//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAG class, which is a base class used by // scheduling implementation classes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/Debug.h" #include using namespace llvm; ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb, const TargetMachine &tm) : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) { TII = TM.getInstrInfo(); MF = BB->getParent(); TRI = TM.getRegisterInfo(); TLI = TM.getTargetLowering(); ConstPool = MF->getConstantPool(); } ScheduleDAG::~ScheduleDAG() {} /// CalculateDepths - compute depths using algorithms for the longest /// paths in the DAG void ScheduleDAG::CalculateDepths() { unsigned DAGSize = SUnits.size(); std::vector WorkList; WorkList.reserve(DAGSize); // Initialize the data structures for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; unsigned Degree = SU->Preds.size(); // Temporarily use the Depth field as scratch space for the degree count. SU->Depth = Degree; // Is it a node without dependencies? if (Degree == 0) { assert(SU->Preds.empty() && "SUnit should have no predecessors"); // Collect leaf nodes WorkList.push_back(SU); } } // Process nodes in the topological order while (!WorkList.empty()) { SUnit *SU = WorkList.back(); WorkList.pop_back(); unsigned SUDepth = 0; // Use dynamic programming: // When current node is being processed, all of its dependencies // are already processed. // So, just iterate over all predecessors and take the longest path for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { unsigned PredDepth = I->Dep->Depth; if (PredDepth+1 > SUDepth) { SUDepth = PredDepth + 1; } } SU->Depth = SUDepth; // Update degrees of all nodes depending on current SUnit for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { SUnit *SU = I->Dep; if (!--SU->Depth) // If all dependencies of the node are processed already, // then the longest path for the node can be computed now WorkList.push_back(SU); } } } /// CalculateHeights - compute heights using algorithms for the longest /// paths in the DAG void ScheduleDAG::CalculateHeights() { unsigned DAGSize = SUnits.size(); std::vector WorkList; WorkList.reserve(DAGSize); // Initialize the data structures for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; unsigned Degree = SU->Succs.size(); // Temporarily use the Height field as scratch space for the degree count. SU->Height = Degree; // Is it a node without dependencies? if (Degree == 0) { assert(SU->Succs.empty() && "Something wrong"); assert(WorkList.empty() && "Should be empty"); // Collect leaf nodes WorkList.push_back(SU); } } // Process nodes in the topological order while (!WorkList.empty()) { SUnit *SU = WorkList.back(); WorkList.pop_back(); unsigned SUHeight = 0; // Use dynamic programming: // When current node is being processed, all of its dependencies // are already processed. // So, just iterate over all successors and take the longest path for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { unsigned SuccHeight = I->Dep->Height; if (SuccHeight+1 > SUHeight) { SUHeight = SuccHeight + 1; } } SU->Height = SUHeight; // Update degrees of all nodes depending on current SUnit for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit *SU = I->Dep; if (!--SU->Height) // If all dependencies of the node are processed already, // then the longest path for the node can be computed now WorkList.push_back(SU); } } } /// dump - dump the schedule. void ScheduleDAG::dumpSchedule() const { for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) SU->dump(this); else cerr << "**** NOOP ****\n"; } } /// Run - perform scheduling. /// void ScheduleDAG::Run() { Schedule(); DOUT << "*** Final schedule ***\n"; DEBUG(dumpSchedule()); DOUT << "\n"; } /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or /// a group of nodes flagged together. void SUnit::dump(const ScheduleDAG *G) const { cerr << "SU(" << NodeNum << "): "; G->dumpNode(this); } void SUnit::dumpAll(const ScheduleDAG *G) const { dump(G); cerr << " # preds left : " << NumPredsLeft << "\n"; cerr << " # succs left : " << NumSuccsLeft << "\n"; cerr << " Latency : " << Latency << "\n"; cerr << " Depth : " << Depth << "\n"; cerr << " Height : " << Height << "\n"; if (Preds.size() != 0) { cerr << " Predecessors:\n"; for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { if (I->isCtrl) cerr << " ch #"; else cerr << " val #"; cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; if (I->isArtificial) cerr << " *"; cerr << "\n"; } } if (Succs.size() != 0) { cerr << " Successors:\n"; for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); I != E; ++I) { if (I->isCtrl) cerr << " ch #"; else cerr << " val #"; cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; if (I->isArtificial) cerr << " *"; cerr << "\n"; } } cerr << "\n"; } #ifndef NDEBUG /// VerifySchedule - Verify that all SUnits were scheduled and that /// their state is consistent. /// void ScheduleDAG::VerifySchedule(bool isBottomUp) { bool AnyNotSched = false; unsigned DeadNodes = 0; unsigned Noops = 0; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (!SUnits[i].isScheduled) { if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { ++DeadNodes; continue; } if (!AnyNotSched) cerr << "*** Scheduling failed! ***\n"; SUnits[i].dump(this); cerr << "has not been scheduled!\n"; AnyNotSched = true; } if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) { if (!AnyNotSched) cerr << "*** Scheduling failed! ***\n"; SUnits[i].dump(this); cerr << "has an unexpected Cycle value!\n"; AnyNotSched = true; } if (isBottomUp) { if (SUnits[i].NumSuccsLeft != 0) { if (!AnyNotSched) cerr << "*** Scheduling failed! ***\n"; SUnits[i].dump(this); cerr << "has successors left!\n"; AnyNotSched = true; } } else { if (SUnits[i].NumPredsLeft != 0) { if (!AnyNotSched) cerr << "*** Scheduling failed! ***\n"; SUnits[i].dump(this); cerr << "has predecessors left!\n"; AnyNotSched = true; } } } for (unsigned i = 0, e = Sequence.size(); i != e; ++i) if (!Sequence[i]) ++Noops; assert(!AnyNotSched); assert(Sequence.size() + DeadNodes - Noops == SUnits.size() && "The number of nodes scheduled doesn't match the expected number!"); } #endif /// InitDAGTopologicalSorting - create the initial topological /// ordering from the DAG to be scheduled. /// /// The idea of the algorithm is taken from /// "Online algorithms for managing the topological order of /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly /// This is the MNR algorithm, which was first introduced by /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in /// "Maintaining a topological order under edge insertions". /// /// Short description of the algorithm: /// /// Topological ordering, ord, of a DAG maps each node to a topological /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). /// /// This means that if there is a path from the node X to the node Z, /// then ord(X) < ord(Z). /// /// This property can be used to check for reachability of nodes: /// if Z is reachable from X, then an insertion of the edge Z->X would /// create a cycle. /// /// The algorithm first computes a topological ordering for the DAG by /// initializing the Index2Node and Node2Index arrays and then tries to keep /// the ordering up-to-date after edge insertions by reordering the DAG. /// /// On insertion of the edge X->Y, the algorithm first marks by calling DFS /// the nodes reachable from Y, and then shifts them using Shift to lie /// immediately after X in Index2Node. void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { unsigned DAGSize = SUnits.size(); std::vector WorkList; WorkList.reserve(DAGSize); Index2Node.resize(DAGSize); Node2Index.resize(DAGSize); // Initialize the data structures. for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; int NodeNum = SU->NodeNum; unsigned Degree = SU->Succs.size(); // Temporarily use the Node2Index array as scratch space for degree counts. Node2Index[NodeNum] = Degree; // Is it a node without dependencies? if (Degree == 0) { assert(SU->Succs.empty() && "SUnit should have no successors"); // Collect leaf nodes. WorkList.push_back(SU); } } int Id = DAGSize; while (!WorkList.empty()) { SUnit *SU = WorkList.back(); WorkList.pop_back(); Allocate(SU->NodeNum, --Id); for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit *SU = I->Dep; if (!--Node2Index[SU->NodeNum]) // If all dependencies of the node are processed already, // then the node can be computed now. WorkList.push_back(SU); } } Visited.resize(DAGSize); #ifndef NDEBUG // Check correctness of the ordering for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && "Wrong topological sorting"); } } #endif } /// AddPred - Updates the topological ordering to accomodate an edge /// to be added from SUnit X to SUnit Y. void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { int UpperBound, LowerBound; LowerBound = Node2Index[Y->NodeNum]; UpperBound = Node2Index[X->NodeNum]; bool HasLoop = false; // Is Ord(X) < Ord(Y) ? if (LowerBound < UpperBound) { // Update the topological order. Visited.reset(); DFS(Y, UpperBound, HasLoop); assert(!HasLoop && "Inserted edge creates a loop!"); // Recompute topological indexes. Shift(Visited, LowerBound, UpperBound); } } /// RemovePred - Updates the topological ordering to accomodate an /// an edge to be removed from the specified node N from the predecessors /// of the current node M. void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { // InitDAGTopologicalSorting(); } /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark /// all nodes affected by the edge insertion. These nodes will later get new /// topological indexes by means of the Shift method. void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) { std::vector WorkList; WorkList.reserve(SUnits.size()); WorkList.push_back(SU); while (!WorkList.empty()) { SU = WorkList.back(); WorkList.pop_back(); Visited.set(SU->NodeNum); for (int I = SU->Succs.size()-1; I >= 0; --I) { int s = SU->Succs[I].Dep->NodeNum; if (Node2Index[s] == UpperBound) { HasLoop = true; return; } // Visit successors if not already and in affected region. if (!Visited.test(s) && Node2Index[s] < UpperBound) { WorkList.push_back(SU->Succs[I].Dep); } } } } /// Shift - Renumber the nodes so that the topological ordering is /// preserved. void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, int UpperBound) { std::vector L; int shift = 0; int i; for (i = LowerBound; i <= UpperBound; ++i) { // w is node at topological index i. int w = Index2Node[i]; if (Visited.test(w)) { // Unmark. Visited.reset(w); L.push_back(w); shift = shift + 1; } else { Allocate(w, i - shift); } } for (unsigned j = 0; j < L.size(); ++j) { Allocate(L[j], i - shift); i = i + 1; } } /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will /// create a cycle. bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { if (IsReachable(TargetSU, SU)) return true; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (I->Cost < 0 && IsReachable(TargetSU, I->Dep)) return true; return false; } /// IsReachable - Checks if SU is reachable from TargetSU. bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, const SUnit *TargetSU) { // If insertion of the edge SU->TargetSU would create a cycle // then there is a path from TargetSU to SU. int UpperBound, LowerBound; LowerBound = Node2Index[TargetSU->NodeNum]; UpperBound = Node2Index[SU->NodeNum]; bool HasLoop = false; // Is Ord(TargetSU) < Ord(SU) ? if (LowerBound < UpperBound) { Visited.reset(); // There may be a path from TargetSU to SU. Check for it. DFS(TargetSU, UpperBound, HasLoop); } return HasLoop; } /// Allocate - assign the topological index to the node n. void ScheduleDAGTopologicalSort::Allocate(int n, int index) { Node2Index[n] = index; Index2Node[index] = n; } ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort( std::vector &sunits) : SUnits(sunits) {}