//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run // both before and after the DAG is legalized. // // FIXME: Missing folds // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into // a sequence of multiplies, shifts, and adds. This should be controlled by // some kind of hint from the target that int div is expensive. // various folds of mulh[s,u] by constants such as -1, powers of 2, etc. // // FIXME: Should add a corresponding version of fold AND with // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which // we don't have yet. // // FIXME: mul (x, const) -> shifts + adds // FIXME: undef values // FIXME: zero extend when top bits are 0 -> drop it ? // FIXME: make truncate see through SIGN_EXTEND and AND // FIXME: sext_in_reg(setcc) on targets that return zero or one, and where // EVT != MVT::i1 can drop the sext. // FIXME: (or x, c) -> c iff maskedValueIsZero(x, ~c) // FIXME: MaskedValueIsZero can see through SRL, so it should be sufficient to: //if (N2C && MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits),TLI)) // return DAG.getConstant(0, VT).Val; // FIXME: (sra (sra x, c1), c2) -> (sra x, c1+c2) // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dagcombine" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLowering.h" #include using namespace llvm; namespace { Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined"); class DAGCombiner { SelectionDAG &DAG; TargetLowering &TLI; bool AfterLegalize; // Worklist of all of the nodes that need to be simplified. std::vector WorkList; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(SDNode *N) { for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) WorkList.push_back(*UI); } /// removeFromWorkList - remove all instances of N from the worklist. void removeFromWorkList(SDNode *N) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), WorkList.end()); } /// visit - call the node-specific routine that knows how to fold each /// particular type of node. SDNode *visit(SDNode *N); // Visitation implementation - Implement dag node combining for different // node types. The semantics are as follows: // Return Value: // null - No change was made // otherwise - Node N should be replaced by the returned node. // SDNode *visitTokenFactor(SDNode *N); SDNode *visitAdd(SDNode *N); SDNode *visitSub(SDNode *N); SDNode *visitMul(SDNode *N); SDNode *visitSdiv(SDNode *N); SDNode *visitUdiv(SDNode *N); SDNode *visitSrem(SDNode *N); SDNode *visitUrem(SDNode *N); SDNode *visitMulHiU(SDNode *N); SDNode *visitMulHiS(SDNode *N); SDNode *visitAnd(SDNode *N); SDNode *visitOr(SDNode *N); SDNode *visitXor(SDNode *N); SDNode *visitShl(SDNode *N); SDNode *visitSra(SDNode *N); SDNode *visitSrl(SDNode *N); SDNode *visitCtlz(SDNode *N); SDNode *visitCttz(SDNode *N); SDNode *visitCtpop(SDNode *N); // select // select_cc // setcc SDNode *visitSignExtend(SDNode *N); SDNode *visitZeroExtend(SDNode *N); SDNode *visitSignExtendInReg(SDNode *N); SDNode *visitTruncate(SDNode *N); SDNode *visitSintToFP(SDNode *N); SDNode *visitUintToFP(SDNode *N); SDNode *visitFPToSint(SDNode *N); SDNode *visitFPToUint(SDNode *N); SDNode *visitFPRound(SDNode *N); SDNode *visitFPRoundInReg(SDNode *N); SDNode *visitFPExtend(SDNode *N); SDNode *visitFneg(SDNode *N); SDNode *visitFabs(SDNode *N); SDNode *visitExtLoad(SDNode *N); SDNode *visitSextLoad(SDNode *N); SDNode *visitZextLoad(SDNode *N); SDNode *visitTruncStore(SDNode *N); // brcond // brcondtwoway // br_cc // brtwoway_cc public: DAGCombiner(SelectionDAG &D) : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) { // Add all the dag nodes to the worklist. WorkList.insert(WorkList.end(), D.allnodes_begin(), D.allnodes_end()); } /// Run - runs the dag combiner on all nodes in the work list void Run(bool RunningAfterLegalize); }; } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. V and Mask are known to /// be the same type. static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask, const TargetLowering &TLI) { unsigned SrcBits; if (Mask == 0) return true; // If we know the result of a setcc has the top bits zero, use this info. switch (Op.getOpcode()) { case ISD::Constant: return (cast(Op)->getValue() & Mask) == 0; case ISD::SETCC: return ((Mask & 1) == 0) && TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult; case ISD::ZEXTLOAD: SrcBits = MVT::getSizeInBits(cast(Op.getOperand(3))->getVT()); return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits. case ISD::ZERO_EXTEND: SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType()); return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI); case ISD::AssertZext: SrcBits = MVT::getSizeInBits(cast(Op.getOperand(1))->getVT()); return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits. case ISD::AND: // (X & C1) & C2 == 0 iff C1 & C2 == 0. if (ConstantSDNode *AndRHS = dyn_cast(Op.getOperand(1))) return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI); // FALL THROUGH case ISD::OR: case ISD::XOR: return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) && MaskedValueIsZero(Op.getOperand(1), Mask, TLI); case ISD::SELECT: return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) && MaskedValueIsZero(Op.getOperand(2), Mask, TLI); case ISD::SELECT_CC: return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) && MaskedValueIsZero(Op.getOperand(3), Mask, TLI); case ISD::SRL: // (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0 if (ConstantSDNode *ShAmt = dyn_cast(Op.getOperand(1))) { uint64_t NewVal = Mask << ShAmt->getValue(); SrcBits = MVT::getSizeInBits(Op.getValueType()); if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1; return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); } return false; case ISD::SHL: // (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0 if (ConstantSDNode *ShAmt = dyn_cast(Op.getOperand(1))) { uint64_t NewVal = Mask >> ShAmt->getValue(); return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); } return false; case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: // Bit counting instructions can not set the high bits of the result // register. The max number of bits sets depends on the input. return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0; // TODO we could handle some SRA cases here. default: break; } return false; } // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc // that selects between the values 1 and 0, making it equivalent to a setcc. static bool isSetCCEquivalent(SDOperand N) { if (N.getOpcode() == ISD::SETCC) return true; if (N.getOpcode() == ISD::SELECT_CC && N.getOperand(2).getOpcode() == ISD::Constant && N.getOperand(3).getOpcode() == ISD::Constant && cast(N.getOperand(2))->getValue() == 1 && cast(N.getOperand(3))->isNullValue()) return true; return false; } // isInvertibleForFree - Return true if there is no cost to emitting the logical // inverse of this node. static bool isInvertibleForFree(SDOperand N) { if (isa(N.Val)) return true; if (isSetCCEquivalent(N) && N.Val->hasOneUse()) return true; return false; } void DAGCombiner::Run(bool RunningAfterLegalize) { // set the instance variable, so that the various visit routines may use it. AfterLegalize = RunningAfterLegalize; // while the worklist isn't empty, inspect the node on the end of it and // try and combine it. while (!WorkList.empty()) { SDNode *N = WorkList.back(); WorkList.pop_back(); // If N has no uses, it is dead. Make sure to revisit all N's operands once // N is deleted from the DAG, since they too may now be dead. if (N->use_empty()) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) WorkList.push_back(N->getOperand(i).Val); DAG.DeleteNode(N); removeFromWorkList(N); continue; } if (SDNode *Result = visit(N)) { ++NodesCombined; assert(Result != N && "Modifying DAG nodes in place is illegal!"); std::cerr << "DC: Old = "; N->dump(); std::cerr << " New = "; Result->dump(); std::cerr << '\n'; DAG.ReplaceAllUsesWith(N, Result); // Push the new node and any users onto the worklist WorkList.push_back(Result); AddUsersToWorkList(Result); // Nodes can end up on the worklist more than once. Make sure we do // not process a node that has been replaced. removeFromWorkList(N); } } } SDNode *DAGCombiner::visit(SDNode *N) { switch(N->getOpcode()) { default: break; case ISD::TokenFactor: return visitTokenFactor(N); case ISD::ADD: return visitAdd(N); case ISD::SUB: return visitSub(N); case ISD::MUL: return visitMul(N); case ISD::SDIV: return visitSdiv(N); case ISD::UDIV: return visitUdiv(N); case ISD::SREM: return visitSrem(N); case ISD::UREM: return visitUrem(N); case ISD::MULHU: return visitMulHiU(N); case ISD::MULHS: return visitMulHiS(N); case ISD::AND: return visitAnd(N); case ISD::OR: return visitOr(N); case ISD::XOR: return visitXor(N); case ISD::SHL: return visitShl(N); case ISD::SRA: return visitSra(N); case ISD::SRL: return visitSrl(N); case ISD::CTLZ: return visitCtlz(N); case ISD::CTTZ: return visitCttz(N); case ISD::CTPOP: return visitCtpop(N); case ISD::SIGN_EXTEND: return visitSignExtend(N); case ISD::ZERO_EXTEND: return visitZeroExtend(N); case ISD::SIGN_EXTEND_INREG: return visitSignExtendInReg(N); case ISD::TRUNCATE: return visitTruncate(N); case ISD::SINT_TO_FP: return visitSintToFP(N); case ISD::UINT_TO_FP: return visitUintToFP(N); case ISD::FP_TO_SINT: return visitFPToSint(N); case ISD::FP_TO_UINT: return visitFPToUint(N); case ISD::FP_ROUND: return visitFPRound(N); case ISD::FP_ROUND_INREG: return visitFPRoundInReg(N); case ISD::FP_EXTEND: return visitFPExtend(N); case ISD::FNEG: return visitFneg(N); case ISD::FABS: return visitFabs(N); } return 0; } SDNode *DAGCombiner::visitTokenFactor(SDNode *N) { // If the token factor only has one operand, fold TF(x) -> x if (N->getNumOperands() == 1) return N->getOperand(0).Val; // If the token factor has two operands and one is the entry token, replace // the token factor with the other operand. if (N->getNumOperands() == 2) { if (N->getOperand(0).getOpcode() == ISD::EntryToken) return N->getOperand(1).Val; if (N->getOperand(1).getOpcode() == ISD::EntryToken) return N->getOperand(0).Val; } return 0; } SDNode *DAGCombiner::visitAdd(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); ConstantFPSDNode *N1CFP = dyn_cast(N0); ConstantFPSDNode *N2CFP = dyn_cast(N1); // fold (add c1, c2) -> c1+c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() + N2C->getValue(), N->getValueType(0)).Val; // fold (add x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // fold floating point (add c1, c2) -> c1+c2 if (N1CFP && N2CFP) return DAG.getConstantFP(N1CFP->getValue() + N2CFP->getValue(), N->getValueType(0)).Val; // fold (A + (-B)) -> A-B if (N1.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::SUB, N->getValueType(0), N0, N1.getOperand(0)).Val; // fold ((-A) + B) -> B-A if (N0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::SUB, N->getValueType(0), N1, N0.getOperand(0)).Val; // fold ((0-A) + B) -> B-A if (N0.getOpcode() == ISD::SUB && isa(N0.getOperand(0)) && cast(N0.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, N->getValueType(0), N1, N0.getOperand(1)).Val; // fold (A + (0-B)) -> A-B if (N1.getOpcode() == ISD::SUB && isa(N1.getOperand(0)) && cast(N1.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, N->getValueType(0), N0, N1.getOperand(1)).Val; // fold (A+(B-A)) -> B for non-fp types if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1) && !MVT::isFloatingPoint(N1.getValueType())) return N1.getOperand(0).Val; return 0; } SDNode *DAGCombiner::visitSub(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0.Val); ConstantSDNode *N2C = dyn_cast(N1.Val); ConstantFPSDNode *N1CFP = dyn_cast(N0.Val); ConstantFPSDNode *N2CFP = dyn_cast(N1.Val); // fold (sub c1, c2) -> c1-c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() - N2C->getValue(), N->getValueType(0)).Val; // fold (sub x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // fold floating point (sub c1, c2) -> c1-c2 if (N1CFP && N2CFP) return DAG.getConstantFP(N1CFP->getValue() - N2CFP->getValue(), N->getValueType(0)).Val; // fold (A+B)-A -> B if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && !MVT::isFloatingPoint(N1.getValueType())) return N0.getOperand(1).Val; // fold (A+B)-B -> A if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && !MVT::isFloatingPoint(N1.getValueType())) return N0.getOperand(0).Val; // fold (A-(-B)) -> A+B if (N1.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::ADD, N0.getValueType(), N0, N1.getOperand(0)).Val; return 0; } SDNode *DAGCombiner::visitMul(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); ConstantFPSDNode *N1CFP = dyn_cast(N0); ConstantFPSDNode *N2CFP = dyn_cast(N1); // fold (mul c1, c2) -> c1*c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() * N2C->getValue(), N->getValueType(0)).Val; // fold (mul x, 0) -> 0 if (N2C && N2C->isNullValue()) return N1.Val; // fold (mul x, -1) -> 0-x if (N2C && N2C->isAllOnesValue()) return DAG.getNode(ISD::SUB, N->getValueType(0), DAG.getConstant(0, N->getValueType(0)), N0).Val; // fold (mul x, (1 << c)) -> x << c if (N2C && isPowerOf2_64(N2C->getValue())) return DAG.getNode(ISD::SHL, N->getValueType(0), N0, DAG.getConstant(Log2_64(N2C->getValue()), TLI.getShiftAmountTy())).Val; // fold floating point (mul c1, c2) -> c1*c2 if (N1CFP && N2CFP) return DAG.getConstantFP(N1CFP->getValue() * N2CFP->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitSdiv(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0.Val); ConstantSDNode *N2C = dyn_cast(N1.Val); ConstantFPSDNode *N1CFP = dyn_cast(N0.Val); ConstantFPSDNode *N2CFP = dyn_cast(N1.Val); // fold (sdiv c1, c2) -> c1/c2 if (N1C && N2C) return DAG.getConstant(N1C->getSignExtended() / N2C->getSignExtended(), N->getValueType(0)).Val; // fold floating point (sdiv c1, c2) -> c1/c2 if (N1CFP && N2CFP) return DAG.getConstantFP(N1CFP->getValue() / N2CFP->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitUdiv(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0.Val); ConstantSDNode *N2C = dyn_cast(N1.Val); // fold (udiv c1, c2) -> c1/c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() / N2C->getValue(), N->getValueType(0)).Val; // fold (udiv x, (1 << c)) -> x >>u c if (N2C && isPowerOf2_64(N2C->getValue())) return DAG.getNode(ISD::SRL, N->getValueType(0), N0, DAG.getConstant(Log2_64(N2C->getValue()), TLI.getShiftAmountTy())).Val; return 0; } SDNode *DAGCombiner::visitSrem(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); ConstantFPSDNode *N1CFP = dyn_cast(N0); ConstantFPSDNode *N2CFP = dyn_cast(N1); // fold (srem c1, c2) -> c1%c2 if (N1C && N2C) return DAG.getConstant(N1C->getSignExtended() % N2C->getSignExtended(), N->getValueType(0)).Val; // fold floating point (srem c1, c2) -> fmod(c1, c2) if (N1CFP && N2CFP) return DAG.getConstantFP(fmod(N1CFP->getValue(),N2CFP->getValue()), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitUrem(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); // fold (urem c1, c2) -> c1%c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() % N2C->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitMulHiS(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N2C = dyn_cast(N1); // fold (mulhs x, 0) -> 0 if (N2C && N2C->isNullValue()) return N1.Val; // fold (mulhs x, 1) -> (sra x, size(x)-1) if (N2C && N2C->getValue() == 1) return DAG.getNode(ISD::SRA, N0.getValueType(), N0, DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1, TLI.getShiftAmountTy())).Val; return 0; } SDNode *DAGCombiner::visitMulHiU(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N2C = dyn_cast(N1); // fold (mulhu x, 0) -> 0 if (N2C && N2C->isNullValue()) return N1.Val; // fold (mulhu x, 1) -> 0 if (N2C && N2C->getValue() == 1) return DAG.getConstant(0, N0.getValueType()).Val; return 0; } SDNode *DAGCombiner::visitAnd(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); MVT::ValueType VT = N1.getValueType(); // fold (and c1, c2) -> c1&c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() & N2C->getValue(), VT).Val; // fold (and x, -1) -> x if (N2C && N2C->isAllOnesValue()) return N0.Val; // fold (and x, 0) -> 0 if (N2C && MaskedValueIsZero(N0, N2C->getValue(), TLI)) return DAG.getConstant(0, VT).Val; // fold (and x, mask containing x) -> x if (N2C) { uint64_t NotC2 = ~N2C->getValue(); NotC2 &= ~0ULL >> (64-MVT::getSizeInBits(VT)); if (MaskedValueIsZero(N0, NotC2, TLI)) return N0.Val; } // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { unsigned ExtendBits = MVT::getSizeInBits(cast(N0.getOperand(1))->getVT()); if ((N2C->getValue() & (~0ULL << ExtendBits)) == 0) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), N1).Val; } // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF if (N0.getOpcode() == ISD::OR) if (ConstantSDNode *ORI = dyn_cast(N0.getOperand(1))) if ((ORI->getValue() & N2C->getValue()) == N2C->getValue()) return N1.Val; return 0; } SDNode *DAGCombiner::visitOr(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); // fold (or c1, c2) -> c1|c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() | N2C->getValue(), N->getValueType(0)).Val; // fold (or x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // fold (or x, -1) -> -1 if (N2C && N2C->isAllOnesValue()) return N1.Val; return 0; } SDNode *DAGCombiner::visitXor(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (xor c1, c2) -> c1^c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() ^ N2C->getValue(), VT).Val; // fold (xor x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // fold !(x cc y) -> (x !cc y) if (N2C && N2C->getValue() == 1 && N0.getOpcode() == ISD::SETCC) { bool isInt = MVT::isInteger(N0.getOperand(0).getValueType()); ISD::CondCode CC = cast(N0.getOperand(2))->get(); return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), ISD::getSetCCInverse(CC, isInt)).Val; } // fold !(x cc y) -> (x !cc y) if (N2C && N2C->getValue() == 1 && isSetCCEquivalent(N0)) { bool isInt = MVT::isInteger(N0.getOperand(0).getValueType()); ISD::CondCode CC = cast(N0.getOperand(4))->get(); return DAG.getSelectCC(N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), N0.getOperand(3), ISD::getSetCCInverse(CC, isInt)).Val; } // fold !(x or y) -> (!x and !y) iff x or y are freely invertible if (N2C && N2C->isAllOnesValue() && N0.getOpcode() == ISD::OR) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) { LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS return DAG.getNode(ISD::AND, VT, LHS, RHS).Val; } } // fold !(x and y) -> (!x or !y) iff x or y are freely invertible if (N2C && N2C->isAllOnesValue() && N0.getOpcode() == ISD::AND) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) { LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS return DAG.getNode(ISD::OR, VT, LHS, RHS).Val; } } return 0; } SDNode *DAGCombiner::visitShl(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (shl c1, c2) -> c1<getValue() << N2C->getValue(), VT).Val; // fold (shl 0, x) -> 0 if (N1C && N1C->isNullValue()) return N0.Val; // fold (shl x, c >= size(x)) -> undef if (N2C && N2C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT).Val; // fold (shl x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // if (shl x, c) is known to be zero, return 0 if (N2C && MaskedValueIsZero(N0,(~0ULL >> (64-OpSizeInBits))>>N2C->getValue(), TLI)) return DAG.getConstant(0, VT).Val; // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) if (N2C && N0.getOpcode() == ISD::SHL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N2C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT).Val; return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())).Val; } // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or // (srl (and x, -1 << c1), c1-c2) if (N2C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N2C->getValue(); SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << c1, VT)); if (c2 > c1) return DAG.getNode(ISD::SHL, VT, Mask, DAG.getConstant(c2-c1, N1.getValueType())).Val; else return DAG.getNode(ISD::SRL, VT, Mask, DAG.getConstant(c1-c2, N1.getValueType())).Val; } // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) if (N2C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << N2C->getValue(), VT)).Val; return 0; } SDNode *DAGCombiner::visitSra(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (sra c1, c2) -> c1>>c2 if (N1C && N2C) return DAG.getConstant(N1C->getSignExtended() >> N2C->getValue(), VT).Val; // fold (sra 0, x) -> 0 if (N1C && N1C->isNullValue()) return N0.Val; // fold (sra -1, x) -> -1 if (N1C && N1C->isAllOnesValue()) return N0.Val; // fold (sra x, c >= size(x)) -> undef if (N2C && N2C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT).Val; // fold (sra x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // If the sign bit is known to be zero, switch this to a SRL. if (N2C && MaskedValueIsZero(N0, (1ULL << (OpSizeInBits-1)), TLI)) return DAG.getNode(ISD::SRL, VT, N0, N1).Val; return 0; } SDNode *DAGCombiner::visitSrl(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N0); ConstantSDNode *N2C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (srl c1, c2) -> c1 >>u c2 if (N1C && N2C) return DAG.getConstant(N1C->getValue() >> N2C->getValue(), VT).Val; // fold (srl 0, x) -> 0 if (N1C && N1C->isNullValue()) return N0.Val; // fold (srl x, c >= size(x)) -> undef if (N2C && N2C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT).Val; // fold (srl x, 0) -> x if (N2C && N2C->isNullValue()) return N0.Val; // if (srl x, c) is known to be zero, return 0 if (N2C && MaskedValueIsZero(N0,(~0ULL >> (64-OpSizeInBits))<getValue(), TLI)) return DAG.getConstant(0, VT).Val; // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) if (N2C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N2C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT).Val; return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())).Val; } return 0; } SDNode *DAGCombiner::visitCtlz(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); // fold (ctlz c1) -> c2 if (N1C) return DAG.getConstant(CountLeadingZeros_64(N1C->getValue()), N0.getValueType()).Val; return 0; } SDNode *DAGCombiner::visitCttz(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); // fold (cttz c1) -> c2 if (N1C) return DAG.getConstant(CountTrailingZeros_64(N1C->getValue()), N0.getValueType()).Val; return 0; } SDNode *DAGCombiner::visitCtpop(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); // fold (ctpop c1) -> c2 if (N1C) return DAG.getConstant(CountPopulation_64(N1C->getValue()), N0.getValueType()).Val; return 0; } SDNode *DAGCombiner::visitSignExtend(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (sext c1) -> c1 if (N1C) return DAG.getConstant(N1C->getSignExtended(), VT).Val; // fold (sext (sext x)) -> (sext x) if (N0.getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)).Val; return 0; } SDNode *DAGCombiner::visitZeroExtend(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (zext c1) -> c1 if (N1C) return DAG.getConstant(N1C->getValue(), VT).Val; // fold (zext (zext x)) -> (zext x) if (N0.getOpcode() == ISD::ZERO_EXTEND) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)).Val; return 0; } SDNode *DAGCombiner::visitSignExtendInReg(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = cast(N->getOperand(1))->getVT(); // fold (sext_in_reg c1) -> c1 if (N1C) { SDOperand Truncate = DAG.getConstant(N1C->getValue(), EVT); return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate).Val; } // fold (sext_in_reg (sext_in_reg x)) -> (sext_in_reg x) if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N0.getOperand(1))->getVT() <= EVT) { return N0.Val; } // fold (sext_in_reg (assert_sext x)) -> (assert_sext x) if (N0.getOpcode() == ISD::AssertSext && cast(N0.getOperand(1))->getVT() <= EVT) { return N0.Val; } // fold (sext_in_reg (sextload x)) -> (sextload x) if (N0.getOpcode() == ISD::SEXTLOAD && cast(N0.getOperand(3))->getVT() <= EVT) { return N0.Val; } // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1 if (N0.getOpcode() == ISD::SETCC && TLI.getSetCCResultContents() == TargetLowering::ZeroOrNegativeOneSetCCResult) return N0.Val; // FIXME: this code is currently just ported over from SelectionDAG.cpp // we probably actually want to handle this in two pieces. Rather than // checking all the top bits for zero, just check the sign bit here and turn // it into a zero extend inreg (AND with constant). // then, let the code for AND figure out if the mask is superfluous rather // than doing so here. if (N0.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t Mask = cast(N0.getOperand(1))->getValue(); unsigned NumBits = MVT::getSizeInBits(EVT); if ((Mask & (~0ULL << (NumBits-1))) == 0) return N0.Val; } return 0; } SDNode *DAGCombiner::visitTruncate(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // noop truncate if (N0.getValueType() == N->getValueType(0)) return N0.Val; // fold (truncate c1) -> c1 if (N1C) return DAG.getConstant(N1C->getValue(), VT).Val; // fold (truncate (truncate x)) -> (truncate x) if (N0.getOpcode() == ISD::TRUNCATE) return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)).Val; // fold (truncate (ext x)) -> (ext x) or (truncate x) or x if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){ if (N0.getValueType() < VT) // if the source is smaller than the dest, we still need an extend return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)).Val; else if (N0.getValueType() > VT) // if the source is larger than the dest, than we just need the truncate return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)).Val; else // if the source and dest are the same type, we can drop both the extend // and the truncate return N0.getOperand(0).Val; } return 0; } SDNode *DAGCombiner::visitSintToFP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (sint_to_fp c1) -> c1fp if (N1C) return DAG.getConstantFP(N1C->getSignExtended(), VT).Val; return 0; } SDNode *DAGCombiner::visitUintToFP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N1C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (uint_to_fp c1) -> c1fp if (N1C) return DAG.getConstantFP(N1C->getValue(), VT).Val; return 0; } SDNode *DAGCombiner::visitFPToSint(SDNode *N) { ConstantFPSDNode *N1CFP = dyn_cast(N->getOperand(0)); // fold (fp_to_sint c1fp) -> c1 if (N1CFP) return DAG.getConstant((int64_t)N1CFP->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitFPToUint(SDNode *N) { ConstantFPSDNode *N1CFP = dyn_cast(N->getOperand(0)); // fold (fp_to_uint c1fp) -> c1 if (N1CFP) return DAG.getConstant((uint64_t)N1CFP->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitFPRound(SDNode *N) { ConstantFPSDNode *N1CFP = dyn_cast(N->getOperand(0)); // fold (fp_round c1fp) -> c1fp if (N1CFP) return DAG.getConstantFP(N1CFP->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitFPRoundInReg(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = cast(N->getOperand(1))->getVT(); ConstantFPSDNode *N1CFP = dyn_cast(N0); // noop fp_round_inreg if (EVT == VT) return N0.Val; // fold (fp_round_inreg c1fp) -> c1fp if (N1CFP) { SDOperand Round = DAG.getConstantFP(N1CFP->getValue(), EVT); return DAG.getNode(ISD::FP_EXTEND, VT, Round).Val; } return 0; } SDNode *DAGCombiner::visitFPExtend(SDNode *N) { ConstantFPSDNode *N1CFP = dyn_cast(N->getOperand(0)); // fold (fp_extend c1fp) -> c1fp if (N1CFP) return DAG.getConstantFP(N1CFP->getValue(), N->getValueType(0)).Val; return 0; } SDNode *DAGCombiner::visitFneg(SDNode *N) { ConstantFPSDNode *N1CFP = dyn_cast(N->getOperand(0)); // fold (neg c1) -> -c1 if (N1CFP) return DAG.getConstantFP(-N1CFP->getValue(), N->getValueType(0)).Val; // fold (neg (sub x, y)) -> (sub y, x) if (N->getOperand(0).getOpcode() == ISD::SUB) return DAG.getNode(ISD::SUB, N->getValueType(0), N->getOperand(1), N->getOperand(0)).Val; // fold (neg (neg x)) -> x if (N->getOperand(0).getOpcode() == ISD::FNEG) return N->getOperand(0).getOperand(0).Val; return 0; } SDNode *DAGCombiner::visitFabs(SDNode *N) { ConstantFPSDNode *N1CFP = dyn_cast(N->getOperand(0)); // fold (fabs c1) -> fabs(c1) if (N1CFP) return DAG.getConstantFP(fabs(N1CFP->getValue()), N->getValueType(0)).Val; // fold (fabs (fabs x)) -> (fabs x) if (N->getOperand(0).getOpcode() == ISD::FABS) return N->getOperand(0).Val; // fold (fabs (fneg x)) -> (fabs x) if (N->getOperand(0).getOpcode() == ISD::FNEG) return DAG.getNode(ISD::FABS, N->getValueType(0), N->getOperand(0).getOperand(0)).Val; return 0; } // SelectionDAG::Combine - This is the entry point for the file. // void SelectionDAG::Combine(bool RunningAfterLegalize) { /// run - This is the main entry point to this class. /// DAGCombiner(*this).Run(RunningAfterLegalize); }