//===-- PhyRegAlloc.cpp ---------------------------------------------------===// // // Register allocation for LLVM. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegisterAllocation.h" #include "llvm/CodeGen/RegAllocCommon.h" #include "llvm/CodeGen/IGNode.h" #include "llvm/CodeGen/PhyRegAlloc.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrAnnot.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MachineFrameInfo.h" #include "llvm/Target/MachineInstrInfo.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/iOther.h" #include "Support/STLExtras.h" #include "Support/CommandLine.h" #include using std::cerr; using std::vector; RegAllocDebugLevel_t DEBUG_RA; static cl::opt DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA), cl::desc("enable register allocation debugging information"), cl::values( clEnumValN(RA_DEBUG_None , "n", "disable debug output"), clEnumValN(RA_DEBUG_Results, "y", "debug output for allocation results"), clEnumValN(RA_DEBUG_Coloring, "c", "debug output for graph coloring step"), clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"), clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"), clEnumValN(RA_DEBUG_Verbose, "v", "extra debug output"), 0)); //---------------------------------------------------------------------------- // RegisterAllocation pass front end... //---------------------------------------------------------------------------- namespace { class RegisterAllocator : public FunctionPass { TargetMachine &Target; public: inline RegisterAllocator(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "Register Allocation"; } bool runOnFunction(Function &F) { if (DEBUG_RA) cerr << "\n********* Function "<< F.getName() << " ***********\n"; PhyRegAlloc PRA(&F, Target, &getAnalysis(), &getAnalysis()); PRA.allocateRegisters(); if (DEBUG_RA) cerr << "\nRegister allocation complete!\n"; return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); } }; } Pass *getRegisterAllocator(TargetMachine &T) { return new RegisterAllocator(T); } //---------------------------------------------------------------------------- // Constructor: Init local composite objects and create register classes. //---------------------------------------------------------------------------- PhyRegAlloc::PhyRegAlloc(Function *F, const TargetMachine& tm, FunctionLiveVarInfo *Lvi, LoopInfo *LDC) : TM(tm), Fn(F), MF(MachineFunction::get(F)), LVI(Lvi), LRI(F, tm, RegClassList), MRI(tm.getRegInfo()), NumOfRegClasses(MRI.getNumOfRegClasses()), LoopDepthCalc(LDC) { // create each RegisterClass and put in RegClassList // for (unsigned rc=0; rc != NumOfRegClasses; rc++) RegClassList.push_back(new RegClass(F, MRI.getMachineRegClass(rc), &ResColList)); } //---------------------------------------------------------------------------- // Destructor: Deletes register classes //---------------------------------------------------------------------------- PhyRegAlloc::~PhyRegAlloc() { for ( unsigned rc=0; rc < NumOfRegClasses; rc++) delete RegClassList[rc]; AddedInstrMap.clear(); } //---------------------------------------------------------------------------- // This method initally creates interference graphs (one in each reg class) // and IGNodeList (one in each IG). The actual nodes will be pushed later. //---------------------------------------------------------------------------- void PhyRegAlloc::createIGNodeListsAndIGs() { if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "Creating LR lists ...\n"; // hash map iterator LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); // hash map end LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); for (; HMI != HMIEnd ; ++HMI ) { if (HMI->first) { LiveRange *L = HMI->second; // get the LiveRange if (!L) { if (DEBUG_RA) cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: " << RAV(HMI->first) << "****\n"; continue; } // if the Value * is not null, and LR is not yet written to the IGNodeList if (!(L->getUserIGNode()) ) { RegClass *const RC = // RegClass of first value in the LR RegClassList[ L->getRegClass()->getID() ]; RC->addLRToIG(L); // add this LR to an IG } } } // init RegClassList for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->createInterferenceGraph(); if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "LRLists Created!\n"; } //---------------------------------------------------------------------------- // This method will add all interferences at for a given instruction. // Interence occurs only if the LR of Def (Inst or Arg) is of the same reg // class as that of live var. The live var passed to this function is the // LVset AFTER the instruction //---------------------------------------------------------------------------- void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet, bool isCallInst) { ValueSet::const_iterator LIt = LVSet->begin(); // get the live range of instruction // const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def ); IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); assert( IGNodeOfDef ); RegClass *const RCOfDef = LROfDef->getRegClass(); // for each live var in live variable set // for ( ; LIt != LVSet->end(); ++LIt) { if (DEBUG_RA >= RA_DEBUG_Verbose) cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> "; // get the live range corresponding to live var // LiveRange *LROfVar = LRI.getLiveRangeForValue(*LIt); // LROfVar can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above // if (LROfVar) if (LROfDef != LROfVar) // do not set interf for same LR if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same RCOfDef->setInterference( LROfDef, LROfVar); } } //---------------------------------------------------------------------------- // For a call instruction, this method sets the CallInterference flag in // the LR of each variable live int the Live Variable Set live after the // call instruction (except the return value of the call instruction - since // the return value does not interfere with that call itself). //---------------------------------------------------------------------------- void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, const ValueSet *LVSetAft) { if (DEBUG_RA >= RA_DEBUG_Interference) cerr << "\n For call inst: " << *MInst; ValueSet::const_iterator LIt = LVSetAft->begin(); // for each live var in live variable set after machine inst // for ( ; LIt != LVSetAft->end(); ++LIt) { // get the live range corresponding to live var // LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above // if (LR ) { if (DEBUG_RA >= RA_DEBUG_Interference) { cerr << "\n\tLR after Call: "; printSet(*LR); } LR->setCallInterference(); if (DEBUG_RA >= RA_DEBUG_Interference) { cerr << "\n ++After adding call interference for LR: " ; printSet(*LR); } } } // Now find the LR of the return value of the call // We do this because, we look at the LV set *after* the instruction // to determine, which LRs must be saved across calls. The return value // of the call is live in this set - but it does not interfere with call // (i.e., we can allocate a volatile register to the return value) // CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst); if (const Value *RetVal = argDesc->getReturnValue()) { LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal ); assert( RetValLR && "No LR for RetValue of call"); RetValLR->clearCallInterference(); } // If the CALL is an indirect call, find the LR of the function pointer. // That has a call interference because it conflicts with outgoing args. if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) { LiveRange *AddrValLR = LRI.getLiveRangeForValue( AddrVal ); assert( AddrValLR && "No LR for indirect addr val of call"); AddrValLR->setCallInterference(); } } //---------------------------------------------------------------------------- // This method will walk thru code and create interferences in the IG of // each RegClass. Also, this method calculates the spill cost of each // Live Range (it is done in this method to save another pass over the code). //---------------------------------------------------------------------------- void PhyRegAlloc::buildInterferenceGraphs() { if (DEBUG_RA >= RA_DEBUG_Interference) cerr << "Creating interference graphs ...\n"; unsigned BBLoopDepthCost; for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end(); BBI != BBE; ++BBI) { const MachineBasicBlock &MBB = *BBI; const BasicBlock *BB = MBB.getBasicBlock(); // find the 10^(loop_depth) of this BB // BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB)); // get the iterator for machine instructions // MachineBasicBlock::const_iterator MII = MBB.begin(); // iterate over all the machine instructions in BB // for ( ; MII != MBB.end(); ++MII) { const MachineInstr *MInst = *MII; // get the LV set after the instruction // const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB); bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); if (isCallInst ) { // set the isCallInterference flag of each live range wich extends // accross this call instruction. This information is used by graph // coloring algo to avoid allocating volatile colors to live ranges // that span across calls (since they have to be saved/restored) // setCallInterferences(MInst, &LVSetAI); } // iterate over all MI operands to find defs // for (MachineInstr::const_val_op_iterator OpI = MInst->begin(), OpE = MInst->end(); OpI != OpE; ++OpI) { if (OpI.isDef()) // create a new LR iff this operand is a def addInterference(*OpI, &LVSetAI, isCallInst); // Calculate the spill cost of each live range // LiveRange *LR = LRI.getLiveRangeForValue(*OpI); if (LR) LR->addSpillCost(BBLoopDepthCost); } // if there are multiple defs in this instruction e.g. in SETX // if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode())) addInterf4PseudoInstr(MInst); // Also add interference for any implicit definitions in a machine // instr (currently, only calls have this). // unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); if ( NumOfImpRefs > 0 ) { for (unsigned z=0; z < NumOfImpRefs; z++) if (MInst->implicitRefIsDefined(z) ) addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst ); } } // for all machine instructions in BB } // for all BBs in function // add interferences for function arguments. Since there are no explict // defs in the function for args, we have to add them manually // addInterferencesForArgs(); if (DEBUG_RA >= RA_DEBUG_Interference) cerr << "Interference graphs calculated!\n"; } //-------------------------------------------------------------------------- // Pseudo instructions will be exapnded to multiple instructions by the // assembler. Consequently, all the opernds must get distinct registers. // Therefore, we mark all operands of a pseudo instruction as they interfere // with one another. //-------------------------------------------------------------------------- void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { bool setInterf = false; // iterate over MI operands to find defs // for (MachineInstr::const_val_op_iterator It1 = MInst->begin(), ItE = MInst->end(); It1 != ItE; ++It1) { const LiveRange *LROfOp1 = LRI.getLiveRangeForValue(*It1); assert((LROfOp1 || !It1.isDef()) && "No LR for Def in PSEUDO insruction"); MachineInstr::const_val_op_iterator It2 = It1; for (++It2; It2 != ItE; ++It2) { const LiveRange *LROfOp2 = LRI.getLiveRangeForValue(*It2); if (LROfOp2) { RegClass *RCOfOp1 = LROfOp1->getRegClass(); RegClass *RCOfOp2 = LROfOp2->getRegClass(); if (RCOfOp1 == RCOfOp2 ){ RCOfOp1->setInterference( LROfOp1, LROfOp2 ); setInterf = true; } } // if Op2 has a LR } // for all other defs in machine instr } // for all operands in an instruction if (!setInterf && MInst->getNumOperands() > 2) { cerr << "\nInterf not set for any operand in pseudo instr:\n"; cerr << *MInst; assert(0 && "Interf not set for pseudo instr with > 2 operands" ); } } //---------------------------------------------------------------------------- // This method will add interferences for incoming arguments to a function. //---------------------------------------------------------------------------- void PhyRegAlloc::addInterferencesForArgs() { // get the InSet of root BB const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front()); for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) { // add interferences between args and LVars at start addInterference(AI, &InSet, false); if (DEBUG_RA >= RA_DEBUG_Interference) cerr << " - %% adding interference for argument " << RAV(AI) << "\n"; } } //---------------------------------------------------------------------------- // This method is called after register allocation is complete to set the // allocated reisters in the machine code. This code will add register numbers // to MachineOperands that contain a Value. Also it calls target specific // methods to produce caller saving instructions. At the end, it adds all // additional instructions produced by the register allocator to the // instruction stream. //---------------------------------------------------------------------------- //----------------------------- // Utility functions used below //----------------------------- inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { MII = MBB.insert(MII, newMI); ++MII; } inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { ++MII; // insert before the next instruction MII = MBB.insert(MII, newMI); } inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator MII) { *MII = newMI; } inline void PrependInstructions(vector &IBef, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII, const std::string& msg) { if (!IBef.empty()) { MachineInstr* OrigMI = *MII; std::vector::iterator AdIt; for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) { if (DEBUG_RA) { if (OrigMI) cerr << "For MInst:\n " << *OrigMI; cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n"; } InsertBefore(*AdIt, MBB, MII); } } } inline void AppendInstructions(std::vector &IAft, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII, const std::string& msg) { if (!IAft.empty()) { MachineInstr* OrigMI = *MII; std::vector::iterator AdIt; for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { if (DEBUG_RA) { if (OrigMI) cerr << "For MInst:\n " << *OrigMI; cerr << msg << "APPENDed instr:\n " << **AdIt << "\n"; } InsertAfter(*AdIt, MBB, MII); } } } void PhyRegAlloc::updateMachineCode() { // Insert any instructions needed at method entry MachineBasicBlock::iterator MII = MF.front().begin(); PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF.front(), MII, "At function entry: \n"); assert(AddedInstrAtEntry.InstrnsAfter.empty() && "InstrsAfter should be unnecessary since we are just inserting at " "the function entry point here."); for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end(); BBI != BBE; ++BBI) { // iterate over all the machine instructions in BB MachineBasicBlock &MBB = *BBI; for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) { MachineInstr *MInst = *MII; unsigned Opcode = MInst->getOpCode(); // do not process Phis if (TM.getInstrInfo().isDummyPhiInstr(Opcode)) continue; // Reset tmp stack positions so they can be reused for each machine instr. MF.popAllTempValues(TM); // Now insert speical instructions (if necessary) for call/return // instructions. // if (TM.getInstrInfo().isCall(Opcode) || TM.getInstrInfo().isReturn(Opcode)) { AddedInstrns &AI = AddedInstrMap[MInst]; if (TM.getInstrInfo().isCall(Opcode)) MRI.colorCallArgs(MInst, LRI, &AI, *this, MBB.getBasicBlock()); else if (TM.getInstrInfo().isReturn(Opcode)) MRI.colorRetValue(MInst, LRI, &AI); } // Set the registers for operands in the machine instruction // if a register was successfully allocated. If not, insert // code to spill the register value. // for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister) { const Value *const Val = Op.getVRegValue(); LiveRange *const LR = LRI.getLiveRangeForValue(Val); if (!LR) // consts or labels will have no live range { // if register is not allocated, mark register as invalid if (Op.getAllocatedRegNum() == -1) MInst->SetRegForOperand(OpNum, MRI.getInvalidRegNum()); continue; } if (LR->hasColor()) MInst->SetRegForOperand(OpNum, MRI.getUnifiedRegNum(LR->getRegClass()->getID(), LR->getColor())); else // LR did NOT receive a color (register). Insert spill code. insertCode4SpilledLR(LR, MInst, MBB.getBasicBlock(), OpNum); } } // for each operand // Now add instructions that the register allocator inserts before/after // this machine instructions (done only for calls/rets/incoming args) // We do this here, to ensure that spill for an instruction is inserted // closest as possible to an instruction (see above insertCode4Spill...) // // First, if the instruction in the delay slot of a branch needs // instructions inserted, move it out of the delay slot and before the // branch because putting code before or after it would be VERY BAD! // unsigned bumpIteratorBy = 0; if (MII != MBB.begin()) if (unsigned predDelaySlots = TM.getInstrInfo().getNumDelaySlots((*(MII-1))->getOpCode())) { assert(predDelaySlots==1 && "Not handling multiple delay slots!"); if (TM.getInstrInfo().isBranch((*(MII-1))->getOpCode()) && (AddedInstrMap.count(MInst) || AddedInstrMap[MInst].InstrnsAfter.size() > 0)) { // Current instruction is in the delay slot of a branch and it // needs spill code inserted before or after it. // Move it before the preceding branch. InsertBefore(MInst, MBB, --MII); MachineInstr* nopI = new MachineInstr(TM.getInstrInfo().getNOPOpCode()); SubstituteInPlace(nopI, MBB, MII+1); // replace orig with NOP --MII; // point to MInst in new location bumpIteratorBy = 2; // later skip the branch and the NOP! } } // If there are instructions to be added, *before* this machine // instruction, add them now. // if (AddedInstrMap.count(MInst)) { PrependInstructions(AddedInstrMap[MInst].InstrnsBefore, MBB, MII,""); } // If there are instructions to be added *after* this machine // instruction, add them now // if (!AddedInstrMap[MInst].InstrnsAfter.empty()) { // if there are delay slots for this instruction, the instructions // added after it must really go after the delayed instruction(s) // So, we move the InstrAfter of the current instruction to the // corresponding delayed instruction if (unsigned delay = TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) { // Delayed instructions are typically branches or calls. Let's make // sure this is not a branch, otherwise "insert-after" is meaningless, // and should never happen for any reason (spill code, register // restores, etc.). assert(! TM.getInstrInfo().isBranch(MInst->getOpCode()) && ! TM.getInstrInfo().isReturn(MInst->getOpCode()) && "INTERNAL ERROR: Register allocator should not be inserting " "any code after a branch or return!"); move2DelayedInstr(MInst, *(MII+delay) ); } else { // Here we can add the "instructions after" to the current // instruction since there are no delay slots for this instruction AppendInstructions(AddedInstrMap[MInst].InstrnsAfter, MBB, MII,""); } // if not delay } // If we mucked with the instruction order above, adjust the loop iterator if (bumpIteratorBy) MII = MII + bumpIteratorBy; } // for each machine instruction } } //---------------------------------------------------------------------------- // This method inserts spill code for AN operand whose LR was spilled. // This method may be called several times for a single machine instruction // if it contains many spilled operands. Each time it is called, it finds // a register which is not live at that instruction and also which is not // used by other spilled operands of the same instruction. Then it uses // this register temporarily to accomodate the spilled value. //---------------------------------------------------------------------------- void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, MachineInstr *MInst, const BasicBlock *BB, const unsigned OpNum) { assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) && "Outgoing arg of a call must be handled elsewhere (func arg ok)"); assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) && "Return value of a ret must be handled elsewhere"); MachineOperand& Op = MInst->getOperand(OpNum); bool isDef = MInst->operandIsDefined(OpNum); bool isDefAndUse = MInst->operandIsDefinedAndUsed(OpNum); unsigned RegType = MRI.getRegType( LR ); int SpillOff = LR->getSpillOffFromFP(); RegClass *RC = LR->getRegClass(); const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB); MF.pushTempValue(TM, MRI.getSpilledRegSize(RegType) ); vector MIBef, MIAft; vector AdIMid; // Choose a register to hold the spilled value. This may insert code // before and after MInst to free up the value. If so, this code should // be first and last in the spill sequence before/after MInst. int TmpRegU = getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef, MIAft); // Set the operand first so that it this register does not get used // as a scratch register for later calls to getUsableUniRegAtMI below MInst->SetRegForOperand(OpNum, TmpRegU); // get the added instructions for this instruction AddedInstrns &AI = AddedInstrMap[MInst]; // We may need a scratch register to copy the spilled value to/from memory. // This may itself have to insert code to free up a scratch register. // Any such code should go before (after) the spill code for a load (store). int scratchRegType = -1; int scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, MInst, MIBef, MIAft); assert(scratchReg != MRI.getInvalidRegNum()); MInst->insertUsedReg(scratchReg); } if (!isDef || isDefAndUse) { // for a USE, we have to load the value of LR from stack to a TmpReg // and use the TmpReg as one operand of instruction // actual loading instruction(s) MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, RegType, scratchReg); // the actual load should be after the instructions to free up TmpRegU MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end()); AdIMid.clear(); } if (isDef) { // if this is a Def // for a DEF, we have to store the value produced by this instruction // on the stack position allocated for this LR // actual storing instruction(s) MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, RegType, scratchReg); MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end()); } // if !DEF // Finally, insert the entire spill code sequences before/after MInst AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end()); AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end()); if (DEBUG_RA) { cerr << "\nFor Inst:\n " << *MInst; cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex(); cerr << "; added Instructions:"; for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump)); for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump)); } } //---------------------------------------------------------------------------- // We can use the following method to get a temporary register to be used // BEFORE any given machine instruction. If there is a register available, // this method will simply return that register and set MIBef = MIAft = NULL. // Otherwise, it will return a register and MIAft and MIBef will contain // two instructions used to free up this returned register. // Returned register number is the UNIFIED register number //---------------------------------------------------------------------------- int PhyRegAlloc::getUsableUniRegAtMI(const int RegType, const ValueSet *LVSetBef, MachineInstr *MInst, std::vector& MIBef, std::vector& MIAft) { RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType)); int RegU = getUnusedUniRegAtMI(RC, MInst, LVSetBef); if (RegU == -1) { // we couldn't find an unused register. Generate code to free up a reg by // saving it on stack and restoring after the instruction int TmpOff = MF.pushTempValue(TM, MRI.getSpilledRegSize(RegType) ); RegU = getUniRegNotUsedByThisInst(RC, MInst); // Check if we need a scratch register to copy this register to memory. int scratchRegType = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef, MInst, MIBef, MIAft); assert(scratchReg != MRI.getInvalidRegNum()); // We may as well hold the value in the scratch register instead // of copying it to memory and back. But we have to mark the // register as used by this instruction, so it does not get used // as a scratch reg. by another operand or anyone else. MInst->insertUsedReg(scratchReg); MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType); MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType); } else { // the register can be copied directly to/from memory so do it. MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType); MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType); } } return RegU; } //---------------------------------------------------------------------------- // This method is called to get a new unused register that can be used to // accomodate a spilled value. // This method may be called several times for a single machine instruction // if it contains many spilled operands. Each time it is called, it finds // a register which is not live at that instruction and also which is not // used by other spilled operands of the same instruction. // Return register number is relative to the register class. NOT // unified number //---------------------------------------------------------------------------- int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const MachineInstr *MInst, const ValueSet *LVSetBef) { unsigned NumAvailRegs = RC->getNumOfAvailRegs(); std::vector &IsColorUsedArr = RC->getIsColorUsedArr(); for (unsigned i=0; i < NumAvailRegs; i++) // Reset array IsColorUsedArr[i] = false; ValueSet::const_iterator LIt = LVSetBef->begin(); // for each live var in live variable set after machine inst for ( ; LIt != LVSetBef->end(); ++LIt) { // get the live range corresponding to live var LiveRange *const LRofLV = LRI.getLiveRangeForValue(*LIt ); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor() ) IsColorUsedArr[ LRofLV->getColor() ] = true; } // It is possible that one operand of this MInst was already spilled // and it received some register temporarily. If that's the case, // it is recorded in machine operand. We must skip such registers. setRelRegsUsedByThisInst(RC, MInst); for (unsigned c=0; c < NumAvailRegs; c++) // find first unused color if (!IsColorUsedArr[c]) return MRI.getUnifiedRegNum(RC->getID(), c); return -1; } //---------------------------------------------------------------------------- // Get any other register in a register class, other than what is used // by operands of a machine instruction. Returns the unified reg number. //---------------------------------------------------------------------------- int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, const MachineInstr *MInst) { vector &IsColorUsedArr = RC->getIsColorUsedArr(); unsigned NumAvailRegs = RC->getNumOfAvailRegs(); for (unsigned i=0; i < NumAvailRegs ; i++) // Reset array IsColorUsedArr[i] = false; setRelRegsUsedByThisInst(RC, MInst); for (unsigned c=0; c < RC->getNumOfAvailRegs(); c++)// find first unused color if (!IsColorUsedArr[c]) return MRI.getUnifiedRegNum(RC->getID(), c); assert(0 && "FATAL: No free register could be found in reg class!!"); return 0; } //---------------------------------------------------------------------------- // This method modifies the IsColorUsedArr of the register class passed to it. // It sets the bits corresponding to the registers used by this machine // instructions. Both explicit and implicit operands are set. //---------------------------------------------------------------------------- void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, const MachineInstr *MInst ) { vector &IsColorUsedArr = RC->getIsColorUsedArr(); // Add the registers already marked as used by the instruction. // This should include any scratch registers that are used to save // values across the instruction (e.g., for saving state register values). const vector ®sUsed = MInst->getRegsUsed(); for (unsigned i = 0, e = regsUsed.size(); i != e; ++i) if (regsUsed[i]) { unsigned classId = 0; int classRegNum = MRI.getClassRegNum(i, classId); if (RC->getID() == classId) { assert(classRegNum < (int) IsColorUsedArr.size() && "Illegal register number for this reg class?"); IsColorUsedArr[classRegNum] = true; } } // Now add registers allocated to the live ranges of values used in // the instruction. These are not yet recorded in the instruction. for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { const MachineOperand& Op = MInst->getOperand(OpNum); if (MInst->getOperandType(OpNum) == MachineOperand::MO_VirtualRegister || MInst->getOperandType(OpNum) == MachineOperand::MO_CCRegister) if (const Value* Val = Op.getVRegValue()) if (MRI.getRegClassIDOfValue(Val) == RC->getID()) if (Op.getAllocatedRegNum() == -1) if (LiveRange *LROfVal = LRI.getLiveRangeForValue(Val)) if (LROfVal->hasColor() ) // this operand is in a LR that received a color IsColorUsedArr[LROfVal->getColor()] = true; } // If there are implicit references, mark their allocated regs as well // for (unsigned z=0; z < MInst->getNumImplicitRefs(); z++) if (const LiveRange* LRofImpRef = LRI.getLiveRangeForValue(MInst->getImplicitRef(z))) if (LRofImpRef->hasColor()) // this implicit reference is in a LR that received a color IsColorUsedArr[LRofImpRef->getColor()] = true; } //---------------------------------------------------------------------------- // If there are delay slots for an instruction, the instructions // added after it must really go after the delayed instruction(s). // So, we move the InstrAfter of that instruction to the // corresponding delayed instruction using the following method. //---------------------------------------------------------------------------- void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI, const MachineInstr *DelayedMI) { // "added after" instructions of the original instr std::vector &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter; // "added instructions" of the delayed instr AddedInstrns &DelayAdI = AddedInstrMap[DelayedMI]; // "added after" instructions of the delayed instr std::vector &DelayedAft = DelayAdI.InstrnsAfter; // go thru all the "added after instructions" of the original instruction // and append them to the "addded after instructions" of the delayed // instructions DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); // empty the "added after instructions" of the original instruction OrigAft.clear(); } //---------------------------------------------------------------------------- // This method prints the code with registers after register allocation is // complete. //---------------------------------------------------------------------------- void PhyRegAlloc::printMachineCode() { cerr << "\n;************** Function " << Fn->getName() << " *****************\n"; for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end(); BBI != BBE; ++BBI) { cerr << "\n"; printLabel(BBI->getBasicBlock()); cerr << ": "; // get the iterator for machine instructions MachineBasicBlock& MBB = *BBI; MachineBasicBlock::iterator MII = MBB.begin(); // iterate over all the machine instructions in BB for ( ; MII != MBB.end(); ++MII) { MachineInstr *MInst = *MII; cerr << "\n\t"; cerr << TM.getInstrInfo().getName(MInst->getOpCode()); for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister /*|| Op.getType() == MachineOperand::MO_PCRelativeDisp*/ ) { const Value *const Val = Op.getVRegValue () ; // ****this code is temporary till NULL Values are fixed if (! Val ) { cerr << "\t<*NULL*>"; continue; } // if a label or a constant if (isa(Val)) { cerr << "\t"; printLabel( Op.getVRegValue () ); } else { // else it must be a register value const int RegNum = Op.getAllocatedRegNum(); cerr << "\t" << "%" << MRI.getUnifiedRegName( RegNum ); if (Val->hasName() ) cerr << "(" << Val->getName() << ")"; else cerr << "(" << Val << ")"; if (Op.opIsDef() ) cerr << "*"; const LiveRange *LROfVal = LRI.getLiveRangeForValue(Val); if (LROfVal ) if (LROfVal->hasSpillOffset() ) cerr << "$"; } } else if (Op.getType() == MachineOperand::MO_MachineRegister) { cerr << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum()); } else cerr << "\t" << Op; // use dump field } unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); if (NumOfImpRefs > 0) { cerr << "\tImplicit:"; for (unsigned z=0; z < NumOfImpRefs; z++) cerr << RAV(MInst->getImplicitRef(z)) << "\t"; } } // for all machine instructions cerr << "\n"; } // for all BBs cerr << "\n"; } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- void PhyRegAlloc::colorIncomingArgs() { MRI.colorMethodArgs(Fn, LRI, &AddedInstrAtEntry); } //---------------------------------------------------------------------------- // Used to generate a label for a basic block //---------------------------------------------------------------------------- void PhyRegAlloc::printLabel(const Value *Val) { if (Val->hasName()) cerr << Val->getName(); else cerr << "Label" << Val; } //---------------------------------------------------------------------------- // This method calls setSugColorUsable method of each live range. This // will determine whether the suggested color of LR is really usable. // A suggested color is not usable when the suggested color is volatile // AND when there are call interferences //---------------------------------------------------------------------------- void PhyRegAlloc::markUnusableSugColors() { // hash map iterator LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin(); LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end(); for (; HMI != HMIEnd ; ++HMI ) { if (HMI->first) { LiveRange *L = HMI->second; // get the LiveRange if (L) { if (L->hasSuggestedColor()) { int RCID = L->getRegClass()->getID(); if (MRI.isRegVolatile( RCID, L->getSuggestedColor()) && L->isCallInterference() ) L->setSuggestedColorUsable( false ); else L->setSuggestedColorUsable( true ); } } // if L->hasSuggestedColor() } } // for all LR's in hash map } //---------------------------------------------------------------------------- // The following method will set the stack offsets of the live ranges that // are decided to be spillled. This must be called just after coloring the // LRs using the graph coloring algo. For each live range that is spilled, // this method allocate a new spill position on the stack. //---------------------------------------------------------------------------- void PhyRegAlloc::allocateStackSpace4SpilledLRs() { if (DEBUG_RA) cerr << "\nSetting LR stack offsets for spills...\n"; LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); for ( ; HMI != HMIEnd ; ++HMI) { if (HMI->first && HMI->second) { LiveRange *L = HMI->second; // get the LiveRange if (!L->hasColor()) { // NOTE: ** allocating the size of long Type ** int stackOffset = MF.allocateSpilledValue(TM, Type::LongTy); L->setSpillOffFromFP(stackOffset); if (DEBUG_RA) cerr << " LR# " << L->getUserIGNode()->getIndex() << ": stack-offset = " << stackOffset << "\n"; } } } // for all LR's in hash map } //---------------------------------------------------------------------------- // The entry pont to Register Allocation //---------------------------------------------------------------------------- void PhyRegAlloc::allocateRegisters() { // make sure that we put all register classes into the RegClassList // before we call constructLiveRanges (now done in the constructor of // PhyRegAlloc class). // LRI.constructLiveRanges(); // create LR info if (DEBUG_RA >= RA_DEBUG_LiveRanges) LRI.printLiveRanges(); createIGNodeListsAndIGs(); // create IGNode list and IGs buildInterferenceGraphs(); // build IGs in all reg classes if (DEBUG_RA >= RA_DEBUG_LiveRanges) { // print all LRs in all reg classes for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->printIGNodeList(); // print IGs in all register classes for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->printIG(); } LRI.coalesceLRs(); // coalesce all live ranges if (DEBUG_RA >= RA_DEBUG_LiveRanges) { // print all LRs in all reg classes for (unsigned rc=0; rc < NumOfRegClasses; rc++) RegClassList[rc]->printIGNodeList(); // print IGs in all register classes for (unsigned rc=0; rc < NumOfRegClasses; rc++) RegClassList[rc]->printIG(); } // mark un-usable suggested color before graph coloring algorithm. // When this is done, the graph coloring algo will not reserve // suggested color unnecessarily - they can be used by another LR // markUnusableSugColors(); // color all register classes using the graph coloring algo for (unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->colorAllRegs(); // Atter grpah coloring, if some LRs did not receive a color (i.e, spilled) // a poistion for such spilled LRs // allocateStackSpace4SpilledLRs(); MF.popAllTempValues(TM); // TODO **Check // color incoming args - if the correct color was not received // insert code to copy to the correct register // colorIncomingArgs(); // Now update the machine code with register names and add any // additional code inserted by the register allocator to the instruction // stream // updateMachineCode(); if (DEBUG_RA) { cerr << "\n**** Machine Code After Register Allocation:\n\n"; MF.dump(); } }