiftAmt; KnownOne <<= ShiftAmt; KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 return; } break; case Instruction::LShr: // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Unsigned shift right. APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); // high bits known zero. KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); return; } break; case Instruction::AShr: // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Signed shift right. APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. KnownZero |= HighBits; else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. KnownOne |= HighBits; return; } break; case Instruction::Sub: { if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { // We know that the top bits of C-X are clear if X contains less bits // than C (i.e. no wrap-around can happen). For example, 20-X is // positive if we can prove that X is >= 0 and < 16. if (!CLHS->getValue().isNegative()) { unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); // NLZ can't be BitWidth with no sign bit APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, TD, Depth+1); // If all of the MaskV bits are known to be zero, then we know the // output top bits are zero, because we now know that the output is // from [0-C]. if ((KnownZero2 & MaskV) == MaskV) { unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); // Top bits known zero. KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; } } } } // fall through case Instruction::Add: { // Output known-0 bits are known if clear or set in both the low clear bits // common to both LHS & RHS. For example, 8+(X<<3) is known to have the // low 3 bits clear. APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes()); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); KnownZeroOut = std::min(KnownZeroOut, KnownZero2.countTrailingOnes()); KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); return; } case Instruction::SRem: if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { APInt RA = Rem->getValue(); if (RA.isPowerOf2() || (-RA).isPowerOf2()) { APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA; APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); // If the sign bit of the first operand is zero, the sign bit of // the result is zero. If the first operand has no one bits below // the second operand's single 1 bit, its sign will be zero. if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) KnownZero2 |= ~LowBits; KnownZero |= KnownZero2 & Mask; assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); } } break; case Instruction::URem: { if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { APInt RA = Rem->getValue(); if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); APInt Mask2 = LowBits & Mask; KnownZero |= ~LowBits & Mask; ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); break; } } // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. APInt AllOnes = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, TD, Depth+1); ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, TD, Depth+1); uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); KnownOne.clear(); KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; break; } case Instruction::Alloca: case Instruction::Malloc: { AllocationInst *AI = cast<AllocationInst>(V); unsigned Align = AI->getAlignment(); if (Align == 0 && TD) { if (isa<AllocaInst>(AI)) Align = TD->getPrefTypeAlignment(AI->getType()->getElementType()); else if (isa<MallocInst>(AI)) { // Malloc returns maximally aligned memory. Align = TD->getABITypeAlignment(AI->getType()->getElementType()); Align = std::max(Align, (unsigned)TD->getABITypeAlignment(Type::DoubleTy)); Align = std::max(Align, (unsigned)TD->getABITypeAlignment(Type::Int64Ty)); } } if (Align > 0) KnownZero = Mask & APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); break; } case Instruction::GetElementPtr: { // Analyze all of the subscripts of this getelementptr instruction // to determine if we can prove known low zero bits. APInt LocalMask = APInt::getAllOnesValue(BitWidth); APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); ComputeMaskedBits(I->getOperand(0), LocalMask, LocalKnownZero, LocalKnownOne, TD, Depth+1); unsigned TrailZ = LocalKnownZero.countTrailingOnes(); gep_type_iterator GTI = gep_type_begin(I); for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { Value *Index = I->getOperand(i); if (const StructType *STy = dyn_cast<StructType>(*GTI)) { // Handle struct member offset arithmetic. if (!TD) return; const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); uint64_t Offset = SL->getElementOffset(Idx); TrailZ = std::min(TrailZ, CountTrailingZeros_64(Offset)); } else { // Handle array index arithmetic. const Type *IndexedTy = GTI.getIndexedType(); if (!IndexedTy->isSized()) return; unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits(); uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1; LocalMask = APInt::getAllOnesValue(GEPOpiBits); LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); ComputeMaskedBits(Index, LocalMask, LocalKnownZero, LocalKnownOne, TD, Depth+1); TrailZ = std::min(TrailZ, CountTrailingZeros_64(TypeSize) + LocalKnownZero.countTrailingOnes()); } } KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; break; } case Instruction::PHI: { PHINode *P = cast<PHINode>(I); // Handle the case of a simple two-predecessor recurrence PHI. // There's a lot more that could theoretically be done here, but // this is sufficient to catch some interesting cases. if (P->getNumIncomingValues() == 2) { for (unsigned i = 0; i != 2; ++i) { Value *L = P->getIncomingValue(i); Value *R = P->getIncomingValue(!i); User *LU = dyn_cast<User>(L); if (!LU) continue; unsigned Opcode = getOpcode(LU); // Check for operations that have the property that if // both their operands have low zero bits, the result // will have low zero bits. if (Opcode == Instruction::Add || Opcode == Instruction::Sub || Opcode == Instruction::And || Opcode == Instruction::Or || Opcode == Instruction::Mul) { Value *LL = LU->getOperand(0); Value *LR = LU->getOperand(1); // Find a recurrence. if (LL == I) L = LR; else if (LR == I) L = LL; else break; // Ok, we have a PHI of the form L op= R. Check for low // zero bits. APInt Mask2 = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); Mask2 = APInt::getLowBitsSet(BitWidth, KnownZero2.countTrailingOnes()); KnownOne2.clear(); KnownZero2.clear(); ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, TD, Depth+1); KnownZero = Mask & APInt::getLowBitsSet(BitWidth, KnownZero2.countTrailingOnes()); break; } } } break; } case Instruction::Call: if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: { unsigned LowBits = Log2_32(BitWidth)+1; KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); break; } } } break; } } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. Mask is known to be zero /// for bits that V cannot have. bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, TargetData *TD, unsigned Depth) { APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); return (KnownZero & Mask) == Mask; } /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "ashr X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. /// /// 'Op' must have a scalar integer type. /// unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) { const IntegerType *Ty = cast<IntegerType>(V->getType()); unsigned TyBits = Ty->getBitWidth(); unsigned Tmp, Tmp2; unsigned FirstAnswer = 1; // Note that ConstantInt is handled by the general ComputeMaskedBits case // below. if (Depth == 6) return 1; // Limit search depth. User *U = dyn_cast<User>(V); switch (getOpcode(V)) { default: break; case Instruction::SExt: Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth(); return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; case Instruction::AShr: Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); // ashr X, C -> adds C sign bits. if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { Tmp += C->getZExtValue(); if (Tmp > TyBits) Tmp = TyBits; } return Tmp; case Instruction::Shl: if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { // shl destroys sign bits. Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); if (C->getZExtValue() >= TyBits || // Bad shift. C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. return Tmp - C->getZExtValue(); } break; case Instruction::And: case Instruction::Or: case Instruction::Xor: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); if (Tmp != 1) { Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); FirstAnswer = std::min(Tmp, Tmp2); // We computed what we know about the sign bits as our first // answer. Now proceed to the generic code that uses // ComputeMaskedBits, and pick whichever answer is better. } break; case Instruction::Select: Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); return std::min(Tmp, Tmp2); case Instruction::Add: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); if (Tmp == 1) return 1; // Early out. // Special case decrementing a value (ADD X, -1): if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(0))) if (CRHS->isAllOnesValue()) { APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); APInt Mask = APInt::getAllOnesValue(TyBits); ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(TyBits, 1)) == Mask) return TyBits; // If we are subtracting one from a positive number, there is no carry // out of the result. if (KnownZero.isNegative()) return Tmp; } Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); if (Tmp2 == 1) return 1; return std::min(Tmp, Tmp2)-1; break; case Instruction::Sub: Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); if (Tmp2 == 1) return 1; // Handle NEG. if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) if (CLHS->isNullValue()) { APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); APInt Mask = APInt::getAllOnesValue(TyBits); ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(TyBits, 1)) == Mask) return TyBits; // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the input. if (KnownZero.isNegative()) return Tmp2; // Otherwise, we treat this like a SUB. } // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); if (Tmp == 1) return 1; // Early out. return std::min(Tmp, Tmp2)-1; break; case Instruction::Trunc: // FIXME: it's tricky to do anything useful for this, but it is an important // case for targets like X86. break; } // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); APInt Mask = APInt::getAllOnesValue(TyBits); ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); if (KnownZero.isNegative()) { // sign bit is 0 Mask = KnownZero; } else if (KnownOne.isNegative()) { // sign bit is 1; Mask = KnownOne; } else { // Nothing known. return FirstAnswer; } // Okay, we know that the sign bit in Mask is set. Use CLZ to determine // the number of identical bits in the top of the input value. Mask = ~Mask; Mask <<= Mask.getBitWidth()-TyBits; // Return # leading zeros. We use 'min' here in case Val was zero before // shifting. We don't want to return '64' as for an i32 "0". return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); } /// CannotBeNegativeZero - Return true if we can prove that the specified FP /// value is never equal to -0.0. /// /// NOTE: this function will need to be revisited when we support non-default /// rounding modes! /// bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) return !CFP->getValueAPF().isNegZero(); if (Depth == 6) return 1; // Limit search depth. const Instruction *I = dyn_cast<Instruction>(V); if (I == 0) return false; // (add x, 0.0) is guaranteed to return +0.0, not -0.0. if (I->getOpcode() == Instruction::Add && isa<ConstantFP>(I->getOperand(1)) && cast<ConstantFP>(I->getOperand(1))->isNullValue()) return true; // sitofp and uitofp turn into +0.0 for zero. if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) return true; if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) // sqrt(-0.0) = -0.0, no other negative results are possible. if (II->getIntrinsicID() == Intrinsic::sqrt) return CannotBeNegativeZero(II->getOperand(1), Depth+1); if (const CallInst *CI = dyn_cast<CallInst>(I)) if (const Function *F = CI->getCalledFunction()) { if (F->isDeclaration()) { switch (F->getNameLen()) { case 3: // abs(x) != -0.0 if (!strcmp(F->getNameStart(), "abs")) return true; break; case 4: // abs[lf](x) != -0.0 if (!strcmp(F->getNameStart(), "absf")) return true; if (!strcmp(F->getNameStart(), "absl")) return true; break; } } } return false; } // This is the recursive version of BuildSubAggregate. It takes a few different // arguments. Idxs is the index within the nested struct From that we are // looking at now (which is of type IndexedType). IdxSkip is the number of // indices from Idxs that should be left out when inserting into the resulting // struct. To is the result struct built so far, new insertvalue instructions // build on that. Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, SmallVector<unsigned, 10> &Idxs, unsigned IdxSkip, Instruction *InsertBefore) { const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); if (STy) { // Save the original To argument so we can modify it Value *OrigTo = To; // General case, the type indexed by Idxs is a struct for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // Process each struct element recursively Idxs.push_back(i); Value *PrevTo = To; To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, InsertBefore); Idxs.pop_back(); if (!To) { // Couldn't find any inserted value for this index? Cleanup while (PrevTo != OrigTo) { InsertValueInst* Del = cast<InsertValueInst>(PrevTo); PrevTo = Del->getAggregateOperand(); Del->eraseFromParent(); } // Stop processing elements break; } } // If we succesfully found a value for each of our subaggregates if (To) return To; } // Base case, the type indexed by SourceIdxs is not a struct, or not all of // the struct's elements had a value that was inserted directly. In the latter // case, perhaps we can't determine each of the subelements individually, but // we might be able to find the complete struct somewhere. // Find the value that is at that particular spot Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); if (!V) return NULL; // Insert the value in the new (sub) aggregrate return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, Idxs.end(), "tmp", InsertBefore); } // This helper takes a nested struct and extracts a part of it (which is again a // struct) into a new value. For example, given the struct: // { a, { b, { c, d }, e } } // and the indices "1, 1" this returns // { c, d }. // // It does this by inserting an insertvalue for each element in the resulting // struct, as opposed to just inserting a single struct. This will only work if // each of the elements of the substruct are known (ie, inserted into From by an // insertvalue instruction somewhere). // // All inserted insertvalue instructions are inserted before InsertBefore Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, const unsigned *idx_end, Instruction *InsertBefore) { assert(InsertBefore && "Must have someplace to insert!"); const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), idx_begin, idx_end); Value *To = UndefValue::get(IndexedType); SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); unsigned IdxSkip = Idxs.size(); return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); } /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if /// the scalar value indexed is already around as a register, for example if it /// were inserted directly into the aggregrate. /// /// If InsertBefore is not null, this function will duplicate (modified) /// insertvalues when a part of a nested struct is extracted. Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, const unsigned *idx_end, Instruction *InsertBefore) { // Nothing to index? Just return V then (this is useful at the end of our // recursion) if (idx_begin == idx_end) return V; // We have indices, so V should have an indexable type assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType())) && "Not looking at a struct or array?"); assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) && "Invalid indices for type?"); const CompositeType *PTy = cast<CompositeType>(V->getType()); if (isa<UndefValue>(V)) return UndefValue::get(ExtractValueInst::getIndexedType(PTy, idx_begin, idx_end)); else if (isa<ConstantAggregateZero>(V)) return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, idx_begin, idx_end)); else if (Constant *C = dyn_cast<Constant>(V)) { if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) // Recursively process this constant return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end, InsertBefore); } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { // Loop the indices for the insertvalue instruction in parallel with the // requested indices const unsigned *req_idx = idx_begin; for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); i != e; ++i, ++req_idx) { if (req_idx == idx_end) { if (InsertBefore) // The requested index identifies a part of a nested aggregate. Handle // this specially. For example, // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 // %C = extractvalue {i32, { i32, i32 } } %B, 1 // This can be changed into // %A = insertvalue {i32, i32 } undef, i32 10, 0 // %C = insertvalue {i32, i32 } %A, i32 11, 1 // which allows the unused 0,0 element from the nested struct to be // removed. return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); else // We can't handle this without inserting insertvalues return 0; } // This insert value inserts something else than what we are looking for. // See if the (aggregrate) value inserted into has the value we are // looking for, then. if (*req_idx != *i) return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, InsertBefore); } // If we end up here, the indices of the insertvalue match with those // requested (though possibly only partially). Now we recursively look at // the inserted value, passing any remaining indices. return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, InsertBefore); } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { // If we're extracting a value from an aggregrate that was extracted from // something else, we can extract from that something else directly instead. // However, we will need to chain I's indices with the requested indices. // Calculate the number of indices required unsigned size = I->getNumIndices() + (idx_end - idx_begin); // Allocate some space to put the new indices in SmallVector<unsigned, 5> Idxs; Idxs.reserve(size); // Add indices from the extract value instruction for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); i != e; ++i) Idxs.push_back(*i); // Add requested indices for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) Idxs.push_back(*i); assert(Idxs.size() == size && "Number of indices added not correct?"); return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), InsertBefore); } // Otherwise, we don't know (such as, extracting from a function return value // or load instruction) return 0; } /// GetConstantStringInfo - This function computes the length of a /// null-terminated C string pointed to by V. If successful, it returns true /// and returns the string in Str. If unsuccessful, it returns false. bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset, bool StopAtNul) { // If V is NULL then return false; if (V == NULL) return false; // Look through bitcast instructions. if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); // If the value is not a GEP instruction nor a constant expression with a // GEP instruction, then return false because ConstantArray can't occur // any other way User *GEP = 0; if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { GEP = GEPI; } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { if (CE->getOpcode() == Instruction::BitCast) return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); if (CE->getOpcode() != Instruction::GetElementPtr) return false; GEP = CE; } if (GEP) { // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return false; // Make sure the index-ee is a pointer to array of i8. const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); if (AT == 0 || AT->getElementType() != Type::Int8Ty) return false; // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); if (FirstIdx == 0 || !FirstIdx->isZero()) return false; // If the second index isn't a ConstantInt, then this is a variable index // into the array. If this occurs, we can't say anything meaningful about // the string. uint64_t StartIdx = 0; if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) StartIdx = CI->getZExtValue(); else return false; return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, StopAtNul); } // The GEP instruction, constant or instruction, must reference a global // variable that is a constant and is initialized. The referenced constant // initializer is the array that we'll use for optimization. GlobalVariable* GV = dyn_cast<GlobalVariable>(V); if (!GV || !GV->isConstant() || !GV->hasInitializer()) return false; Constant *GlobalInit = GV->getInitializer(); // Handle the ConstantAggregateZero case if (isa<ConstantAggregateZero>(GlobalInit)) { // This is a degenerate case. The initializer is constant zero so the // length of the string must be zero. Str.clear(); return true; } // Must be a Constant Array ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty) return false; // Get the number of elements in the array uint64_t NumElts = Array->getType()->getNumElements(); if (Offset > NumElts) return false; // Traverse the constant array from 'Offset' which is the place the GEP refers // to in the array. Str.reserve(NumElts-Offset); for (unsigned i = Offset; i != NumElts; ++i) { Constant *Elt = Array->getOperand(i); ConstantInt *CI = dyn_cast<ConstantInt>(Elt); if (!CI) // This array isn't suitable, non-int initializer. return false; if (StopAtNul && CI->isZero()) return true; // we found end of string, success! Str += (char)CI->getZExtValue(); } // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. return true; }