//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<5> Value = val; } def Pseudo : Format<0>; def RawFrm : Format<1>; def AddRegFrm : Format<2>; def MRMDestReg : Format<3>; def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>; def MRMSrcMem : Format<6>; def MRMS0r : Format<16>; def MRMS1r : Format<17>; def MRMS2r : Format<18>; def MRMS3r : Format<19>; def MRMS4r : Format<20>; def MRMS5r : Format<21>; def MRMS6r : Format<22>; def MRMS7r : Format<23>; def MRMS0m : Format<24>; def MRMS1m : Format<25>; def MRMS2m : Format<26>; def MRMS3m : Format<27>; def MRMS4m : Format<28>; def MRMS5m : Format<29>; def MRMS6m : Format<30>; def MRMS7m : Format<31>; // ArgType - This specifies the argument type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class ArgType val> { bits<3> Value = val; } def NoArg : ArgType<0>; def Arg8 : ArgType<1>; def Arg16 : ArgType<2>; def Arg32 : ArgType<3>; def Arg64 : ArgType<4>; // 64 bit int argument for FILD64 def ArgF32 : ArgType<5>; def ArgF64 : ArgType<6>; def ArgF80 : ArgType<6>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. class FPFormat val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def SpecialFP : FPFormat<5>; class X86Inst opcod, Format f, ArgType a> : Instruction { let Namespace = "X86"; let Name = nam; bits<8> Opcode = opcod; Format Form = f; bits<5> FormBits = Form.Value; ArgType Type = a; bits<3> TypeBits = Type.Value; // Attributes specific to X86 instructions... bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix? bit printImplicitUses = 0; // Should we print implicit uses of this inst? bits<4> Prefix = 0; // Which prefix byte does this inst have? FPFormat FPForm; // What flavor of FP instruction is this? bits<3> FPFormBits = 0; } class Imp uses, list defs> { list Uses = uses; list Defs = defs; } class Pattern { dag Pattern = P; } // Prefix byte classes which are used to indicate to the ad-hoc machine code // emitter that various prefix bytes are required. class OpSize { bit hasOpSizePrefix = 1; } class TB { bits<4> Prefix = 1; } class D8 { bits<4> Prefix = 2; } class D9 { bits<4> Prefix = 3; } class DA { bits<4> Prefix = 4; } class DB { bits<4> Prefix = 5; } class DC { bits<4> Prefix = 6; } class DD { bits<4> Prefix = 7; } class DE { bits<4> Prefix = 8; } class DF { bits<4> Prefix = 9; } //===----------------------------------------------------------------------===// // Instruction list... // def PHI : X86Inst<"PHI", 0, Pseudo, NoArg>; // PHI node... def NOOP : X86Inst<"nop", 0x90, RawFrm, NoArg>; // nop def ADJCALLSTACKDOWN : X86Inst<"ADJCALLSTACKDOWN", 0, Pseudo, NoArg>; def ADJCALLSTACKUP : X86Inst<"ADJCALLSTACKUP", 0, Pseudo, NoArg>; def IMPLICIT_USE : X86Inst<"IMPLICIT_USE", 0, Pseudo, NoArg>; def IMPLICIT_DEF : X86Inst<"IMPLICIT_DEF", 0, Pseudo, NoArg>; let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in def FP_REG_KILL : X86Inst<"FP_REG_KILL", 0, Pseudo, NoArg>; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // Return instruction... let isTerminator = 1, isReturn = 1 in def RET : X86Inst<"ret", 0xC3, RawFrm, NoArg>, Pattern<(retvoid)>; // All branches are RawFrm, Void, Branch, and Terminators let isBranch = 1, isTerminator = 1 in class IBr opcode> : X86Inst; def JMP : IBr<"jmp", 0xE9>, Pattern<(br basicblock)>; def JB : IBr<"jb" , 0x82>, TB; def JAE : IBr<"jae", 0x83>, TB; def JE : IBr<"je" , 0x84>, TB, Pattern<(isVoid (unspec1 basicblock))>; def JNE : IBr<"jne", 0x85>, TB; def JBE : IBr<"jbe", 0x86>, TB; def JA : IBr<"ja" , 0x87>, TB; def JS : IBr<"js" , 0x88>, TB; def JNS : IBr<"jns", 0x89>, TB; def JL : IBr<"jl" , 0x8C>, TB; def JGE : IBr<"jge", 0x8D>, TB; def JLE : IBr<"jle", 0x8E>, TB; def JG : IBr<"jg" , 0x8F>, TB; //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers... let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in { def CALLpcrel32 : X86Inst<"call", 0xE8, RawFrm, NoArg>; def CALLr32 : X86Inst<"call", 0xFF, MRMS2r, Arg32>; def CALLm32 : X86Inst<"call", 0xFF, MRMS2m, Arg32>; } //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // def LEAVE : X86Inst<"leave", 0xC9, RawFrm, NoArg>, Imp<[EBP], [EBP]>; let isTwoAddress = 1 in // R32 = bswap R32 def BSWAPr32 : X86Inst<"bswap", 0xC8, AddRegFrm, Arg32>, TB; def XCHGrr8 : X86Inst<"xchg", 0x86, MRMDestReg, Arg8>; // xchg R8, R8 def XCHGrr16 : X86Inst<"xchg", 0x87, MRMDestReg, Arg16>, OpSize;// xchg R16, R16 def XCHGrr32 : X86Inst<"xchg", 0x87, MRMDestReg, Arg32>; // xchg R32, R32 def LEAr16 : X86Inst<"lea", 0x8D, MRMSrcMem, Arg16>, OpSize; // R16 = lea [mem] def LEAr32 : X86Inst<"lea", 0x8D, MRMSrcMem, Arg32>; // R32 = lea [mem] //===----------------------------------------------------------------------===// // Move Instructions... // def MOVrr8 : X86Inst<"mov", 0x88, MRMDestReg, Arg8>, Pattern<(set R8 , R8 )>; def MOVrr16 : X86Inst<"mov", 0x89, MRMDestReg, Arg16>, OpSize, Pattern<(set R16, R16)>; def MOVrr32 : X86Inst<"mov", 0x89, MRMDestReg, Arg32>, Pattern<(set R32, R32)>; def MOVir8 : X86Inst<"mov", 0xB0, AddRegFrm , Arg8>, Pattern<(set R8 , imm )>; def MOVir16 : X86Inst<"mov", 0xB8, AddRegFrm , Arg16>, OpSize, Pattern<(set R16, imm)>; def MOVir32 : X86Inst<"mov", 0xB8, AddRegFrm , Arg32>, Pattern<(set R32, imm)>; def MOVim8 : X86Inst<"mov", 0xC6, MRMS0m , Arg8>; // [mem] = imm8 def MOVim16 : X86Inst<"mov", 0xC7, MRMS0m , Arg16>, OpSize; // [mem] = imm16 def MOVim32 : X86Inst<"mov", 0xC7, MRMS0m , Arg32>; // [mem] = imm32 def MOVmr8 : X86Inst<"mov", 0x8A, MRMSrcMem , Arg8>; // R8 = [mem] def MOVmr16 : X86Inst<"mov", 0x8B, MRMSrcMem , Arg16>, OpSize, // R16 = [mem] Pattern<(set R16, (load (plus R32, (plus (times imm, R32), imm))))>; def MOVmr32 : X86Inst<"mov", 0x8B, MRMSrcMem , Arg32>, // R32 = [mem] Pattern<(set R32, (load (plus R32, (plus (times imm, R32), imm))))>; def MOVrm8 : X86Inst<"mov", 0x88, MRMDestMem, Arg8>; // [mem] = R8 def MOVrm16 : X86Inst<"mov", 0x89, MRMDestMem, Arg16>, OpSize; // [mem] = R16 def MOVrm32 : X86Inst<"mov", 0x89, MRMDestMem, Arg32>; // [mem] = R32 //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication def MULr8 : X86Inst<"mul", 0xF6, MRMS4r, Arg8 >, Imp<[AL],[AX]>; // AL,AH = AL*R8 def MULr16 : X86Inst<"mul", 0xF7, MRMS4r, Arg16>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def MULr32 : X86Inst<"mul", 0xF7, MRMS4r, Arg32>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 // unsigned division/remainder def DIVr8 : X86Inst<"div", 0xF6, MRMS6r, Arg8 >, Imp<[AX],[AX]>; // AX/r8 = AL,AH def DIVr16 : X86Inst<"div", 0xF7, MRMS6r, Arg16>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX def DIVr32 : X86Inst<"div", 0xF7, MRMS6r, Arg32>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX // signed division/remainder def IDIVr8 : X86Inst<"idiv",0xF6, MRMS7r, Arg8 >, Imp<[AX],[AX]>; // AX/r8 = AL,AH def IDIVr16: X86Inst<"idiv",0xF7, MRMS7r, Arg16>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX def IDIVr32: X86Inst<"idiv",0xF7, MRMS7r, Arg32>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX // Sign-extenders for division def CBW : X86Inst<"cbw", 0x98, RawFrm, Arg8 >, Imp<[AL],[AH]>; // AX = signext(AL) def CWD : X86Inst<"cwd", 0x99, RawFrm, Arg8 >, Imp<[AX],[DX]>; // DX:AX = signext(AX) def CDQ : X86Inst<"cdq", 0x99, RawFrm, Arg8 >, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX) //===----------------------------------------------------------------------===// // Two address Instructions... // let isTwoAddress = 1 in { // Define some helper classes to make defs shorter. class I2A8 o, Format F> : X86Inst; class I2A16 o, Format F> : X86Inst; class I2A32 o, Format F> : X86Inst; } // unary instructions def NEGr8 : I2A8 <"neg", 0xF6, MRMS3r>; // R8 = -R8 = 0-R8 def NEGr16 : I2A16<"neg", 0xF7, MRMS3r>, OpSize; // R16 = -R16 = 0-R16 def NEGr32 : I2A32<"neg", 0xF7, MRMS3r>; // R32 = -R32 = 0-R32 def NOTr8 : I2A8 <"not", 0xF6, MRMS2r>; // R8 = ~R8 = R8^-1 def NOTr16 : I2A16<"not", 0xF7, MRMS2r>, OpSize; // R16 = ~R16 = R16^-1 def NOTr32 : I2A32<"not", 0xF7, MRMS2r>; // R32 = ~R32 = R32^-1 def INCr8 : I2A8 <"inc", 0xFE, MRMS0r>; // R8 = R8 +1 def INCr16 : I2A16<"inc", 0xFF, MRMS0r>, OpSize; // R16 = R16+1 def INCr32 : I2A32<"inc", 0xFF, MRMS0r>; // R32 = R32+1 def DECr8 : I2A8 <"dec", 0xFE, MRMS1r>; // R8 = R8 -1 def DECr16 : I2A16<"dec", 0xFF, MRMS1r>, OpSize; // R16 = R16-1 def DECr32 : I2A32<"dec", 0xFF, MRMS1r>; // R32 = R32-1 // Arithmetic... def ADDrr8 : I2A8 <"add", 0x00, MRMDestReg>, Pattern<(set R8 , (plus R8 , R8 ))>; def ADDrr16 : I2A16<"add", 0x01, MRMDestReg>, OpSize, Pattern<(set R16, (plus R16, R16))>; def ADDrr32 : I2A32<"add", 0x01, MRMDestReg>, Pattern<(set R32, (plus R32, R32))>; def ADDri8 : I2A8 <"add", 0x80, MRMS0r >, Pattern<(set R8 , (plus R8 , imm))>; def ADDri16 : I2A16<"add", 0x81, MRMS0r >, OpSize, Pattern<(set R16, (plus R16, imm))>; def ADDri32 : I2A32<"add", 0x81, MRMS0r >, Pattern<(set R32, (plus R32, imm))>; def ADDri16b : I2A8 <"add", 0x83, MRMS0r >, OpSize; // ADDri with sign extended 8 bit imm def ADDri32b : I2A8 <"add", 0x83, MRMS0r >; def ADCrr32 : I2A32<"adc", 0x11, MRMDestReg>; // R32 += imm32+Carry def SUBrr8 : I2A8 <"sub", 0x28, MRMDestReg>, Pattern<(set R8 , (minus R8 , R8 ))>; def SUBrr16 : I2A16<"sub", 0x29, MRMDestReg>, OpSize, Pattern<(set R16, (minus R16, R16))>; def SUBrr32 : I2A32<"sub", 0x29, MRMDestReg>, Pattern<(set R32, (minus R32, R32))>; def SUBri8 : I2A8 <"sub", 0x80, MRMS5r >, Pattern<(set R8 , (minus R8 , imm))>; def SUBri16 : I2A16<"sub", 0x81, MRMS5r >, OpSize, Pattern<(set R16, (minus R16, imm))>; def SUBri32 : I2A32<"sub", 0x81, MRMS5r >, Pattern<(set R32, (minus R32, imm))>; def SUBri16b : I2A8 <"sub", 0x83, MRMS5r >, OpSize; def SUBri32b : I2A8 <"sub", 0x83, MRMS5r >; def SBBrr32 : I2A32<"sbb", 0x19, MRMDestReg>; // R32 -= R32+Carry def IMULrr16 : I2A16<"imul", 0xAF, MRMSrcReg>, TB, OpSize, Pattern<(set R16, (times R16, R16))>; def IMULrr32 : I2A32<"imul", 0xAF, MRMSrcReg>, TB , Pattern<(set R32, (times R32, R32))>; def IMULri16 : I2A16<"imul", 0x69, MRMSrcReg>, OpSize; def IMULri32 : I2A32<"imul", 0x69, MRMSrcReg>; def IMULri16b : I2A8<"imul", 0x6B, MRMSrcReg>, OpSize; def IMULri32b : I2A8<"imul", 0x6B, MRMSrcReg>; // Logical operators... def ANDrr8 : I2A8 <"and", 0x20, MRMDestReg>, Pattern<(set R8 , (and R8 , R8 ))>; def ANDrr16 : I2A16<"and", 0x21, MRMDestReg>, OpSize, Pattern<(set R16, (and R16, R16))>; def ANDrr32 : I2A32<"and", 0x21, MRMDestReg>, Pattern<(set R32, (and R32, R32))>; def ANDri8 : I2A8 <"and", 0x80, MRMS4r >, Pattern<(set R8 , (and R8 , imm))>; def ANDri16 : I2A16<"and", 0x81, MRMS4r >, OpSize, Pattern<(set R16, (and R16, imm))>; def ANDri32 : I2A32<"and", 0x81, MRMS4r >, Pattern<(set R32, (and R32, imm))>; def ANDri16b : I2A8 <"and", 0x83, MRMS4r >, OpSize; def ANDri32b : I2A8 <"and", 0x83, MRMS4r >; def ORrr8 : I2A8 <"or" , 0x08, MRMDestReg>, Pattern<(set R8 , (or R8 , R8 ))>; def ORrr16 : I2A16<"or" , 0x09, MRMDestReg>, OpSize, Pattern<(set R16, (or R16, R16))>; def ORrr32 : I2A32<"or" , 0x09, MRMDestReg>, Pattern<(set R32, (or R32, R32))>; def ORri8 : I2A8 <"or" , 0x80, MRMS1r >, Pattern<(set R8 , (or R8 , imm))>; def ORri16 : I2A16<"or" , 0x81, MRMS1r >, OpSize, Pattern<(set R16, (or R16, imm))>; def ORri32 : I2A32<"or" , 0x81, MRMS1r >, Pattern<(set R32, (or R32, imm))>; def ORri16b : I2A8 <"or" , 0x83, MRMS1r >, OpSize; def ORri32b : I2A8 <"or" , 0x83, MRMS1r >; def XORrr8 : I2A8 <"xor", 0x30, MRMDestReg>, Pattern<(set R8 , (xor R8 , R8 ))>; def XORrr16 : I2A16<"xor", 0x31, MRMDestReg>, OpSize, Pattern<(set R16, (xor R16, R16))>; def XORrr32 : I2A32<"xor", 0x31, MRMDestReg>, Pattern<(set R32, (xor R32, R32))>; def XORri8 : I2A8 <"xor", 0x80, MRMS6r >, Pattern<(set R8 , (xor R8 , imm))>; def XORri16 : I2A16<"xor", 0x81, MRMS6r >, OpSize, Pattern<(set R16, (xor R16, imm))>; def XORri32 : I2A32<"xor", 0x81, MRMS6r >, Pattern<(set R32, (xor R32, imm))>; def XORri16b : I2A8 <"xor", 0x83, MRMS6r >, OpSize; def XORri32b : I2A8 <"xor", 0x83, MRMS6r >; // Test instructions are just like AND, except they don't generate a result. def TESTrr8 : X86Inst<"test", 0x84, MRMDestReg, Arg8 >; // flags = R8 & R8 def TESTrr16 : X86Inst<"test", 0x85, MRMDestReg, Arg16>, OpSize; // flags = R16 & R16 def TESTrr32 : X86Inst<"test", 0x85, MRMDestReg, Arg32>; // flags = R32 & R32 def TESTri8 : X86Inst<"test", 0xF6, MRMS0r , Arg8 >; // flags = R8 & imm8 def TESTri16 : X86Inst<"test", 0xF7, MRMS0r , Arg16>, OpSize; // flags = R16 & imm16 def TESTri32 : X86Inst<"test", 0xF7, MRMS0r , Arg32>; // flags = R32 & imm32 // Shift instructions class UsesCL { list Uses = [CL]; bit printImplicitUses = 1; } def SHLrr8 : I2A8 <"shl", 0xD2, MRMS4r > , UsesCL; // R8 <<= cl def SHLrr16 : I2A8 <"shl", 0xD3, MRMS4r >, OpSize, UsesCL; // R16 <<= cl def SHLrr32 : I2A8 <"shl", 0xD3, MRMS4r > , UsesCL; // R32 <<= cl def SHLir8 : I2A8 <"shl", 0xC0, MRMS4r >; // R8 <<= imm8 def SHLir16 : I2A8 <"shl", 0xC1, MRMS4r >, OpSize; // R16 <<= imm16 def SHLir32 : I2A8 <"shl", 0xC1, MRMS4r >; // R32 <<= imm32 def SHRrr8 : I2A8 <"shr", 0xD2, MRMS5r > , UsesCL; // R8 >>= cl def SHRrr16 : I2A8 <"shr", 0xD3, MRMS5r >, OpSize, UsesCL; // R16 >>= cl def SHRrr32 : I2A8 <"shr", 0xD3, MRMS5r > , UsesCL; // R32 >>= cl def SHRir8 : I2A8 <"shr", 0xC0, MRMS5r >; // R8 >>= imm8 def SHRir16 : I2A8 <"shr", 0xC1, MRMS5r >, OpSize; // R16 >>= imm16 def SHRir32 : I2A8 <"shr", 0xC1, MRMS5r >; // R32 >>= imm32 def SARrr8 : I2A8 <"sar", 0xD2, MRMS7r > , UsesCL; // R8 >>>= cl def SARrr16 : I2A8 <"sar", 0xD3, MRMS7r >, OpSize, UsesCL; // R16 >>>= cl def SARrr32 : I2A8 <"sar", 0xD3, MRMS7r > , UsesCL; // R32 >>>= cl def SARir8 : I2A8 <"sar", 0xC0, MRMS7r >; // R8 >>>= imm8 def SARir16 : I2A8 <"sar", 0xC1, MRMS7r >, OpSize; // R16 >>>= imm16 def SARir32 : I2A8 <"sar", 0xC1, MRMS7r >; // R32 >>>= imm32 def SHLDrr32 : I2A8 <"shld", 0xA5, MRMDestReg>, TB, UsesCL; // R32 <<= R32,R32 cl def SHLDir32 : I2A8 <"shld", 0xA4, MRMDestReg>, TB; // R32 <<= R32,R32 imm8 def SHRDrr32 : I2A8 <"shrd", 0xAD, MRMDestReg>, TB, UsesCL; // R32 >>= R32,R32 cl def SHRDir32 : I2A8 <"shrd", 0xAC, MRMDestReg>, TB; // R32 >>= R32,R32 imm8 // Condition code ops, incl. set if equal/not equal/... def SAHF : X86Inst<"sahf" , 0x9E, RawFrm, Arg8>, Imp<[AH],[]>; // flags = AH def SETBr : X86Inst<"setb" , 0x92, MRMS0r, Arg8>, TB; // R8 = < unsign def SETAEr : X86Inst<"setae", 0x93, MRMS0r, Arg8>, TB; // R8 = >= unsign def SETEr : X86Inst<"sete" , 0x94, MRMS0r, Arg8>, TB; // R8 = == def SETNEr : X86Inst<"setne", 0x95, MRMS0r, Arg8>, TB; // R8 = != def SETBEr : X86Inst<"setbe", 0x96, MRMS0r, Arg8>, TB; // R8 = <= unsign def SETAr : X86Inst<"seta" , 0x97, MRMS0r, Arg8>, TB; // R8 = > signed def SETSr : X86Inst<"sets" , 0x98, MRMS0r, Arg8>, TB; // R8 = def SETNSr : X86Inst<"setns", 0x99, MRMS0r, Arg8>, TB; // R8 = ! def SETLr : X86Inst<"setl" , 0x9C, MRMS0r, Arg8>, TB; // R8 = < signed def SETGEr : X86Inst<"setge", 0x9D, MRMS0r, Arg8>, TB; // R8 = >= signed def SETLEr : X86Inst<"setle", 0x9E, MRMS0r, Arg8>, TB; // R8 = <= signed def SETGr : X86Inst<"setg" , 0x9F, MRMS0r, Arg8>, TB; // R8 = < signed // Conditional moves. These are modelled as X = cmovXX Y, Z. Eventually // register allocated to cmovXX XY, Z def CMOVErr16 : I2A16<"cmove", 0x44, MRMSrcReg>, TB, OpSize; // if ==, R16 = R16 def CMOVNErr32: I2A32<"cmovne",0x45, MRMSrcReg>, TB; // if !=, R32 = R32 // Integer comparisons def CMPrr8 : X86Inst<"cmp", 0x38, MRMDestReg, Arg8 >; // compare R8, R8 def CMPrr16 : X86Inst<"cmp", 0x39, MRMDestReg, Arg16>, OpSize; // compare R16, R16 def CMPrr32 : X86Inst<"cmp", 0x39, MRMDestReg, Arg32>, // compare R32, R32 Pattern<(isVoid (unspec2 R32, R32))>; def CMPri8 : X86Inst<"cmp", 0x80, MRMS7r , Arg8 >; // compare R8, imm8 def CMPri16 : X86Inst<"cmp", 0x81, MRMS7r , Arg16>, OpSize; // compare R16, imm16 def CMPri32 : X86Inst<"cmp", 0x81, MRMS7r , Arg32>; // compare R32, imm32 // Sign/Zero extenders def MOVSXr16r8 : X86Inst<"movsx", 0xBE, MRMSrcReg, Arg8>, TB, OpSize; // R16 = signext(R8) def MOVSXr32r8 : X86Inst<"movsx", 0xBE, MRMSrcReg, Arg8>, TB; // R32 = signext(R8) def MOVSXr32r16: X86Inst<"movsx", 0xBF, MRMSrcReg, Arg8>, TB; // R32 = signext(R16) def MOVZXr16r8 : X86Inst<"movzx", 0xB6, MRMSrcReg, Arg8>, TB, OpSize; // R16 = zeroext(R8) def MOVZXr32r8 : X86Inst<"movzx", 0xB6, MRMSrcReg, Arg8>, TB; // R32 = zeroext(R8) def MOVZXr32r16: X86Inst<"movzx", 0xB7, MRMSrcReg, Arg8>, TB; // R32 = zeroext(R16) //===----------------------------------------------------------------------===// // Floating point support //===----------------------------------------------------------------------===// // FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP' // Floating point pseudo instructions... class FPInst o, Format F, ArgType t, FPFormat fp> : X86Inst { let FPForm = fp; let FPFormBits = FPForm.Value; } def FpMOV : FPInst<"FMOV", 0, Pseudo, ArgF80, SpecialFP>; // f1 = fmov f2 def FpADD : FPInst<"FADD", 0, Pseudo, ArgF80, TwoArgFP>; // f1 = fadd f2, f3 def FpSUB : FPInst<"FSUB", 0, Pseudo, ArgF80, TwoArgFP>; // f1 = fsub f2, f3 def FpMUL : FPInst<"FMUL", 0, Pseudo, ArgF80, TwoArgFP>; // f1 = fmul f2, f3 def FpDIV : FPInst<"FDIV", 0, Pseudo, ArgF80, TwoArgFP>; // f1 = fdiv f2, f3 def FpUCOM : FPInst<"FUCOM", 0, Pseudo, ArgF80, TwoArgFP>; // FPSW = fucom f1, f2 def FpGETRESULT : FPInst<"FGETRESULT",0, Pseudo, ArgF80, SpecialFP>; // FPR = ST(0) def FpSETRESULT : FPInst<"FSETRESULT",0, Pseudo, ArgF80, SpecialFP>; // ST(0) = FPR // Floating point loads & stores... def FLDrr : FPInst<"fld" , 0xC0, AddRegFrm, ArgF80, NotFP>, D9; // push(ST(i)) def FLDr32 : FPInst<"fld" , 0xD9, MRMS0m , ArgF32, ZeroArgFP>; // load float def FLDr64 : FPInst<"fld" , 0xDD, MRMS0m , ArgF64, ZeroArgFP>; // load double def FLDr80 : FPInst<"fld" , 0xDB, MRMS5m , ArgF80, ZeroArgFP>; // load extended def FILDr16 : FPInst<"fild" , 0xDF, MRMS0m , Arg16 , ZeroArgFP>; // load signed short def FILDr32 : FPInst<"fild" , 0xDB, MRMS0m , Arg32 , ZeroArgFP>; // load signed int def FILDr64 : FPInst<"fild" , 0xDF, MRMS5m , Arg64 , ZeroArgFP>; // load signed long def FSTr32 : FPInst<"fst" , 0xD9, MRMS2m , ArgF32, OneArgFP>; // store float def FSTr64 : FPInst<"fst" , 0xDD, MRMS2m , ArgF64, OneArgFP>; // store double def FSTPr32 : FPInst<"fstp", 0xD9, MRMS3m , ArgF32, OneArgFP>; // store float, pop def FSTPr64 : FPInst<"fstp", 0xDD, MRMS3m , ArgF64, OneArgFP>; // store double, pop def FSTPr80 : FPInst<"fstp", 0xDB, MRMS7m , ArgF80, OneArgFP>; // store extended, pop def FSTrr : FPInst<"fst" , 0xD0, AddRegFrm, ArgF80, NotFP >, DD; // ST(i) = ST(0) def FSTPrr : FPInst<"fstp", 0xD8, AddRegFrm, ArgF80, NotFP >, DD; // ST(i) = ST(0), pop def FISTr16 : FPInst<"fist", 0xDF, MRMS2m, Arg16 , OneArgFP>; // store signed short def FISTr32 : FPInst<"fist", 0xDB, MRMS2m, Arg32 , OneArgFP>; // store signed int def FISTPr16 : FPInst<"fistp", 0xDF, MRMS3m, Arg16 , NotFP >; // store signed short, pop def FISTPr32 : FPInst<"fistp", 0xDB, MRMS3m, Arg32 , NotFP >; // store signed int, pop def FISTPr64 : FPInst<"fistpll", 0xDF, MRMS7m, Arg64 , OneArgFP>; // store signed long, pop def FXCH : FPInst<"fxch", 0xC8, AddRegFrm, ArgF80, NotFP>, D9; // fxch ST(i), ST(0) // Floating point constant loads... def FLD0 : FPInst<"fldz", 0xEE, RawFrm, ArgF80, ZeroArgFP>, D9; def FLD1 : FPInst<"fld1", 0xE8, RawFrm, ArgF80, ZeroArgFP>, D9; // Binary arithmetic operations... class FPST0rInst o> : X86Inst, D8 { list Uses = [ST0]; list Defs = [ST0]; } class FPrST0Inst o> : X86Inst, DC { bit printImplicitUses = 1; list Uses = [ST0]; } class FPrST0PInst o> : X86Inst, DE { list Uses = [ST0]; } def FADDST0r : FPST0rInst <"fadd", 0xC0>; def FADDrST0 : FPrST0Inst <"fadd", 0xC0>; def FADDPrST0 : FPrST0PInst<"faddp", 0xC0>; def FSUBRST0r : FPST0rInst <"fsubr", 0xE8>; def FSUBrST0 : FPrST0Inst <"fsub", 0xE8>; def FSUBPrST0 : FPrST0PInst<"fsubp", 0xE8>; def FSUBST0r : FPST0rInst <"fsub", 0xE0>; def FSUBRrST0 : FPrST0Inst <"fsubr", 0xE0>; def FSUBRPrST0 : FPrST0PInst<"fsubrp", 0xE0>; def FMULST0r : FPST0rInst <"fmul", 0xC8>; def FMULrST0 : FPrST0Inst <"fmul", 0xC8>; def FMULPrST0 : FPrST0PInst<"fmulp", 0xC8>; def FDIVRST0r : FPST0rInst <"fdivr", 0xF8>; def FDIVrST0 : FPrST0Inst <"fdiv", 0xF8>; def FDIVPrST0 : FPrST0PInst<"fdivp", 0xF8>; def FDIVST0r : FPST0rInst <"fdiv", 0xF0>; // ST(0) = ST(0) / ST(i) def FDIVRrST0 : FPrST0Inst <"fdivr", 0xF0>; // ST(i) = ST(0) / ST(i) def FDIVRPrST0 : FPrST0PInst<"fdivrp", 0xF0>; // ST(i) = ST(0) / ST(i), pop // Floating point compares def FUCOMr : X86Inst<"fucom" , 0xE0, AddRegFrm, ArgF80>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i) def FUCOMPr : X86Inst<"fucomp" , 0xE8, AddRegFrm, ArgF80>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop def FUCOMPPr : X86Inst<"fucompp", 0xE9, RawFrm , ArgF80>, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop // Floating point flag ops def FNSTSWr8 : X86Inst<"fnstsw" , 0xE0, RawFrm , ArgF80>, DF, Imp<[],[AX]>; // AX = fp flags def FNSTCWm16 : X86Inst<"fnstcw" , 0xD9, MRMS7m , Arg16 >; // [mem16] = X87 control world def FLDCWm16 : X86Inst<"fldcw" , 0xD9, MRMS5m , Arg16 >; // X87 control world = [mem16] //===----------------------------------------------------------------------===// // Instruction Expanders // def RET_R32 : Expander<(ret R32:$reg), [(MOVrr32 EAX, R32:$reg), (RET)]>; // FIXME: This should eventually just be implemented by defining a frameidx as a // value address for a load. def LOAD_FI16 : Expander<(set R16:$dest, (load frameidx:$fi)), [(MOVmr16 R16:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>; def LOAD_FI32 : Expander<(set R32:$dest, (load frameidx:$fi)), [(MOVmr32 R32:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>; def LOAD_R16 : Expander<(set R16:$dest, (load R32:$src)), [(MOVmr16 R16:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>; def LOAD_R32 : Expander<(set R32:$dest, (load R32:$src)), [(MOVmr32 R32:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>; def BR_EQ : Expander<(brcond (seteq R32:$a1, R32:$a2), basicblock:$d1, basicblock:$d2), [(CMPrr32 R32:$a1, R32:$a2), (JE basicblock:$d1), (JMP basicblock:$d2)]>;