//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeGenInstruction class. // //===----------------------------------------------------------------------===// #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // CGIOperandList Implementation //===----------------------------------------------------------------------===// CGIOperandList::CGIOperandList(Record *R) : TheDef(R) { isPredicable = false; hasOptionalDef = false; isVariadic = false; DagInit *OutDI = R->getValueAsDag("OutOperandList"); if (DefInit *Init = dyn_cast(OutDI->getOperator())) { if (Init->getDef()->getName() != "outs") PrintFatalError(R->getName() + ": invalid def name for output list: use 'outs'"); } else PrintFatalError(R->getName() + ": invalid output list: use 'outs'"); NumDefs = OutDI->getNumArgs(); DagInit *InDI = R->getValueAsDag("InOperandList"); if (DefInit *Init = dyn_cast(InDI->getOperator())) { if (Init->getDef()->getName() != "ins") PrintFatalError(R->getName() + ": invalid def name for input list: use 'ins'"); } else PrintFatalError(R->getName() + ": invalid input list: use 'ins'"); unsigned MIOperandNo = 0; std::set OperandNames; for (unsigned i = 0, e = InDI->getNumArgs()+OutDI->getNumArgs(); i != e; ++i){ Init *ArgInit; std::string ArgName; if (i < NumDefs) { ArgInit = OutDI->getArg(i); ArgName = OutDI->getArgName(i); } else { ArgInit = InDI->getArg(i-NumDefs); ArgName = InDI->getArgName(i-NumDefs); } DefInit *Arg = dyn_cast(ArgInit); if (!Arg) PrintFatalError("Illegal operand for the '" + R->getName() + "' instruction!"); Record *Rec = Arg->getDef(); std::string PrintMethod = "printOperand"; std::string EncoderMethod; std::string OperandType = "OPERAND_UNKNOWN"; unsigned NumOps = 1; DagInit *MIOpInfo = nullptr; if (Rec->isSubClassOf("RegisterOperand")) { PrintMethod = Rec->getValueAsString("PrintMethod"); } else if (Rec->isSubClassOf("Operand")) { PrintMethod = Rec->getValueAsString("PrintMethod"); OperandType = Rec->getValueAsString("OperandType"); // If there is an explicit encoder method, use it. EncoderMethod = Rec->getValueAsString("EncoderMethod"); MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); // Verify that MIOpInfo has an 'ops' root value. if (!isa(MIOpInfo->getOperator()) || cast(MIOpInfo->getOperator())->getDef()->getName() != "ops") PrintFatalError("Bad value for MIOperandInfo in operand '" + Rec->getName() + "'\n"); // If we have MIOpInfo, then we have #operands equal to number of entries // in MIOperandInfo. if (unsigned NumArgs = MIOpInfo->getNumArgs()) NumOps = NumArgs; if (Rec->isSubClassOf("PredicateOp")) isPredicable = true; else if (Rec->isSubClassOf("OptionalDefOperand")) hasOptionalDef = true; } else if (Rec->getName() == "variable_ops") { isVariadic = true; continue; } else if (Rec->isSubClassOf("RegisterClass")) { OperandType = "OPERAND_REGISTER"; } else if (!Rec->isSubClassOf("PointerLikeRegClass") && !Rec->isSubClassOf("unknown_class")) PrintFatalError("Unknown operand class '" + Rec->getName() + "' in '" + R->getName() + "' instruction!"); // Check that the operand has a name and that it's unique. if (ArgName.empty()) PrintFatalError("In instruction '" + R->getName() + "', operand #" + Twine(i) + " has no name!"); if (!OperandNames.insert(ArgName).second) PrintFatalError("In instruction '" + R->getName() + "', operand #" + Twine(i) + " has the same name as a previous operand!"); OperandList.push_back(OperandInfo(Rec, ArgName, PrintMethod, EncoderMethod, OperandType, MIOperandNo, NumOps, MIOpInfo)); MIOperandNo += NumOps; } // Make sure the constraints list for each operand is large enough to hold // constraint info, even if none is present. for (unsigned i = 0, e = OperandList.size(); i != e; ++i) OperandList[i].Constraints.resize(OperandList[i].MINumOperands); } /// getOperandNamed - Return the index of the operand with the specified /// non-empty name. If the instruction does not have an operand with the /// specified name, abort. /// unsigned CGIOperandList::getOperandNamed(StringRef Name) const { unsigned OpIdx; if (hasOperandNamed(Name, OpIdx)) return OpIdx; PrintFatalError("'" + TheDef->getName() + "' does not have an operand named '$" + Name + "'!"); } /// hasOperandNamed - Query whether the instruction has an operand of the /// given name. If so, return true and set OpIdx to the index of the /// operand. Otherwise, return false. bool CGIOperandList::hasOperandNamed(StringRef Name, unsigned &OpIdx) const { assert(!Name.empty() && "Cannot search for operand with no name!"); for (unsigned i = 0, e = OperandList.size(); i != e; ++i) if (OperandList[i].Name == Name) { OpIdx = i; return true; } return false; } std::pair CGIOperandList::ParseOperandName(const std::string &Op, bool AllowWholeOp) { if (Op.empty() || Op[0] != '$') PrintFatalError(TheDef->getName() + ": Illegal operand name: '" + Op + "'"); std::string OpName = Op.substr(1); std::string SubOpName; // Check to see if this is $foo.bar. std::string::size_type DotIdx = OpName.find_first_of("."); if (DotIdx != std::string::npos) { SubOpName = OpName.substr(DotIdx+1); if (SubOpName.empty()) PrintFatalError(TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'"); OpName = OpName.substr(0, DotIdx); } unsigned OpIdx = getOperandNamed(OpName); if (SubOpName.empty()) { // If no suboperand name was specified: // If one was needed, throw. if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp && SubOpName.empty()) PrintFatalError(TheDef->getName() + ": Illegal to refer to" " whole operand part of complex operand '" + Op + "'"); // Otherwise, return the operand. return std::make_pair(OpIdx, 0U); } // Find the suboperand number involved. DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo; if (!MIOpInfo) PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'"); // Find the operand with the right name. for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i) if (MIOpInfo->getArgName(i) == SubOpName) return std::make_pair(OpIdx, i); // Otherwise, didn't find it! PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'"); return std::make_pair(0U, 0U); } static void ParseConstraint(const std::string &CStr, CGIOperandList &Ops) { // EARLY_CLOBBER: @early $reg std::string::size_type wpos = CStr.find_first_of(" \t"); std::string::size_type start = CStr.find_first_not_of(" \t"); std::string Tok = CStr.substr(start, wpos - start); if (Tok == "@earlyclobber") { std::string Name = CStr.substr(wpos+1); wpos = Name.find_first_not_of(" \t"); if (wpos == std::string::npos) PrintFatalError("Illegal format for @earlyclobber constraint: '" + CStr + "'"); Name = Name.substr(wpos); std::pair Op = Ops.ParseOperandName(Name, false); // Build the string for the operand if (!Ops[Op.first].Constraints[Op.second].isNone()) PrintFatalError("Operand '" + Name + "' cannot have multiple constraints!"); Ops[Op.first].Constraints[Op.second] = CGIOperandList::ConstraintInfo::getEarlyClobber(); return; } // Only other constraint is "TIED_TO" for now. std::string::size_type pos = CStr.find_first_of('='); assert(pos != std::string::npos && "Unrecognized constraint"); start = CStr.find_first_not_of(" \t"); std::string Name = CStr.substr(start, pos - start); // TIED_TO: $src1 = $dst wpos = Name.find_first_of(" \t"); if (wpos == std::string::npos) PrintFatalError("Illegal format for tied-to constraint: '" + CStr + "'"); std::string DestOpName = Name.substr(0, wpos); std::pair DestOp = Ops.ParseOperandName(DestOpName, false); Name = CStr.substr(pos+1); wpos = Name.find_first_not_of(" \t"); if (wpos == std::string::npos) PrintFatalError("Illegal format for tied-to constraint: '" + CStr + "'"); std::string SrcOpName = Name.substr(wpos); std::pair SrcOp = Ops.ParseOperandName(SrcOpName, false); if (SrcOp > DestOp) { std::swap(SrcOp, DestOp); std::swap(SrcOpName, DestOpName); } unsigned FlatOpNo = Ops.getFlattenedOperandNumber(SrcOp); if (!Ops[DestOp.first].Constraints[DestOp.second].isNone()) PrintFatalError("Operand '" + DestOpName + "' cannot have multiple constraints!"); Ops[DestOp.first].Constraints[DestOp.second] = CGIOperandList::ConstraintInfo::getTied(FlatOpNo); } static void ParseConstraints(const std::string &CStr, CGIOperandList &Ops) { if (CStr.empty()) return; const std::string delims(","); std::string::size_type bidx, eidx; bidx = CStr.find_first_not_of(delims); while (bidx != std::string::npos) { eidx = CStr.find_first_of(delims, bidx); if (eidx == std::string::npos) eidx = CStr.length(); ParseConstraint(CStr.substr(bidx, eidx - bidx), Ops); bidx = CStr.find_first_not_of(delims, eidx); } } void CGIOperandList::ProcessDisableEncoding(std::string DisableEncoding) { while (1) { std::pair P = getToken(DisableEncoding, " ,\t"); std::string OpName = P.first; DisableEncoding = P.second; if (OpName.empty()) break; // Figure out which operand this is. std::pair Op = ParseOperandName(OpName, false); // Mark the operand as not-to-be encoded. if (Op.second >= OperandList[Op.first].DoNotEncode.size()) OperandList[Op.first].DoNotEncode.resize(Op.second+1); OperandList[Op.first].DoNotEncode[Op.second] = true; } } //===----------------------------------------------------------------------===// // CodeGenInstruction Implementation //===----------------------------------------------------------------------===// CodeGenInstruction::CodeGenInstruction(Record *R) : TheDef(R), Operands(R), InferredFrom(nullptr) { Namespace = R->getValueAsString("Namespace"); AsmString = R->getValueAsString("AsmString"); isReturn = R->getValueAsBit("isReturn"); isBranch = R->getValueAsBit("isBranch"); isIndirectBranch = R->getValueAsBit("isIndirectBranch"); isCompare = R->getValueAsBit("isCompare"); isMoveImm = R->getValueAsBit("isMoveImm"); isBitcast = R->getValueAsBit("isBitcast"); isSelect = R->getValueAsBit("isSelect"); isBarrier = R->getValueAsBit("isBarrier"); isCall = R->getValueAsBit("isCall"); canFoldAsLoad = R->getValueAsBit("canFoldAsLoad"); isPredicable = Operands.isPredicable || R->getValueAsBit("isPredicable"); isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); isCommutable = R->getValueAsBit("isCommutable"); isTerminator = R->getValueAsBit("isTerminator"); isReMaterializable = R->getValueAsBit("isReMaterializable"); hasDelaySlot = R->getValueAsBit("hasDelaySlot"); usesCustomInserter = R->getValueAsBit("usesCustomInserter"); hasPostISelHook = R->getValueAsBit("hasPostISelHook"); hasCtrlDep = R->getValueAsBit("hasCtrlDep"); isNotDuplicable = R->getValueAsBit("isNotDuplicable"); isRegSequence = R->getValueAsBit("isRegSequence"); isExtractSubreg = R->getValueAsBit("isExtractSubreg"); isInsertSubreg = R->getValueAsBit("isInsertSubreg"); bool Unset; mayLoad = R->getValueAsBitOrUnset("mayLoad", Unset); mayLoad_Unset = Unset; mayStore = R->getValueAsBitOrUnset("mayStore", Unset); mayStore_Unset = Unset; hasSideEffects = R->getValueAsBitOrUnset("hasSideEffects", Unset); hasSideEffects_Unset = Unset; neverHasSideEffects = R->getValueAsBit("neverHasSideEffects"); isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove"); hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq"); hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq"); isCodeGenOnly = R->getValueAsBit("isCodeGenOnly"); isPseudo = R->getValueAsBit("isPseudo"); ImplicitDefs = R->getValueAsListOfDefs("Defs"); ImplicitUses = R->getValueAsListOfDefs("Uses"); if (neverHasSideEffects + hasSideEffects > 1) PrintFatalError(R->getName() + ": multiple conflicting side-effect flags set!"); // Parse Constraints. ParseConstraints(R->getValueAsString("Constraints"), Operands); // Parse the DisableEncoding field. Operands.ProcessDisableEncoding(R->getValueAsString("DisableEncoding")); // First check for a ComplexDeprecationPredicate. if (R->getValue("ComplexDeprecationPredicate")) { HasComplexDeprecationPredicate = true; DeprecatedReason = R->getValueAsString("ComplexDeprecationPredicate"); } else if (RecordVal *Dep = R->getValue("DeprecatedFeatureMask")) { // Check if we have a Subtarget feature mask. HasComplexDeprecationPredicate = false; DeprecatedReason = Dep->getValue()->getAsString(); } else { // This instruction isn't deprecated. HasComplexDeprecationPredicate = false; DeprecatedReason = ""; } } /// HasOneImplicitDefWithKnownVT - If the instruction has at least one /// implicit def and it has a known VT, return the VT, otherwise return /// MVT::Other. MVT::SimpleValueType CodeGenInstruction:: HasOneImplicitDefWithKnownVT(const CodeGenTarget &TargetInfo) const { if (ImplicitDefs.empty()) return MVT::Other; // Check to see if the first implicit def has a resolvable type. Record *FirstImplicitDef = ImplicitDefs[0]; assert(FirstImplicitDef->isSubClassOf("Register")); const std::vector &RegVTs = TargetInfo.getRegisterVTs(FirstImplicitDef); if (RegVTs.size() == 1) return RegVTs[0]; return MVT::Other; } /// FlattenAsmStringVariants - Flatten the specified AsmString to only /// include text from the specified variant, returning the new string. std::string CodeGenInstruction:: FlattenAsmStringVariants(StringRef Cur, unsigned Variant) { std::string Res = ""; for (;;) { // Find the start of the next variant string. size_t VariantsStart = 0; for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart) if (Cur[VariantsStart] == '{' && (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' && Cur[VariantsStart-1] != '\\'))) break; // Add the prefix to the result. Res += Cur.slice(0, VariantsStart); if (VariantsStart == Cur.size()) break; ++VariantsStart; // Skip the '{'. // Scan to the end of the variants string. size_t VariantsEnd = VariantsStart; unsigned NestedBraces = 1; for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) { if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') { if (--NestedBraces == 0) break; } else if (Cur[VariantsEnd] == '{') ++NestedBraces; } // Select the Nth variant (or empty). StringRef Selection = Cur.slice(VariantsStart, VariantsEnd); for (unsigned i = 0; i != Variant; ++i) Selection = Selection.split('|').second; Res += Selection.split('|').first; assert(VariantsEnd != Cur.size() && "Unterminated variants in assembly string!"); Cur = Cur.substr(VariantsEnd + 1); } return Res; } //===----------------------------------------------------------------------===// /// CodeGenInstAlias Implementation //===----------------------------------------------------------------------===// /// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias /// constructor. It checks if an argument in an InstAlias pattern matches /// the corresponding operand of the instruction. It returns true on a /// successful match, with ResOp set to the result operand to be used. bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo, Record *InstOpRec, bool hasSubOps, ArrayRef Loc, CodeGenTarget &T, ResultOperand &ResOp) { Init *Arg = Result->getArg(AliasOpNo); DefInit *ADI = dyn_cast(Arg); Record *ResultRecord = ADI ? ADI->getDef() : nullptr; if (ADI && ADI->getDef() == InstOpRec) { // If the operand is a record, it must have a name, and the record type // must match up with the instruction's argument type. if (Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) + " must have a name!"); ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord); return true; } // For register operands, the source register class can be a subclass // of the instruction register class, not just an exact match. if (InstOpRec->isSubClassOf("RegisterOperand")) InstOpRec = InstOpRec->getValueAsDef("RegClass"); if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand")) ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit(); if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) { if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .hasSubClass(&T.getRegisterClass(ADI->getDef()))) return false; ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord); return true; } // Handle explicit registers. if (ADI && ADI->getDef()->isSubClassOf("Register")) { if (InstOpRec->isSubClassOf("OptionalDefOperand")) { DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo"); // The operand info should only have a single (register) entry. We // want the register class of it. InstOpRec = cast(DI->getArg(0))->getDef(); } if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .contains(T.getRegBank().getReg(ADI->getDef()))) PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() + " is not a member of the " + InstOpRec->getName() + " register class!"); if (!Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result fixed register argument must " "not have a name!"); ResOp = ResultOperand(ResultRecord); return true; } // Handle "zero_reg" for optional def operands. if (ADI && ADI->getDef()->getName() == "zero_reg") { // Check if this is an optional def. // Tied operands where the source is a sub-operand of a complex operand // need to represent both operands in the alias destination instruction. // Allow zero_reg for the tied portion. This can and should go away once // the MC representation of things doesn't use tied operands at all. //if (!InstOpRec->isSubClassOf("OptionalDefOperand")) // throw TGError(Loc, "reg0 used for result that is not an " // "OptionalDefOperand!"); ResOp = ResultOperand(static_cast(nullptr)); return true; } // Literal integers. if (IntInit *II = dyn_cast(Arg)) { if (hasSubOps || !InstOpRec->isSubClassOf("Operand")) return false; // Integer arguments can't have names. if (!Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) + " must not have a name!"); ResOp = ResultOperand(II->getValue()); return true; } // Bits (also used for 0bxx literals) if (BitsInit *BI = dyn_cast(Arg)) { if (hasSubOps || !InstOpRec->isSubClassOf("Operand")) return false; if (!BI->isComplete()) return false; // Convert the bits init to an integer and use that for the result. IntInit *II = dyn_cast_or_null(BI->convertInitializerTo(IntRecTy::get())); if (!II) return false; ResOp = ResultOperand(II->getValue()); return true; } // If both are Operands with the same MVT, allow the conversion. It's // up to the user to make sure the values are appropriate, just like // for isel Pat's. if (InstOpRec->isSubClassOf("Operand") && ADI->getDef()->isSubClassOf("Operand")) { // FIXME: What other attributes should we check here? Identical // MIOperandInfo perhaps? if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type")) return false; ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef()); return true; } return false; } unsigned CodeGenInstAlias::ResultOperand::getMINumOperands() const { if (!isRecord()) return 1; Record *Rec = getRecord(); if (!Rec->isSubClassOf("Operand")) return 1; DagInit *MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); if (MIOpInfo->getNumArgs() == 0) { // Unspecified, so it defaults to 1 return 1; } return MIOpInfo->getNumArgs(); } CodeGenInstAlias::CodeGenInstAlias(Record *R, unsigned Variant, CodeGenTarget &T) : TheDef(R) { Result = R->getValueAsDag("ResultInst"); AsmString = R->getValueAsString("AsmString"); AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, Variant); // Verify that the root of the result is an instruction. DefInit *DI = dyn_cast(Result->getOperator()); if (!DI || !DI->getDef()->isSubClassOf("Instruction")) PrintFatalError(R->getLoc(), "result of inst alias should be an instruction"); ResultInst = &T.getInstruction(DI->getDef()); // NameClass - If argument names are repeated, we need to verify they have // the same class. StringMap NameClass; for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) { DefInit *ADI = dyn_cast(Result->getArg(i)); if (!ADI || Result->getArgName(i).empty()) continue; // Verify we don't have something like: (someinst GR16:$foo, GR32:$foo) // $foo can exist multiple times in the result list, but it must have the // same type. Record *&Entry = NameClass[Result->getArgName(i)]; if (Entry && Entry != ADI->getDef()) PrintFatalError(R->getLoc(), "result value $" + Result->getArgName(i) + " is both " + Entry->getName() + " and " + ADI->getDef()->getName() + "!"); Entry = ADI->getDef(); } // Decode and validate the arguments of the result. unsigned AliasOpNo = 0; for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { // Tied registers don't have an entry in the result dag unless they're part // of a complex operand, in which case we include them anyways, as we // don't have any other way to specify the whole operand. if (ResultInst->Operands[i].MINumOperands == 1 && ResultInst->Operands[i].getTiedRegister() != -1) continue; if (AliasOpNo >= Result->getNumArgs()) PrintFatalError(R->getLoc(), "not enough arguments for instruction!"); Record *InstOpRec = ResultInst->Operands[i].Rec; unsigned NumSubOps = ResultInst->Operands[i].MINumOperands; ResultOperand ResOp(static_cast(0)); if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1), R->getLoc(), T, ResOp)) { // If this is a simple operand, or a complex operand with a custom match // class, then we can match is verbatim. if (NumSubOps == 1 || (InstOpRec->getValue("ParserMatchClass") && InstOpRec->getValueAsDef("ParserMatchClass") ->getValueAsString("Name") != "Imm")) { ResultOperands.push_back(ResOp); ResultInstOperandIndex.push_back(std::make_pair(i, -1)); ++AliasOpNo; // Otherwise, we need to match each of the suboperands individually. } else { DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo; for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) { Record *SubRec = cast(MIOI->getArg(SubOp))->getDef(); // Take care to instantiate each of the suboperands with the correct // nomenclature: $foo.bar ResultOperands.push_back( ResultOperand(Result->getArgName(AliasOpNo) + "." + MIOI->getArgName(SubOp), SubRec)); ResultInstOperandIndex.push_back(std::make_pair(i, SubOp)); } ++AliasOpNo; } continue; } // If the argument did not match the instruction operand, and the operand // is composed of multiple suboperands, try matching the suboperands. if (NumSubOps > 1) { DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo; for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) { if (AliasOpNo >= Result->getNumArgs()) PrintFatalError(R->getLoc(), "not enough arguments for instruction!"); Record *SubRec = cast(MIOI->getArg(SubOp))->getDef(); if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false, R->getLoc(), T, ResOp)) { ResultOperands.push_back(ResOp); ResultInstOperandIndex.push_back(std::make_pair(i, SubOp)); ++AliasOpNo; } else { PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) + " does not match instruction operand class " + (SubOp == 0 ? InstOpRec->getName() :SubRec->getName())); } } continue; } PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) + " does not match instruction operand class " + InstOpRec->getName()); } if (AliasOpNo != Result->getNumArgs()) PrintFatalError(R->getLoc(), "too many operands for instruction!"); }