//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// // // This file provides a simple class to calculate the dominator set of a // function. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Transforms/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "Support/DepthFirstIterator.h" #include "Support/STLExtras.h" #include "Support/SetOperations.h" #include using std::set; //===----------------------------------------------------------------------===// // DominatorSet Implementation //===----------------------------------------------------------------------===// AnalysisID DominatorSet::ID(AnalysisID::create(), true); AnalysisID DominatorSet::PostDomID(AnalysisID::create(), true); bool DominatorSet::runOnFunction(Function *F) { Doms.clear(); // Reset from the last time we were run... if (isPostDominator()) calcPostDominatorSet(F); else calcForwardDominatorSet(F); return false; } // calcForwardDominatorSet - This method calculates the forward dominator sets // for the specified function. // void DominatorSet::calcForwardDominatorSet(Function *M) { Root = M->getEntryNode(); assert(pred_begin(Root) == pred_end(Root) && "Root node has predecessors in function!"); bool Changed; do { Changed = false; DomSetType WorkingSet; df_iterator It = df_begin(M), End = df_end(M); for ( ; It != End; ++It) { BasicBlock *BB = *It; pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a predecessor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); } // Postdominator set constructor. This ctor converts the specified function to // only have a single exit node (return stmt), then calculates the post // dominance sets for the function. // void DominatorSet::calcPostDominatorSet(Function *F) { // Since we require that the unify all exit nodes pass has been run, we know // that there can be at most one return instruction in the function left. // Get it. // Root = getAnalysis().getExitNode(); if (Root == 0) { // No exit node for the function? Postdomsets are all empty for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) Doms[*FI] = DomSetType(); return; } bool Changed; do { Changed = false; set Visited; DomSetType WorkingSet; idf_iterator It = idf_begin(Root), End = idf_end(Root); for ( ; It != End; ++It) { BasicBlock *BB = *It; succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); } // getAnalysisUsage - This obviously provides a dominator set, but it also // uses the UnifyFunctionExitNodes pass if building post-dominators // void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); if (isPostDominator()) { AU.addProvided(PostDomID); AU.addRequired(UnifyFunctionExitNodes::ID); } else { AU.addProvided(ID); } } //===----------------------------------------------------------------------===// // ImmediateDominators Implementation //===----------------------------------------------------------------------===// AnalysisID ImmediateDominators::ID(AnalysisID::create(), true); AnalysisID ImmediateDominators::PostDomID(AnalysisID::create(), true); // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. void ImmediateDominators::calcIDoms(const DominatorSet &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { IDoms[BB] = *I; break; } } } } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// AnalysisID DominatorTree::ID(AnalysisID::create(), true); AnalysisID DominatorTree::PostDomID(AnalysisID::create(), true); // DominatorTree::reset - Free all of the tree node memory. // void DominatorTree::reset() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); } #if 0 // Given immediate dominators, we can also calculate the dominator tree DominatorTree::DominatorTree(const ImmediateDominators &IDoms) : DominatorBase(IDoms.getRoot()) { const Function *M = Root->getParent(); Nodes[Root] = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... for (df_iterator I = df_begin(M), E = df_end(M); I!=E; ++I) { const BasicBlock *BB = *I, *IDom = IDoms[*I]; if (IDom != 0) { // Ignore the root node and other nasty nodes // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // assert(Nodes[IDom] && "No node for IDOM?"); Node *IDomNode = Nodes[IDom]; // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); } } } #endif void DominatorTree::calculate(const DominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... if (!isPostDominator()) { // Iterate over all nodes in depth first order... for (df_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! We know that we have already added // a DominatorTree node for our idom, because the idom must be a // predecessor in the depth first order that we are iterating through the // function. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of // elements in the dominator set indicates what level the node is at in // the chain. We want the node immediately above us, so it will have // an identical dominator set, except that BB will not dominate it... // therefore it's dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } else if (Root) { // Iterate over all nodes in depth first order... for (idf_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping // over nodes in the dominator chain, looking for a node whose dominator // set is equal to the current nodes, except that the current node does // not exist in it. This means that it is one level higher in the dom // chain than the current node, and it is our idom! We know that we have // already added a DominatorTree node for our idom, because the idom must // be a predecessor in the depth first order that we are iterating through // the function. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number // of elements in the dominator set indicates what level the // node is at in the chain. We want the node immediately // above us, so it will have an identical dominator set, // except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// AnalysisID DominanceFrontier::ID(AnalysisID::create(), true); AnalysisID DominanceFrontier::PostDomID(AnalysisID::create(), true); const DominanceFrontier::DomSetType & DominanceFrontier::calcDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } const DominanceFrontier::DomSetType & DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (!Root) return S; for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predeccessor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; }