//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run // both before and after the DAG is legalized. // // FIXME: Missing folds // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into // a sequence of multiplies, shifts, and adds. This should be controlled by // some kind of hint from the target that int div is expensive. // various folds of mulh[s,u] by constants such as -1, powers of 2, etc. // // FIXME: Should add a corresponding version of fold AND with // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which // we don't have yet. // // FIXME: mul (x, const) -> shifts + adds // FIXME: undef values // FIXME: zero extend when top bits are 0 -> drop it ? // FIXME: make truncate see through SIGN_EXTEND and AND // FIXME: sext_in_reg(setcc) on targets that return zero or one, and where // EVT != MVT::i1 can drop the sext. // FIXME: (sra (sra x, c1), c2) -> (sra x, c1+c2) // FIXME: verify that getNode can't return extends with an operand whose type // is >= to that of the extend. // FIXME: divide by zero is currently left unfolded. do we want to turn this // into an undef? // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dagcombine" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLowering.h" #include using namespace llvm; namespace { Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined"); class DAGCombiner { SelectionDAG &DAG; TargetLowering &TLI; bool AfterLegalize; // Worklist of all of the nodes that need to be simplified. std::vector WorkList; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(SDNode *N) { for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) WorkList.push_back(*UI); } /// removeFromWorkList - remove all instances of N from the worklist. void removeFromWorkList(SDNode *N) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), WorkList.end()); } /// visit - call the node-specific routine that knows how to fold each /// particular type of node. SDOperand visit(SDNode *N); // Visitation implementation - Implement dag node combining for different // node types. The semantics are as follows: // Return Value: // SDOperand.Val == 0 - No change was made // otherwise - N should be replaced by the returned Operand. // SDOperand visitTokenFactor(SDNode *N); SDOperand visitADD(SDNode *N); SDOperand visitSUB(SDNode *N); SDOperand visitMUL(SDNode *N); SDOperand visitSDIV(SDNode *N); SDOperand visitUDIV(SDNode *N); SDOperand visitSREM(SDNode *N); SDOperand visitUREM(SDNode *N); SDOperand visitMULHU(SDNode *N); SDOperand visitMULHS(SDNode *N); SDOperand visitAND(SDNode *N); SDOperand visitOR(SDNode *N); SDOperand visitXOR(SDNode *N); SDOperand visitSHL(SDNode *N); SDOperand visitSRA(SDNode *N); SDOperand visitSRL(SDNode *N); SDOperand visitCTLZ(SDNode *N); SDOperand visitCTTZ(SDNode *N); SDOperand visitCTPOP(SDNode *N); // select // select_cc // setcc SDOperand visitSIGN_EXTEND(SDNode *N); SDOperand visitZERO_EXTEND(SDNode *N); SDOperand visitSIGN_EXTEND_INREG(SDNode *N); SDOperand visitTRUNCATE(SDNode *N); SDOperand visitSINT_TO_FP(SDNode *N); SDOperand visitUINT_TO_FP(SDNode *N); SDOperand visitFP_TO_SINT(SDNode *N); SDOperand visitFP_TO_UINT(SDNode *N); SDOperand visitFP_ROUND(SDNode *N); SDOperand visitFP_ROUND_INREG(SDNode *N); SDOperand visitFP_EXTEND(SDNode *N); SDOperand visitFNEG(SDNode *N); SDOperand visitFABS(SDNode *N); // brcond // brcondtwoway // br_cc // brtwoway_cc public: DAGCombiner(SelectionDAG &D) : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {} /// Run - runs the dag combiner on all nodes in the work list void Run(bool RunningAfterLegalize); }; } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. V and Mask are known to /// be the same type. static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask, const TargetLowering &TLI) { unsigned SrcBits; if (Mask == 0) return true; // If we know the result of a setcc has the top bits zero, use this info. switch (Op.getOpcode()) { case ISD::Constant: return (cast(Op)->getValue() & Mask) == 0; case ISD::SETCC: // FIXME: teach this about non ZeroOrOne values, such as 0 or -1 return ((Mask & 1) == 0) && TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult; case ISD::ZEXTLOAD: SrcBits = MVT::getSizeInBits(cast(Op.getOperand(3))->getVT()); return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits. case ISD::ZERO_EXTEND: SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType()); return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI); case ISD::AssertZext: SrcBits = MVT::getSizeInBits(cast(Op.getOperand(1))->getVT()); return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits. case ISD::AND: // (X & C1) & C2 == 0 iff C1 & C2 == 0. if (ConstantSDNode *AndRHS = dyn_cast(Op.getOperand(1))) return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI); // FALL THROUGH case ISD::OR: case ISD::XOR: return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) && MaskedValueIsZero(Op.getOperand(1), Mask, TLI); case ISD::SELECT: return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) && MaskedValueIsZero(Op.getOperand(2), Mask, TLI); case ISD::SELECT_CC: return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) && MaskedValueIsZero(Op.getOperand(3), Mask, TLI); case ISD::SRL: // (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0 if (ConstantSDNode *ShAmt = dyn_cast(Op.getOperand(1))) { uint64_t NewVal = Mask << ShAmt->getValue(); SrcBits = MVT::getSizeInBits(Op.getValueType()); if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1; return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); } return false; case ISD::SHL: // (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0 if (ConstantSDNode *ShAmt = dyn_cast(Op.getOperand(1))) { uint64_t NewVal = Mask >> ShAmt->getValue(); return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); } return false; case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: // Bit counting instructions can not set the high bits of the result // register. The max number of bits sets depends on the input. return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0; // TODO we could handle some SRA cases here. default: break; } return false; } // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc // that selects between the values 1 and 0, making it equivalent to a setcc. // Also, set the incoming LHS, RHS, and CC references to the appropriate // nodes based on the type of node we are checking. This simplifies life a // bit for the callers. static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS, SDOperand &CC) { if (N.getOpcode() == ISD::SETCC) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(2); return true; } if (N.getOpcode() == ISD::SELECT_CC && N.getOperand(2).getOpcode() == ISD::Constant && N.getOperand(3).getOpcode() == ISD::Constant && cast(N.getOperand(2))->getValue() == 1 && cast(N.getOperand(3))->isNullValue()) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(4); return true; } return false; } // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only // one use. If this is true, it allows the users to invert the operation for // free when it is profitable to do so. static bool isOneUseSetCC(SDOperand N) { SDOperand N0, N1, N2; if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse()) return true; return false; } void DAGCombiner::Run(bool RunningAfterLegalize) { // set the instance variable, so that the various visit routines may use it. AfterLegalize = RunningAfterLegalize; // Add all the dag nodes to the worklist. WorkList.insert(WorkList.end(), DAG.allnodes_begin(), DAG.allnodes_end()); // while the worklist isn't empty, inspect the node on the end of it and // try and combine it. while (!WorkList.empty()) { SDNode *N = WorkList.back(); WorkList.pop_back(); // If N has no uses, it is dead. Make sure to revisit all N's operands once // N is deleted from the DAG, since they too may now be dead. // FIXME: is there a better way to keep from deleting the dag root because // we think it has no uses? This works for now... if (N->use_empty() && N != DAG.getRoot().Val) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) WorkList.push_back(N->getOperand(i).Val); DAG.DeleteNode(N); removeFromWorkList(N); continue; } SDOperand RV = visit(N); if (RV.Val) { ++NodesCombined; // If we get back the same node we passed in, rather than a new node or // zero, we know that the node must have defined multiple values and // CombineTo was used. Since CombineTo takes care of the worklist // mechanics for us, we have no work to do in this case. if (RV.Val != N) { DEBUG(std::cerr << "\nReplacing "; N->dump(); std::cerr << "\nWith: "; RV.Val->dump(); std::cerr << '\n'); DAG.ReplaceAllUsesWith(N, std::vector(1, RV)); // Push the new node and any users onto the worklist WorkList.push_back(RV.Val); AddUsersToWorkList(RV.Val); // Nodes can end up on the worklist more than once. Make sure we do // not process a node that has been replaced. removeFromWorkList(N); } } } } SDOperand DAGCombiner::visit(SDNode *N) { switch(N->getOpcode()) { default: break; case ISD::TokenFactor: return visitTokenFactor(N); case ISD::ADD: return visitADD(N); case ISD::SUB: return visitSUB(N); case ISD::MUL: return visitMUL(N); case ISD::SDIV: return visitSDIV(N); case ISD::UDIV: return visitUDIV(N); case ISD::SREM: return visitSREM(N); case ISD::UREM: return visitUREM(N); case ISD::MULHU: return visitMULHU(N); case ISD::MULHS: return visitMULHS(N); case ISD::AND: return visitAND(N); case ISD::OR: return visitOR(N); case ISD::XOR: return visitXOR(N); case ISD::SHL: return visitSHL(N); case ISD::SRA: return visitSRA(N); case ISD::SRL: return visitSRL(N); case ISD::CTLZ: return visitCTLZ(N); case ISD::CTTZ: return visitCTTZ(N); case ISD::CTPOP: return visitCTPOP(N); case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); case ISD::TRUNCATE: return visitTRUNCATE(N); case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); case ISD::FP_ROUND: return visitFP_ROUND(N); case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); case ISD::FP_EXTEND: return visitFP_EXTEND(N); case ISD::FNEG: return visitFNEG(N); case ISD::FABS: return visitFABS(N); } return SDOperand(); } SDOperand DAGCombiner::visitTokenFactor(SDNode *N) { // If the token factor has two operands and one is the entry token, replace // the token factor with the other operand. if (N->getNumOperands() == 2) { if (N->getOperand(0).getOpcode() == ISD::EntryToken) return N->getOperand(1); if (N->getOperand(1).getOpcode() == ISD::EntryToken) return N->getOperand(0); } return SDOperand(); } SDOperand DAGCombiner::visitADD(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (add c1, c2) -> c1+c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() + N1C->getValue(), VT); // canonicalize constant to RHS if (N0C && !N1C) { std::swap(N0, N1); std::swap(N0C, N1C); } // fold (add x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold floating point (add c1, c2) -> c1+c2 if (N0CFP && N1CFP) return DAG.getConstantFP(N0CFP->getValue() + N1CFP->getValue(), VT); // fold (add (add x, c1), c2) -> (add x, c1+c2) if (N1C && N0.getOpcode() == ISD::ADD) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::ADD, VT, N0.getOperand(1), DAG.getConstant(N1C->getValue()+N00C->getValue(), VT)); if (N01C) return DAG.getNode(ISD::ADD, VT, N0.getOperand(0), DAG.getConstant(N1C->getValue()+N01C->getValue(), VT)); } // fold (A + (-B)) -> A-B if (N1.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(0)); // fold ((-A) + B) -> B-A if (N0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(0)); // fold ((0-A) + B) -> B-A if (N0.getOpcode() == ISD::SUB && isa(N0.getOperand(0)) && cast(N0.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); // fold (A + (0-B)) -> A-B if (N1.getOpcode() == ISD::SUB && isa(N1.getOperand(0)) && cast(N1.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); // fold (A+(B-A)) -> B for non-fp types if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1) && !MVT::isFloatingPoint(N1.getValueType())) return N1.getOperand(0); return SDOperand(); } SDOperand DAGCombiner::visitSUB(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantFPSDNode *N0CFP = dyn_cast(N0.Val); ConstantFPSDNode *N1CFP = dyn_cast(N1.Val); // fold (sub c1, c2) -> c1-c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() - N1C->getValue(), N->getValueType(0)); // fold (sub x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold floating point (sub c1, c2) -> c1-c2 if (N0CFP && N1CFP) return DAG.getConstantFP(N0CFP->getValue() - N1CFP->getValue(), N->getValueType(0)); // fold (A+B)-A -> B if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && !MVT::isFloatingPoint(N1.getValueType())) return N0.getOperand(1); // fold (A+B)-B -> A if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && !MVT::isFloatingPoint(N1.getValueType())) return N0.getOperand(0); // fold (A-(-B)) -> A+B if (N1.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::ADD, N0.getValueType(), N0, N1.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitMUL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (mul c1, c2) -> c1*c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() * N1C->getValue(), N->getValueType(0)); // canonicalize constant to RHS if (N0C && !N1C) { std::swap(N0, N1); std::swap(N0C, N1C); } // fold (mul x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mul x, -1) -> 0-x if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, N->getValueType(0), DAG.getConstant(0, N->getValueType(0)), N0); // fold (mul x, (1 << c)) -> x << c if (N1C && isPowerOf2_64(N1C->getValue())) return DAG.getNode(ISD::SHL, N->getValueType(0), N0, DAG.getConstant(Log2_64(N1C->getValue()), TLI.getShiftAmountTy())); // fold (mul (mul x, c1), c2) -> (mul x, c1*c2) if (N1C && N0.getOpcode() == ISD::MUL) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::MUL, VT, N0.getOperand(1), DAG.getConstant(N1C->getValue()*N00C->getValue(), VT)); if (N01C) return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), DAG.getConstant(N1C->getValue()*N01C->getValue(), VT)); } // fold floating point (mul c1, c2) -> c1*c2 if (N0CFP && N1CFP) return DAG.getConstantFP(N0CFP->getValue() * N1CFP->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitSDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantFPSDNode *N0CFP = dyn_cast(N0.Val); ConstantFPSDNode *N1CFP = dyn_cast(N1.Val); // fold (sdiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getConstant(N0C->getSignExtended() / N1C->getSignExtended(), N->getValueType(0)); // fold floating point (sdiv c1, c2) -> c1/c2 if (N0CFP && N1CFP) return DAG.getConstantFP(N0CFP->getValue() / N1CFP->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitUDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); // fold (udiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getConstant(N0C->getValue() / N1C->getValue(), N->getValueType(0)); // fold (udiv x, (1 << c)) -> x >>u c if (N1C && isPowerOf2_64(N1C->getValue())) return DAG.getNode(ISD::SRL, N->getValueType(0), N0, DAG.getConstant(Log2_64(N1C->getValue()), TLI.getShiftAmountTy())); return SDOperand(); } SDOperand DAGCombiner::visitSREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); // fold (srem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getConstant(N0C->getSignExtended() % N1C->getSignExtended(), N->getValueType(0)); // fold floating point (srem c1, c2) -> fmod(c1, c2) if (N0CFP && N1CFP) return DAG.getConstantFP(fmod(N0CFP->getValue(),N1CFP->getValue()), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitUREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); // fold (urem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getConstant(N0C->getValue() % N1C->getValue(), N->getValueType(0)); // FIXME: c2 power of 2 -> mask? return SDOperand(); } SDOperand DAGCombiner::visitMULHS(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); // fold (mulhs x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhs x, 1) -> (sra x, size(x)-1) if (N1C && N1C->getValue() == 1) return DAG.getNode(ISD::SRA, N0.getValueType(), N0, DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1, TLI.getShiftAmountTy())); return SDOperand(); } SDOperand DAGCombiner::visitMULHU(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); // fold (mulhu x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhu x, 1) -> 0 if (N1C && N1C->getValue() == 1) return DAG.getConstant(0, N0.getValueType()); return SDOperand(); } SDOperand DAGCombiner::visitAND(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N1.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (and c1, c2) -> c1&c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() & N1C->getValue(), VT); // canonicalize constant to RHS if (N0C && !N1C) { std::swap(N0, N1); std::swap(N0C, N1C); } // fold (and x, -1) -> x if (N1C && N1C->isAllOnesValue()) return N0; // if (and x, c) is known to be zero, return 0 if (N1C && MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits),TLI)) return DAG.getConstant(0, VT); // fold (and x, c) -> x iff (x & ~c) == 0 if (N1C && MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)), TLI)) return N0; // fold (and (and x, c1), c2) -> (and x, c1^c2) if (N1C && N0.getOpcode() == ISD::AND) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::AND, VT, N0.getOperand(1), DAG.getConstant(N1C->getValue()&N00C->getValue(), VT)); if (N01C) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(N1C->getValue()&N01C->getValue(), VT)); } // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { unsigned ExtendBits = MVT::getSizeInBits(cast(N0.getOperand(1))->getVT()); if ((N1C->getValue() & (~0ULL << ExtendBits)) == 0) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), N1); } // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF if (N0.getOpcode() == ISD::OR) if (ConstantSDNode *ORI = dyn_cast(N0.getOperand(1))) if ((ORI->getValue() & N1C->getValue()) == N1C->getValue()) return N1; return SDOperand(); } SDOperand DAGCombiner::visitOR(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N1.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (or c1, c2) -> c1|c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() | N1C->getValue(), N->getValueType(0)); // canonicalize constant to RHS if (N0C && !N1C) { std::swap(N0, N1); std::swap(N0C, N1C); } // fold (or x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (or x, -1) -> -1 if (N1C && N1C->isAllOnesValue()) return N1; // fold (or x, c) -> c iff (x & ~c) == 0 if (N1C && MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)), TLI)) return N1; // fold (or (or x, c1), c2) -> (or x, c1|c2) if (N1C && N0.getOpcode() == ISD::OR) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::OR, VT, N0.getOperand(1), DAG.getConstant(N1C->getValue()|N00C->getValue(), VT)); if (N01C) return DAG.getNode(ISD::OR, VT, N0.getOperand(0), DAG.getConstant(N1C->getValue()|N01C->getValue(), VT)); } return SDOperand(); } SDOperand DAGCombiner::visitXOR(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LHS, RHS, CC; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (xor c1, c2) -> c1^c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() ^ N1C->getValue(), VT); // canonicalize constant to RHS if (N0C && !N1C) { std::swap(N0, N1); std::swap(N0C, N1C); } // fold (xor x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold !(x cc y) -> (x !cc y) if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { bool isInt = MVT::isInteger(LHS.getValueType()); ISD::CondCode NotCC = ISD::getSetCCInverse(cast(CC)->get(), isInt); if (N0.getOpcode() == ISD::SETCC) return DAG.getSetCC(VT, LHS, RHS, NotCC); if (N0.getOpcode() == ISD::SELECT_CC) return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); assert(0 && "Unhandled SetCC Equivalent!"); abort(); } // fold !(x or y) -> (!x and !y) iff x or y are setcc if (N1C && N1C->getValue() == 1 && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS WorkList.push_back(LHS.Val); WorkList.push_back(RHS.Val); return DAG.getNode(NewOpcode, VT, LHS, RHS); } } // fold !(x or y) -> (!x and !y) iff x or y are constants if (N1C && N1C->isAllOnesValue() && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isa(RHS) || isa(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS WorkList.push_back(LHS.Val); WorkList.push_back(RHS.Val); return DAG.getNode(NewOpcode, VT, LHS, RHS); } } // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) if (N1C && N0.getOpcode() == ISD::XOR) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), DAG.getConstant(N1C->getValue()^N00C->getValue(), VT)); if (N01C) return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), DAG.getConstant(N1C->getValue()^N01C->getValue(), VT)); } // fold (xor x, x) -> 0 if (N0 == N1) return DAG.getConstant(0, VT); return SDOperand(); } SDOperand DAGCombiner::visitSHL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (shl c1, c2) -> c1<getValue() << N1C->getValue(), VT); // fold (shl 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (shl x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (shl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (shl x, c) is known to be zero, return 0 if (N1C && MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits),TLI)) return DAG.getConstant(0, VT); // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or // (srl (and x, -1 << c1), c1-c2) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << c1, VT)); if (c2 > c1) return DAG.getNode(ISD::SHL, VT, Mask, DAG.getConstant(c2-c1, N1.getValueType())); else return DAG.getNode(ISD::SRL, VT, Mask, DAG.getConstant(c1-c2, N1.getValueType())); } // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << N1C->getValue(), VT)); return SDOperand(); } SDOperand DAGCombiner::visitSRA(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (sra c1, c2) -> c1>>c2 if (N0C && N1C) return DAG.getConstant(N0C->getSignExtended() >> N1C->getValue(), VT); // fold (sra 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (sra -1, x) -> -1 if (N0C && N0C->isAllOnesValue()) return N0; // fold (sra x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (sra x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // If the sign bit is known to be zero, switch this to a SRL. if (N1C && MaskedValueIsZero(N0, (1ULL << (OpSizeInBits-1)), TLI)) return DAG.getNode(ISD::SRL, VT, N0, N1); return SDOperand(); } SDOperand DAGCombiner::visitSRL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (srl c1, c2) -> c1 >>u c2 if (N0C && N1C) return DAG.getConstant(N0C->getValue() >> N1C->getValue(), VT); // fold (srl 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (srl x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (srl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (srl x, c) is known to be zero, return 0 if (N1C && MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits),TLI)) return DAG.getConstant(0, VT); // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } return SDOperand(); } SDOperand DAGCombiner::visitCTLZ(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); // fold (ctlz c1) -> c2 if (N0C) return DAG.getConstant(CountLeadingZeros_64(N0C->getValue()), N0.getValueType()); return SDOperand(); } SDOperand DAGCombiner::visitCTTZ(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); // fold (cttz c1) -> c2 if (N0C) return DAG.getConstant(CountTrailingZeros_64(N0C->getValue()), N0.getValueType()); return SDOperand(); } SDOperand DAGCombiner::visitCTPOP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); // fold (ctpop c1) -> c2 if (N0C) return DAG.getConstant(CountPopulation_64(N0C->getValue()), N0.getValueType()); return SDOperand(); } SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (sext c1) -> c1 if (N0C) return DAG.getConstant(N0C->getSignExtended(), VT); // fold (sext (sext x)) -> (sext x) if (N0.getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (zext c1) -> c1 if (N0C) return DAG.getConstant(N0C->getValue(), VT); // fold (zext (zext x)) -> (zext x) if (N0.getOpcode() == ISD::ZERO_EXTEND) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LHS, RHS, CC; ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = cast(N1)->getVT(); // fold (sext_in_reg c1) -> c1 if (N0C) { SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT); return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate); } // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N0.getOperand(1))->getVT() < EVT) { return N0; } // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && EVT < cast(N0.getOperand(1))->getVT()) { return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); } // fold (sext_in_reg (assert_sext x)) -> (assert_sext x) if (N0.getOpcode() == ISD::AssertSext && cast(N0.getOperand(1))->getVT() <= EVT) { return N0; } // fold (sext_in_reg (sextload x)) -> (sextload x) if (N0.getOpcode() == ISD::SEXTLOAD && cast(N0.getOperand(3))->getVT() <= EVT) { return N0; } // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1 // FIXME: teach isSetCCEquivalent about 0, -1 and then use it here if (N0.getOpcode() == ISD::SETCC && TLI.getSetCCResultContents() == TargetLowering::ZeroOrNegativeOneSetCCResult) return N0; // FIXME: this code is currently just ported over from SelectionDAG.cpp // we probably actually want to handle this in two pieces. Rather than // checking all the top bits for zero, just check the sign bit here and turn // it into a zero extend inreg (AND with constant). // then, let the code for AND figure out if the mask is superfluous rather // than doing so here. if (N0.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t Mask = cast(N0.getOperand(1))->getValue(); unsigned NumBits = MVT::getSizeInBits(EVT); if ((Mask & (~0ULL << (NumBits-1))) == 0) return N0; } return SDOperand(); } SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // noop truncate if (N0.getValueType() == N->getValueType(0)) return N0; // fold (truncate c1) -> c1 if (N0C) return DAG.getConstant(N0C->getValue(), VT); // fold (truncate (truncate x)) -> (truncate x) if (N0.getOpcode() == ISD::TRUNCATE) return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); // fold (truncate (ext x)) -> (ext x) or (truncate x) or x if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){ if (N0.getValueType() < VT) // if the source is smaller than the dest, we still need an extend return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); else if (N0.getValueType() > VT) // if the source is larger than the dest, than we just need the truncate return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); else // if the source and dest are the same type, we can drop both the extend // and the truncate return N0.getOperand(0); } return SDOperand(); } SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); // fold (sint_to_fp c1) -> c1fp if (N0C) return DAG.getConstantFP(N0C->getSignExtended(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); // fold (uint_to_fp c1) -> c1fp if (N0C) return DAG.getConstantFP(N0C->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) { ConstantFPSDNode *N0CFP = dyn_cast(N->getOperand(0)); // fold (fp_to_sint c1fp) -> c1 if (N0CFP) return DAG.getConstant((int64_t)N0CFP->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) { ConstantFPSDNode *N0CFP = dyn_cast(N->getOperand(0)); // fold (fp_to_uint c1fp) -> c1 if (N0CFP) return DAG.getConstant((uint64_t)N0CFP->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) { ConstantFPSDNode *N0CFP = dyn_cast(N->getOperand(0)); // fold (fp_round c1fp) -> c1fp if (N0CFP) return DAG.getConstantFP(N0CFP->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = cast(N->getOperand(1))->getVT(); ConstantFPSDNode *N0CFP = dyn_cast(N0); // fold (fp_round_inreg c1fp) -> c1fp if (N0CFP) { SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT); return DAG.getNode(ISD::FP_EXTEND, VT, Round); } return SDOperand(); } SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) { ConstantFPSDNode *N0CFP = dyn_cast(N->getOperand(0)); // fold (fp_extend c1fp) -> c1fp if (N0CFP) return DAG.getConstantFP(N0CFP->getValue(), N->getValueType(0)); return SDOperand(); } SDOperand DAGCombiner::visitFNEG(SDNode *N) { ConstantFPSDNode *N0CFP = dyn_cast(N->getOperand(0)); // fold (neg c1) -> -c1 if (N0CFP) return DAG.getConstantFP(-N0CFP->getValue(), N->getValueType(0)); // fold (neg (sub x, y)) -> (sub y, x) if (N->getOperand(0).getOpcode() == ISD::SUB) return DAG.getNode(ISD::SUB, N->getValueType(0), N->getOperand(1), N->getOperand(0)); // fold (neg (neg x)) -> x if (N->getOperand(0).getOpcode() == ISD::FNEG) return N->getOperand(0).getOperand(0); return SDOperand(); } SDOperand DAGCombiner::visitFABS(SDNode *N) { ConstantFPSDNode *N0CFP = dyn_cast(N->getOperand(0)); // fold (fabs c1) -> fabs(c1) if (N0CFP) return DAG.getConstantFP(fabs(N0CFP->getValue()), N->getValueType(0)); // fold (fabs (fabs x)) -> (fabs x) if (N->getOperand(0).getOpcode() == ISD::FABS) return N->getOperand(0); // fold (fabs (fneg x)) -> (fabs x) if (N->getOperand(0).getOpcode() == ISD::FNEG) return DAG.getNode(ISD::FABS, N->getValueType(0), N->getOperand(0).getOperand(0)); return SDOperand(); } // SelectionDAG::Combine - This is the entry point for the file. // void SelectionDAG::Combine(bool RunningAfterLegalize) { /// run - This is the main entry point to this class. /// DAGCombiner(*this).Run(RunningAfterLegalize); }