//===-- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*--=// // // This file contains the declaration of the BasicBlock class, which represents // a single basic block in the VM. // // Note that basic blocks themselves are Def's, because they are referenced // by instructions like branches and can go in switch tables and stuff... // // This may see wierd at first, but it's really pretty cool. :) // //===----------------------------------------------------------------------===// // // Note that well formed basic blocks are formed of a list of instructions // followed by a single TerminatorInst instruction. TerminatorInst's may not // occur in the middle of basic blocks, and must terminate the blocks. // // This code allows malformed basic blocks to occur, because it may be useful // in the intermediate stage of analysis or modification of a program. // //===----------------------------------------------------------------------===// #ifndef LLVM_BASICBLOCK_H #define LLVM_BASICBLOCK_H #include "llvm/Value.h" // Get the definition of Value #include "llvm/ValueHolder.h" #include "llvm/CFGdecls.h" class Instruction; class Method; class BasicBlock; class TerminatorInst; typedef UseTy BasicBlockUse; class BasicBlock : public Value { // Basic blocks are data objects also public: typedef ValueHolder InstListType; private : InstListType InstList; friend class ValueHolder; void setParent(Method *parent); public: typedef cfg::succ_iterator succ_iterator; // Include CFG.h to use these typedef cfg::pred_iterator pred_iterator; typedef cfg::succ_const_iterator succ_const_iterator; typedef cfg::pred_const_iterator pred_const_iterator; BasicBlock(const string &Name = "", Method *Parent = 0); ~BasicBlock(); // Specialize setName to take care of symbol table majik virtual void setName(const string &name); const Method *getParent() const { return (const Method*)InstList.getParent();} Method *getParent() { return (Method*)InstList.getParent(); } const InstListType &getInstList() const { return InstList; } InstListType &getInstList() { return InstList; } // getTerminator() - If this is a well formed basic block, then this returns // a pointer to the terminator instruction. If it is not, then you get a null // pointer back. // TerminatorInst *getTerminator(); const TerminatorInst *const getTerminator() const; // hasConstantPoolReferences() - This predicate is true if there is a // reference to this basic block in the constant pool for this method. For // example, if a block is reached through a switch table, that table resides // in the constant pool, and the basic block is reference from it. // bool hasConstantPoolReferences() const; // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is delete'd for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void dropAllReferences(); // splitBasicBlock - This splits a basic block into two at the specified // instruction. Note that all instructions BEFORE the specified iterator stay // as part of the original basic block, an unconditional branch is added to // the new BB, and the rest of the instructions in the BB are moved to the new // BB, including the old terminator. The newly formed BasicBlock is returned. // This function invalidates the specified iterator. // // Note that this only works on well formed basic blocks (must have a // terminator), and 'I' must not be the end of instruction list (which would // cause a degenerate basic block to be formed, having a terminator inside of // the basic block). // BasicBlock *splitBasicBlock(InstListType::iterator I); }; #endif