//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "PowerPC.h" #include "PowerPCInstrBuilder.h" #include "PowerPCInstrInfo.h" #include "PPC32TargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; namespace { /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic /// PPC Representation. /// enum TypeClass { cByte, cShort, cInt, cFP32, cFP64, cLong }; } /// getClass - Turn a primitive type into a "class" number which is based on the /// size of the type, and whether or not it is floating point. /// static inline TypeClass getClass(const Type *Ty) { switch (Ty->getTypeID()) { case Type::SByteTyID: case Type::UByteTyID: return cByte; // Byte operands are class #0 case Type::ShortTyID: case Type::UShortTyID: return cShort; // Short operands are class #1 case Type::IntTyID: case Type::UIntTyID: case Type::PointerTyID: return cInt; // Ints and pointers are class #2 case Type::FloatTyID: return cFP32; // Single float is #3 case Type::DoubleTyID: return cFP64; // Double Point is #4 case Type::LongTyID: case Type::ULongTyID: return cLong; // Longs are class #5 default: assert(0 && "Invalid type to getClass!"); return cByte; // not reached } } // getClassB - Just like getClass, but treat boolean values as ints. static inline TypeClass getClassB(const Type *Ty) { if (Ty == Type::BoolTy) return cByte; return getClass(Ty); } namespace { struct PPC32ISel : public FunctionPass, InstVisitor { PPC32TargetMachine &TM; MachineFunction *F; // The function we are compiling into MachineBasicBlock *BB; // The current MBB we are compiling int VarArgsFrameIndex; // FrameIndex for start of varargs area /// CollapsedGepOp - This struct is for recording the intermediate results /// used to calculate the base, index, and offset of a GEP instruction. struct CollapsedGepOp { ConstantSInt *offset; // the current offset into the struct/array Value *index; // the index of the array element ConstantUInt *size; // the size of each array element CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) : offset(o), index(i), size(s) {} }; /// FoldedGEP - This struct is for recording the necessary information to /// emit the GEP in a load or store instruction, used by emitGEPOperation. struct FoldedGEP { unsigned base; unsigned index; ConstantSInt *offset; FoldedGEP() : base(0), index(0), offset(0) {} FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) : base(b), index(i), offset(o) {} }; /// RlwimiRec - This struct is for recording the arguments to a PowerPC /// rlwimi instruction to be output for a particular Instruction::Or when /// we recognize the pattern for rlwimi, starting with a shift or and. struct RlwimiRec { Value *Target, *Insert; unsigned Shift, MB, ME; RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {} RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) : Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {} }; // External functions used in the Module Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn, *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn; // Mapping between Values and SSA Regs std::map RegMap; // MBBMap - Mapping between LLVM BB -> Machine BB std::map MBBMap; // AllocaMap - Mapping from fixed sized alloca instructions to the // FrameIndex for the alloca. std::map AllocaMap; // GEPMap - Mapping between basic blocks and GEP definitions std::map GEPMap; // RlwimiMap - Mapping between BinaryOperand (Or) instructions and info // needed to properly emit a rlwimi instruction in its place. std::map InsertMap; // A rlwimi instruction is the combination of at least three instructions. // Keep a vector of instructions to skip around so that we do not try to // emit instructions that were folded into a rlwimi. std::vector SkipList; // A Reg to hold the base address used for global loads and stores, and a // flag to set whether or not we need to emit it for this function. unsigned GlobalBaseReg; bool GlobalBaseInitialized; PPC32ISel(TargetMachine &tm):TM(reinterpret_cast(tm)), F(0), BB(0) {} bool doInitialization(Module &M) { // Add external functions that we may call Type *i = Type::IntTy; Type *d = Type::DoubleTy; Type *f = Type::FloatTy; Type *l = Type::LongTy; Type *ul = Type::ULongTy; Type *voidPtr = PointerType::get(Type::SByteTy); // float fmodf(float, float); fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0); // double fmod(double, double); fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0); // int __cmpdi2(long, long); __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0); // long __moddi3(long, long); __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0); // long __divdi3(long, long); __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0); // unsigned long __umoddi3(unsigned long, unsigned long); __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0); // unsigned long __udivdi3(unsigned long, unsigned long); __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0); // long __fixsfdi(float) __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0); // long __fixdfdi(double) __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0); // unsigned long __fixunssfdi(float) __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0); // unsigned long __fixunsdfdi(double) __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0); // float __floatdisf(long) __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0); // double __floatdidf(long) __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0); // void* malloc(size_t) mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0); // void free(void*) freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0); return false; } /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnFunction(Function &Fn) { // First pass over the function, lower any unknown intrinsic functions // with the IntrinsicLowering class. LowerUnknownIntrinsicFunctionCalls(Fn); F = &MachineFunction::construct(&Fn, TM); // Create all of the machine basic blocks for the function... for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); BB = &F->front(); // Make sure we re-emit a set of the global base reg if necessary GlobalBaseInitialized = false; // Copy incoming arguments off of the stack... LoadArgumentsToVirtualRegs(Fn); // Instruction select everything except PHI nodes visit(Fn); // Select the PHI nodes SelectPHINodes(); GEPMap.clear(); RegMap.clear(); MBBMap.clear(); InsertMap.clear(); AllocaMap.clear(); SkipList.clear(); F = 0; // We always build a machine code representation for the function return true; } virtual const char *getPassName() const { return "PowerPC Simple Instruction Selection"; } /// visitBasicBlock - This method is called when we are visiting a new basic /// block. This simply creates a new MachineBasicBlock to emit code into /// and adds it to the current MachineFunction. Subsequent visit* for /// instructions will be invoked for all instructions in the basic block. /// void visitBasicBlock(BasicBlock &LLVM_BB) { BB = MBBMap[&LLVM_BB]; } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. /// void LowerUnknownIntrinsicFunctionCalls(Function &F); /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function /// from the stack into virtual registers. /// void LoadArgumentsToVirtualRegs(Function &F); /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, /// not the current one. /// void SelectPHINodes(); // Visitation methods for various instructions. These methods simply emit // fixed PowerPC code for each instruction. // Control flow operators. void visitReturnInst(ReturnInst &RI); void visitBranchInst(BranchInst &BI); void visitUnreachableInst(UnreachableInst &UI) {} struct ValueRecord { Value *Val; unsigned Reg; const Type *Ty; ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} }; void doCall(const ValueRecord &Ret, MachineInstr *CallMI, const std::vector &Args, bool isVarArg); void visitCallInst(CallInst &I); void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); // Arithmetic operators void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } void visitMul(BinaryOperator &B); void visitDiv(BinaryOperator &B) { visitDivRem(B); } void visitRem(BinaryOperator &B) { visitDivRem(B); } void visitDivRem(BinaryOperator &B); // Bitwise operators void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } // Comparison operators... void visitSetCondInst(SetCondInst &I); unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI); void visitSelectInst(SelectInst &SI); // Memory Instructions void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitAllocaInst(AllocaInst &I); void visitMallocInst(MallocInst &I); void visitFreeInst(FreeInst &I); // Other operators void visitShiftInst(ShiftInst &I); void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass void visitCastInst(CastInst &I); void visitVANextInst(VANextInst &I); void visitVAArgInst(VAArgInst &I); void visitInstruction(Instruction &I) { std::cerr << "Cannot instruction select: " << I; abort(); } unsigned ExtendOrClear(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0); /// promote32 - Make a value 32-bits wide, and put it somewhere. /// void promote32(unsigned targetReg, const ValueRecord &VR); /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, GetElementPtrInst *GEPI, bool foldGEP); /// emitCastOperation - Common code shared between visitCastInst and /// constant expression cast support. /// void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned TargetReg); /// emitBitfieldInsert - return true if we were able to fold the sequence of /// instructions into a bitfield insert (rlwimi). bool emitBitfieldInsert(User *OpUser, unsigned DestReg); /// emitBitfieldExtract - return true if we were able to fold the sequence /// of instructions into a bitfield extract (rlwinm). bool emitBitfieldExtract(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, User *OpUser, unsigned DestReg); /// emitBinaryConstOperation - Used by several functions to emit simple /// arithmetic and logical operations with constants on a register rather /// than a Value. /// void emitBinaryConstOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned Op0Reg, ConstantInt *Op1, unsigned Opcode, unsigned DestReg); /// emitSimpleBinaryOperation - Implement simple binary operators for /// integral types. OperatorClass is one of: 0 for Add, 1 for Sub, /// 2 for And, 3 for Or, 4 for Xor. /// void emitSimpleBinaryOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, BinaryOperator *BO, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned TargetReg); /// emitBinaryFPOperation - This method handles emission of floating point /// Add (0), Sub (1), Mul (2), and Div (3) operations. void emitBinaryFPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned TargetReg); void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned TargetReg); void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, Value *Op1); /// doMultiplyConst - This method will multiply the value in Op0Reg by the /// value of the ContantInt *CI void doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, ConstantInt *CI); void emitDivRemOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, bool isDiv, unsigned TargetReg); /// emitSetCCOperation - Common code shared between visitSetCondInst and /// constant expression support. /// void emitSetCCOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned Opcode, unsigned TargetReg); /// emitShiftOperation - Common code shared between visitShiftInst and /// constant expression support. /// void emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op, Value *ShiftAmount, bool isLeftShift, const Type *ResultTy, ShiftInst *SI, unsigned DestReg); /// emitSelectOperation - Common code shared between visitSelectInst and the /// constant expression support. /// void emitSelectOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg); /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. Returns the /// register containing the base address. /// unsigned getGlobalBaseReg(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP); /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, Constant *C, unsigned Reg); void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned LHS, unsigned RHS); /// makeAnotherReg - This method returns the next register number we haven't /// yet used. /// /// Long values are handled somewhat specially. They are always allocated /// as pairs of 32 bit integer values. The register number returned is the /// high 32 bits of the long value, and the regNum+1 is the low 32 bits. /// unsigned makeAnotherReg(const Type *Ty) { assert(dynamic_cast(TM.getRegisterInfo()) && "Current target doesn't have PPC reg info??"); const PPC32RegisterInfo *PPCRI = static_cast(TM.getRegisterInfo()); if (Ty == Type::LongTy || Ty == Type::ULongTy) { const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy); // Create the upper part F->getSSARegMap()->createVirtualRegister(RC); // Create the lower part. return F->getSSARegMap()->createVirtualRegister(RC)-1; } // Add the mapping of regnumber => reg class to MachineFunction const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty); return F->getSSARegMap()->createVirtualRegister(RC); } /// getReg - This method turns an LLVM value into a register number. /// unsigned getReg(Value &V) { return getReg(&V); } // Allow references unsigned getReg(Value *V) { // Just append to the end of the current bb. MachineBasicBlock::iterator It = BB->end(); return getReg(V, BB, It); } unsigned getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt); /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt /// is okay to use as an immediate argument to a certain binary operation bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode, bool Shifted); /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca /// that is to be statically allocated with the initial stack frame /// adjustment. unsigned getFixedSizedAllocaFI(AllocaInst *AI); }; } /// dyn_castFixedAlloca - If the specified value is a fixed size alloca /// instruction in the entry block, return it. Otherwise, return a null /// pointer. static AllocaInst *dyn_castFixedAlloca(Value *V) { if (AllocaInst *AI = dyn_cast(V)) { BasicBlock *BB = AI->getParent(); if (isa(AI->getArraySize()) && BB ==&BB->getParent()->front()) return AI; } return 0; } /// getReg - This method turns an LLVM value into a register number. /// unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt) { if (Constant *C = dyn_cast(V)) { unsigned Reg = makeAnotherReg(V->getType()); copyConstantToRegister(MBB, IPt, C, Reg); return Reg; } else if (CastInst *CI = dyn_cast(V)) { // Do not emit noop casts at all, unless it's a double -> float cast. if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) return getReg(CI->getOperand(0), MBB, IPt); } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { unsigned Reg = makeAnotherReg(V->getType()); unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false); return Reg; } unsigned &Reg = RegMap[V]; if (Reg == 0) { Reg = makeAnotherReg(V->getType()); RegMap[V] = Reg; } return Reg; } /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt /// is okay to use as an immediate argument to a certain binary operator. /// The shifted argument determines if the immediate is suitable to be used with /// the PowerPC instructions such as addis which concatenate 16 bits of the /// immediate with 16 bits of zeroes. /// bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode, bool Shifted) { ConstantSInt *Op1Cs; ConstantUInt *Op1Cu; // For shifted immediates, any value with the low halfword cleared may be used if (Shifted) { if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0) return true; else return false; } // Treat subfic like addi for the purposes of constant validation if (Opcode == 5) Opcode = 0; // addi, subfic, compare, and non-indexed load take SIMM bool cond1 = (Opcode < 2) && ((int32_t)CI->getRawValue() <= 32767) && ((int32_t)CI->getRawValue() >= -32768); // ANDIo, ORI, and XORI take unsigned values bool cond2 = (Opcode >= 2) && (Op1Cs = dyn_cast(CI)) && (Op1Cs->getValue() >= 0) && (Op1Cs->getValue() <= 65535); // ANDIo, ORI, and XORI take UIMMs, so they can be larger bool cond3 = (Opcode >= 2) && (Op1Cu = dyn_cast(CI)) && (Op1Cu->getValue() <= 65535); if (cond1 || cond2 || cond3) return true; return false; } /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca /// that is to be statically allocated with the initial stack frame /// adjustment. unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) { // Already computed this? std::map::iterator I = AllocaMap.lower_bound(AI); if (I != AllocaMap.end() && I->first == AI) return I->second; const Type *Ty = AI->getAllocatedType(); ConstantUInt *CUI = cast(AI->getArraySize()); unsigned TySize = TM.getTargetData().getTypeSize(Ty); TySize *= CUI->getValue(); // Get total allocated size... unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); // Create a new stack object using the frame manager... int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); return FrameIdx; } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// unsigned PPC32ISel::getGlobalBaseReg(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP) { if (!GlobalBaseInitialized) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = F->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); GlobalBaseReg = makeAnotherReg(Type::IntTy); BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR); GlobalBaseInitialized = true; } return GlobalBaseReg; } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Constant *C, unsigned R) { if (isa(C)) { BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R); if (getClass(C->getType()) == cLong) BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1); return; } if (C->getType()->isIntegral()) { unsigned Class = getClassB(C->getType()); if (Class == cLong) { if (ConstantUInt *CUI = dyn_cast(C)) { uint64_t uval = CUI->getValue(); unsigned hiUVal = uval >> 32; unsigned loUVal = uval; ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal); ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal); copyConstantToRegister(MBB, IP, CUHi, R); copyConstantToRegister(MBB, IP, CULo, R+1); return; } else if (ConstantSInt *CSI = dyn_cast(C)) { int64_t sval = CSI->getValue(); int hiSVal = sval >> 32; int loSVal = sval; ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal); ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal); copyConstantToRegister(MBB, IP, CSHi, R); copyConstantToRegister(MBB, IP, CSLo, R+1); return; } else { std::cerr << "Unhandled long constant type!\n"; abort(); } } assert(Class <= cInt && "Type not handled yet!"); // Handle bool if (C->getType() == Type::BoolTy) { BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True); return; } // Handle int if (ConstantUInt *CUI = dyn_cast(C)) { unsigned uval = CUI->getValue(); if (uval < 32768) { BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval); } else { unsigned Temp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16); BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF); } return; } else if (ConstantSInt *CSI = dyn_cast(C)) { int sval = CSI->getValue(); if (sval < 32768 && sval >= -32768) { BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval); } else { unsigned Temp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16); BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF); } return; } std::cerr << "Unhandled integer constant!\n"; abort(); } else if (ConstantFP *CFP = dyn_cast(C)) { // We need to spill the constant to memory... MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(CFP); const Type *Ty = CFP->getType(); assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); // Load addr of constant to reg; constant is located at base + distance unsigned GlobalBase = makeAnotherReg(Type::IntTy); unsigned Reg1 = makeAnotherReg(Type::IntTy); unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD; // Move value at base + distance into return reg BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1) .addReg(getGlobalBaseReg(MBB, IP)).addConstantPoolIndex(CPI); BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1); } else if (isa(C)) { // Copy zero (null pointer) to the register. BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); } else if (GlobalValue *GV = dyn_cast(C)) { // GV is located at base + distance unsigned GlobalBase = makeAnotherReg(Type::IntTy); unsigned TmpReg = makeAnotherReg(GV->getType()); // Move value at base + distance into return reg BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg) .addReg(getGlobalBaseReg(MBB, IP)).addGlobalAddress(GV); if (GV->hasWeakLinkage() || GV->isExternal()) { BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg); } else { BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV); } } else { std::cerr << "Offending constant: " << *C << "\n"; assert(0 && "Type not handled yet!"); } } /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from /// the stack into virtual registers. void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) { unsigned ArgOffset = 24; unsigned GPR_remaining = 8; unsigned FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; MachineFrameInfo *MFI = F->getFrameInfo(); for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { bool ArgLive = !I->use_empty(); unsigned Reg = ArgLive ? getReg(*I) : 0; int FI; // Frame object index switch (getClassB(I->getType())) { case cByte: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (GPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI); } } break; case cShort: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (GPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI); } } break; case cInt: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (GPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); } } break; case cLong: if (ArgLive) { FI = MFI->CreateFixedObject(8, ArgOffset); if (GPR_remaining > 1) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1]) .addReg(GPR[GPR_idx+1]); } else { addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4); } } // longs require 4 additional bytes and use 2 GPRs ArgOffset += 4; if (GPR_remaining > 1) { GPR_remaining--; GPR_idx++; } break; case cFP32: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (FPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); FPR_remaining--; FPR_idx++; } else { addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI); } } break; case cFP64: if (ArgLive) { FI = MFI->CreateFixedObject(8, ArgOffset); if (FPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); FPR_remaining--; FPR_idx++; } else { addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI); } } // doubles require 4 additional bytes and use 2 GPRs of param space ArgOffset += 4; if (GPR_remaining > 0) { GPR_remaining--; GPR_idx++; } break; default: assert(0 && "Unhandled argument type!"); } ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... if (GPR_remaining > 0) { GPR_remaining--; // uses up 2 GPRs GPR_idx++; } } // If the function takes variable number of arguments, add a frame offset for // the start of the first vararg value... this is used to expand // llvm.va_start. if (Fn.getFunctionType()->isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); } /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, not /// the current one. /// void PPC32ISel::SelectPHINodes() { const TargetInstrInfo &TII = *TM.getInstrInfo(); const Function &LF = *F->getFunction(); // The LLVM function... for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { const BasicBlock *BB = I; MachineBasicBlock &MBB = *MBBMap[I]; // Loop over all of the PHI nodes in the LLVM basic block... MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); for (BasicBlock::const_iterator I = BB->begin(); PHINode *PN = const_cast(dyn_cast(I)); ++I) { // Create a new machine instr PHI node, and insert it. unsigned PHIReg = getReg(*PN); MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, PPC::PHI, PN->getNumOperands(), PHIReg); MachineInstr *LongPhiMI = 0; if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) LongPhiMI = BuildMI(MBB, PHIInsertPoint, PPC::PHI, PN->getNumOperands(), PHIReg+1); // PHIValues - Map of blocks to incoming virtual registers. We use this // so that we only initialize one incoming value for a particular block, // even if the block has multiple entries in the PHI node. // std::map PHIValues; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { MachineBasicBlock *PredMBB = 0; for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), PE = MBB.pred_end (); PI != PE; ++PI) if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { PredMBB = *PI; break; } assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); unsigned ValReg; std::map::iterator EntryIt = PHIValues.lower_bound(PredMBB); if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { // We already inserted an initialization of the register for this // predecessor. Recycle it. ValReg = EntryIt->second; } else { // Get the incoming value into a virtual register. // Value *Val = PN->getIncomingValue(i); // If this is a constant or GlobalValue, we may have to insert code // into the basic block to compute it into a virtual register. if ((isa(Val) && !isa(Val)) || isa(Val)) { // Simple constants get emitted at the end of the basic block, // before any terminator instructions. We "know" that the code to // move a constant into a register will never clobber any flags. ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); } else { // Because we don't want to clobber any values which might be in // physical registers with the computation of this constant (which // might be arbitrarily complex if it is a constant expression), // just insert the computation at the top of the basic block. MachineBasicBlock::iterator PI = PredMBB->begin(); // Skip over any PHI nodes though! while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI) ++PI; ValReg = getReg(Val, PredMBB, PI); } // Remember that we inserted a value for this PHI for this predecessor PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); } PhiMI->addRegOperand(ValReg); PhiMI->addMachineBasicBlockOperand(PredMBB); if (LongPhiMI) { LongPhiMI->addRegOperand(ValReg+1); LongPhiMI->addMachineBasicBlockOperand(PredMBB); } } // Now that we emitted all of the incoming values for the PHI node, make // sure to reposition the InsertPoint after the PHI that we just added. // This is needed because we might have inserted a constant into this // block, right after the PHI's which is before the old insert point! PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; ++PHIInsertPoint; } } } // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold // it into the conditional branch or select instruction which is the only user // of the cc instruction. This is the case if the conditional branch is the // only user of the setcc, and if the setcc is in the same basic block as the // conditional branch. // static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { if (SetCondInst *SCI = dyn_cast(V)) if (SCI->hasOneUse()) { Instruction *User = cast(SCI->use_back()); if ((isa(User) || (isa(User) && User->getOperand(0) == V)) && SCI->getParent() == User->getParent()) return SCI; } return 0; } // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into // the load or store instruction that is the only user of the GEP. // static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) { if (GetElementPtrInst *GEPI = dyn_cast(V)) { bool AllUsesAreMem = true; for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); I != E; ++I) { Instruction *User = cast(*I); // If the GEP is the target of a store, but not the source, then we are ok // to fold it. if (isa(User) && GEPI->getParent() == User->getParent() && User->getOperand(0) != GEPI && User->getOperand(1) == GEPI) continue; // If the GEP is the source of a load, then we're always ok to fold it if (isa(User) && GEPI->getParent() == User->getParent() && User->getOperand(0) == GEPI) continue; // if we got to this point, than the instruction was not a load or store // that we are capable of folding the GEP into. AllUsesAreMem = false; break; } if (AllUsesAreMem) return GEPI; } return 0; } // Return a fixed numbering for setcc instructions which does not depend on the // order of the opcodes. // static unsigned getSetCCNumber(unsigned Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc instruction!"); case Instruction::SetEQ: return 0; case Instruction::SetNE: return 1; case Instruction::SetLT: return 2; case Instruction::SetGE: return 3; case Instruction::SetGT: return 4; case Instruction::SetLE: return 5; } } static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc instruction!"); case Instruction::SetEQ: return PPC::BEQ; case Instruction::SetNE: return PPC::BNE; case Instruction::SetLT: return PPC::BLT; case Instruction::SetGE: return PPC::BGE; case Instruction::SetGT: return PPC::BGT; case Instruction::SetLE: return PPC::BLE; } } /// emitUCOM - emits an unordered FP compare. void PPC32ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned LHS, unsigned RHS) { BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS); } unsigned PPC32ISel::ExtendOrClear(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0) { const Type *CompTy = Op0->getType(); unsigned Reg = getReg(Op0, MBB, IP); unsigned Class = getClassB(CompTy); // Since we know that boolean values will be either zero or one, we don't // have to extend or clear them. if (CompTy == Type::BoolTy) return Reg; // Before we do a comparison or SetCC, we have to make sure that we truncate // the source registers appropriately. if (Class == cByte) { unsigned TmpReg = makeAnotherReg(CompTy); if (CompTy->isSigned()) BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0) .addImm(24).addImm(31); Reg = TmpReg; } else if (Class == cShort) { unsigned TmpReg = makeAnotherReg(CompTy); if (CompTy->isSigned()) BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0) .addImm(16).addImm(31); Reg = TmpReg; } return Reg; } /// EmitComparison - emits a comparison of the two operands, returning the /// extended setcc code to use. The result is in CR0. /// unsigned PPC32ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, MachineBasicBlock *MBB, MachineBasicBlock::iterator IP) { // The arguments are already supposed to be of the same type. const Type *CompTy = Op0->getType(); unsigned Class = getClassB(CompTy); unsigned Op0r = ExtendOrClear(MBB, IP, Op0); // Use crand for lt, gt and crandc for le, ge unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC; // ? cr1[lt] : cr1[gt] unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5; // ? cr0[lt] : cr0[gt] unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1; unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW; unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI; // Special case handling of: cmp R, i if (ConstantInt *CI = dyn_cast(Op1)) { if (Class == cByte || Class == cShort || Class == cInt) { unsigned Op1v = CI->getRawValue() & 0xFFFF; unsigned OpClass = (CompTy->isSigned()) ? 0 : 2; // Treat compare like ADDI for the purposes of immediate suitability if (canUseAsImmediateForOpcode(CI, OpClass, false)) { BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v); } else { unsigned Op1r = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); } return OpNum; } else { assert(Class == cLong && "Unknown integer class!"); unsigned LowCst = CI->getRawValue(); unsigned HiCst = CI->getRawValue() >> 32; if (OpNum < 2) { // seteq, setne unsigned LoLow = makeAnotherReg(Type::IntTy); unsigned LoTmp = makeAnotherReg(Type::IntTy); unsigned HiLow = makeAnotherReg(Type::IntTy); unsigned HiTmp = makeAnotherReg(Type::IntTy); unsigned FinalTmp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1) .addImm(LowCst & 0xFFFF); BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow) .addImm(LowCst >> 16); BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r) .addImm(HiCst & 0xFFFF); BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow) .addImm(HiCst >> 16); BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); return OpNum; } else { unsigned ConstReg = makeAnotherReg(CompTy); copyConstantToRegister(MBB, IP, CI, ConstReg); // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6) BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r) .addReg(ConstReg); BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1) .addReg(ConstReg+1); BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field); BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field) .addImm(2); return OpNum; } } } unsigned Op1r = getReg(Op1, MBB, IP); switch (Class) { default: assert(0 && "Unknown type class!"); case cByte: case cShort: case cInt: BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); break; case cFP32: case cFP64: emitUCOM(MBB, IP, Op0r, Op1r); break; case cLong: if (OpNum < 2) { // seteq, setne unsigned LoTmp = makeAnotherReg(Type::IntTy); unsigned HiTmp = makeAnotherReg(Type::IntTy); unsigned FinalTmp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r); BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1); BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); break; // Allow the sete or setne to be generated from flags set by OR } else { unsigned TmpReg1 = makeAnotherReg(Type::IntTy); unsigned TmpReg2 = makeAnotherReg(Type::IntTy); // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6) BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1); BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field); BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field) .addImm(2); return OpNum; } } return OpNum; } /// visitSetCondInst - emit code to calculate the condition via /// EmitComparison(), and possibly store a 0 or 1 to a register as a result /// void PPC32ISel::visitSetCondInst(SetCondInst &I) { if (canFoldSetCCIntoBranchOrSelect(&I)) return; MachineBasicBlock::iterator MI = BB->end(); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const Type *Ty = Op0->getType(); unsigned Class = getClassB(Ty); unsigned Opcode = I.getOpcode(); unsigned OpNum = getSetCCNumber(Opcode); unsigned DestReg = getReg(I); // If the comparison type is byte, short, or int, then we can emit a // branchless version of the SetCC that puts 0 (false) or 1 (true) in the // destination register. if (Class <= cInt) { ConstantInt *CI = dyn_cast(Op1); if (CI && CI->getRawValue() == 0) { unsigned Op0Reg = ExtendOrClear(BB, MI, Op0); // comparisons against constant zero and negative one often have shorter // and/or faster sequences than the set-and-branch general case, handled // below. switch(OpNum) { case 0: { // eq0 unsigned TempReg = makeAnotherReg(Type::IntTy); BuildMI(*BB, MI, PPC::CNTLZW, 1, TempReg).addReg(Op0Reg); BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(TempReg).addImm(27) .addImm(5).addImm(31); break; } case 1: { // ne0 unsigned TempReg = makeAnotherReg(Type::IntTy); BuildMI(*BB, MI, PPC::ADDIC, 2, TempReg).addReg(Op0Reg).addSImm(-1); BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(TempReg).addReg(Op0Reg); break; } case 2: { // lt0, always false if unsigned if (Ty->isSigned()) BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(1) .addImm(31).addImm(31); else BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(0); break; } case 3: { // ge0, always true if unsigned if (Ty->isSigned()) { unsigned TempReg = makeAnotherReg(Type::IntTy); BuildMI(*BB, MI, PPC::RLWINM, 4, TempReg).addReg(Op0Reg).addImm(1) .addImm(31).addImm(31); BuildMI(*BB, MI, PPC::XORI, 2, DestReg).addReg(TempReg).addImm(1); } else { BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(1); } break; } case 4: { // gt0, equivalent to ne0 if unsigned unsigned Temp1 = makeAnotherReg(Type::IntTy); unsigned Temp2 = makeAnotherReg(Type::IntTy); if (Ty->isSigned()) { BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg); BuildMI(*BB, MI, PPC::ANDC, 2, Temp2).addReg(Temp1).addReg(Op0Reg); BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1) .addImm(31).addImm(31); } else { BuildMI(*BB, MI, PPC::ADDIC, 2, Temp1).addReg(Op0Reg).addSImm(-1); BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(Temp1).addReg(Op0Reg); } break; } case 5: { // le0, equivalent to eq0 if unsigned unsigned Temp1 = makeAnotherReg(Type::IntTy); unsigned Temp2 = makeAnotherReg(Type::IntTy); if (Ty->isSigned()) { BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg); BuildMI(*BB, MI, PPC::ORC, 2, Temp2).addReg(Op0Reg).addReg(Temp1); BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1) .addImm(31).addImm(31); } else { BuildMI(*BB, MI, PPC::CNTLZW, 1, Temp1).addReg(Op0Reg); BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp1).addImm(27) .addImm(5).addImm(31); } break; } } // switch return; } } unsigned PPCOpcode = getPPCOpcodeForSetCCNumber(Opcode); // Create an iterator with which to insert the MBB for copying the false value // and the MBB to hold the PHI instruction for this SetCC. MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // cmpTY cr0, r1, r2 // %TrueValue = li 1 // bCC sinkMBB EmitComparison(Opcode, Op0, Op1, BB, BB->end()); unsigned TrueValue = makeAnotherReg(I.getType()); BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1); MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = li 0 // fallthrough BB = copy0MBB; unsigned FalseValue = makeAnotherReg(I.getType()); BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0); // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); } void PPC32ISel::visitSelectInst(SelectInst &SI) { unsigned DestReg = getReg(SI); MachineBasicBlock::iterator MII = BB->end(); emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), SI.getFalseValue(), DestReg); } /// emitSelect - Common code shared between visitSelectInst and the constant /// expression support. void PPC32ISel::emitSelectOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg) { unsigned SelectClass = getClassB(TrueVal->getType()); unsigned Opcode; // See if we can fold the setcc into the select instruction, or if we have // to get the register of the Cond value if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { // We successfully folded the setcc into the select instruction. unsigned OpNum = getSetCCNumber(SCI->getOpcode()); if (OpNum >= 2 && OpNum <= 5) { unsigned SetCondClass = getClassB(SCI->getOperand(0)->getType()); if ((SetCondClass == cFP32 || SetCondClass == cFP64) && (SelectClass == cFP32 || SelectClass == cFP64)) { unsigned CondReg = getReg(SCI->getOperand(0), MBB, IP); unsigned TrueReg = getReg(TrueVal, MBB, IP); unsigned FalseReg = getReg(FalseVal, MBB, IP); // if the comparison of the floating point value used to for the select // is against 0, then we can emit an fsel without subtraction. ConstantFP *Op1C = dyn_cast(SCI->getOperand(1)); if (Op1C && (Op1C->isExactlyValue(-0.0) || Op1C->isExactlyValue(0.0))) { switch(OpNum) { case 2: // LT BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg) .addReg(FalseReg).addReg(TrueReg); break; case 3: // GE == !LT BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg) .addReg(TrueReg).addReg(FalseReg); break; case 4: { // GT unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType()); BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg); BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg) .addReg(FalseReg).addReg(TrueReg); } break; case 5: { // LE == !GT unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType()); BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg); BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg) .addReg(TrueReg).addReg(FalseReg); } break; default: assert(0 && "Invalid SetCC opcode to fsel"); abort(); break; } } else { unsigned OtherCondReg = getReg(SCI->getOperand(1), MBB, IP); unsigned SelectReg = makeAnotherReg(SCI->getOperand(0)->getType()); switch(OpNum) { case 2: // LT BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg) .addReg(OtherCondReg); BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) .addReg(FalseReg).addReg(TrueReg); break; case 3: // GE == !LT BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg) .addReg(OtherCondReg); BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) .addReg(TrueReg).addReg(FalseReg); break; case 4: // GT BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg) .addReg(CondReg); BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) .addReg(FalseReg).addReg(TrueReg); break; case 5: // LE == !GT BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg) .addReg(CondReg); BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg) .addReg(TrueReg).addReg(FalseReg); break; default: assert(0 && "Invalid SetCC opcode to fsel"); abort(); break; } } return; } } OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP); Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); } else { unsigned CondReg = getReg(Cond, MBB, IP); BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0); Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE); } MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY cr0, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); unsigned TrueValue = getReg(TrueVal); BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; unsigned FalseValue = getReg(FalseVal); // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); // For a register pair representing a long value, define the top part. if (getClassB(TrueVal->getType()) == cLong) BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(FalseValue+1) .addMBB(copy0MBB).addReg(TrueValue+1).addMBB(thisMBB); } /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide /// operand, in the specified target register. /// void PPC32ISel::promote32(unsigned targetReg, const ValueRecord &VR) { bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; Value *Val = VR.Val; const Type *Ty = VR.Ty; if (Val) { if (Constant *C = dyn_cast(Val)) { Val = ConstantExpr::getCast(C, Type::IntTy); if (isa(Val)) // Could not fold Val = C; else Ty = Type::IntTy; // Folded! } // If this is a simple constant, just emit a load directly to avoid the copy if (ConstantInt *CI = dyn_cast(Val)) { copyConstantToRegister(BB, BB->end(), CI, targetReg); return; } } // Make sure we have the register number for this value... unsigned Reg = Val ? getReg(Val) : VR.Reg; switch (getClassB(Ty)) { case cByte: // Extend value into target register (8->32) if (Ty == Type::BoolTy) BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg); else if (isUnsigned) BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) .addZImm(24).addZImm(31); else BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg); break; case cShort: // Extend value into target register (16->32) if (isUnsigned) BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) .addZImm(16).addZImm(31); else BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg); break; case cInt: // Move value into target register (32->32) BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg); break; default: assert(0 && "Unpromotable operand class in promote32"); } } /// visitReturnInst - implemented with BLR /// void PPC32ISel::visitReturnInst(ReturnInst &I) { // Only do the processing if this is a non-void return if (I.getNumOperands() > 0) { Value *RetVal = I.getOperand(0); switch (getClassB(RetVal->getType())) { case cByte: // integral return values: extend or move into r3 and return case cShort: case cInt: promote32(PPC::R3, ValueRecord(RetVal)); break; case cFP32: case cFP64: { // Floats & Doubles: Return in f1 unsigned RetReg = getReg(RetVal); BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg); break; } case cLong: { unsigned RetReg = getReg(RetVal); BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg); BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1); break; } default: visitInstruction(I); } } BuildMI(BB, PPC::BLR, 1).addImm(0); } // getBlockAfter - Return the basic block which occurs lexically after the // specified one. static inline BasicBlock *getBlockAfter(BasicBlock *BB) { Function::iterator I = BB; ++I; // Get iterator to next block return I != BB->getParent()->end() ? &*I : 0; } /// visitBranchInst - Handle conditional and unconditional branches here. Note /// that since code layout is frozen at this point, that if we are trying to /// jump to a block that is the immediate successor of the current block, we can /// just make a fall-through (but we don't currently). /// void PPC32ISel::visitBranchInst(BranchInst &BI) { // Update machine-CFG edges BB->addSuccessor(MBBMap[BI.getSuccessor(0)]); if (BI.isConditional()) BB->addSuccessor(MBBMap[BI.getSuccessor(1)]); BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one if (!BI.isConditional()) { // Unconditional branch? if (BI.getSuccessor(0) != NextBB) BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); return; } // See if we can fold the setcc into the branch itself... SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); if (SCI == 0) { // Nope, cannot fold setcc into this branch. Emit a branch on a condition // computed some other way... unsigned condReg = getReg(BI.getCondition()); BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg) .addImm(0); if (BI.getSuccessor(1) == NextBB) { if (BI.getSuccessor(0) != NextBB) BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE) .addMBB(MBBMap[BI.getSuccessor(0)]) .addMBB(MBBMap[BI.getSuccessor(1)]); } else { BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ) .addMBB(MBBMap[BI.getSuccessor(1)]) .addMBB(MBBMap[BI.getSuccessor(0)]); if (BI.getSuccessor(0) != NextBB) BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); } return; } unsigned OpNum = getSetCCNumber(SCI->getOpcode()); unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); MachineBasicBlock::iterator MII = BB->end(); OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); if (BI.getSuccessor(0) != NextBB) { BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode) .addMBB(MBBMap[BI.getSuccessor(0)]) .addMBB(MBBMap[BI.getSuccessor(1)]); if (BI.getSuccessor(1) != NextBB) BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]); } else { // Change to the inverse condition... if (BI.getSuccessor(1) != NextBB) { Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode); BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode) .addMBB(MBBMap[BI.getSuccessor(1)]) .addMBB(MBBMap[BI.getSuccessor(0)]); } } } /// doCall - This emits an abstract call instruction, setting up the arguments /// and the return value as appropriate. For the actual function call itself, /// it inserts the specified CallMI instruction into the stream. /// /// FIXME: See Documentation at the following URL for "correct" behavior /// void PPC32ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, const std::vector &Args, bool isVarArg) { // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. unsigned NumBytes = 24; unsigned ArgOffset = 24; if (!Args.empty()) { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getClassB(Args[i].Ty)) { case cByte: case cShort: case cInt: NumBytes += 4; break; case cLong: NumBytes += 8; break; case cFP32: NumBytes += 4; break; case cFP64: NumBytes += 8; break; break; default: assert(0 && "Unknown class!"); } // Just to be safe, we'll always reserve the full 24 bytes of linkage area // plus 32 bytes of argument space in case any called code gets funky on us. if (NumBytes < 56) NumBytes = 56; // Adjust the stack pointer for the new arguments... // These functions are automatically eliminated by the prolog/epilog pass BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes); // Arguments go on the stack in reverse order, as specified by the ABI. // Offset to the paramater area on the stack is 24. int GPR_remaining = 8, FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; for (unsigned i = 0, e = Args.size(); i != e; ++i) { unsigned ArgReg; switch (getClassB(Args[i].Ty)) { case cByte: case cShort: // Promote arg to 32 bits wide into a temporary register... ArgReg = makeAnotherReg(Type::UIntTy); promote32(ArgReg, Args[i]); // Reg or stack? if (GPR_remaining > 0) { BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) .addReg(ArgReg); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } if (GPR_remaining <= 0 || isVarArg) { BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } break; case cInt: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (GPR_remaining > 0) { BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) .addReg(ArgReg); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } if (GPR_remaining <= 0 || isVarArg) { BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } break; case cLong: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? Note that PPC calling conventions state that long args // are passed rN = hi, rN+1 = lo, opposite of LLVM. if (GPR_remaining > 1) { BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) .addReg(ArgReg); BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1) .addReg(ArgReg+1); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use); } if (GPR_remaining <= 1 || isVarArg) { BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4) .addReg(PPC::R1); } ArgOffset += 4; // 8 byte entry, not 4. GPR_remaining -= 1; // uses up 2 GPRs GPR_idx += 1; break; case cFP32: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (FPR_remaining > 0) { BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); FPR_remaining--; FPR_idx++; // If this is a vararg function, and there are GPRs left, also // pass the float in an int. Otherwise, put it on the stack. if (isVarArg) { BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); if (GPR_remaining > 0) { BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]) .addSImm(ArgOffset).addReg(PPC::R1); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } } } else { BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } break; case cFP64: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (FPR_remaining > 0) { BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); FPR_remaining--; FPR_idx++; // For vararg functions, must pass doubles via int regs as well if (isVarArg) { BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); // Doubles can be split across reg + stack for varargs if (GPR_remaining > 0) { BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset) .addReg(PPC::R1); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } if (GPR_remaining > 1) { BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1]) .addSImm(ArgOffset+4).addReg(PPC::R1); CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use); } } } else { BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } // Doubles use 8 bytes, and 2 GPRs worth of param space ArgOffset += 4; GPR_remaining--; GPR_idx++; break; default: assert(0 && "Unknown class!"); } ArgOffset += 4; GPR_remaining--; GPR_idx++; } } else { BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes); } BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR); BB->push_back(CallMI); // These functions are automatically eliminated by the prolog/epilog pass BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes); // If there is a return value, scavenge the result from the location the call // leaves it in... // if (Ret.Ty != Type::VoidTy) { unsigned DestClass = getClassB(Ret.Ty); switch (DestClass) { case cByte: case cShort: case cInt: // Integral results are in r3 BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); break; case cFP32: // Floating-point return values live in f1 case cFP64: BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1); break; case cLong: // Long values are in r3:r4 BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4); break; default: assert(0 && "Unknown class!"); } } } /// visitCallInst - Push args on stack and do a procedure call instruction. void PPC32ISel::visitCallInst(CallInst &CI) { MachineInstr *TheCall; Function *F = CI.getCalledFunction(); if (F) { // Is it an intrinsic function call? if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here return; } // Emit a CALL instruction with PC-relative displacement. TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true); } else { // Emit an indirect call through the CTR unsigned Reg = getReg(CI.getCalledValue()); BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg); BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0) .addReg(PPC::R12); } std::vector Args; for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) Args.push_back(ValueRecord(CI.getOperand(i))); unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; bool isVarArg = F ? F->getFunctionType()->isVarArg() : true; doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg); } /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan. /// static Value *dyncastIsNan(Value *V) { if (CallInst *CI = dyn_cast(V)) if (Function *F = CI->getCalledFunction()) if (F->getIntrinsicID() == Intrinsic::isunordered) return CI->getOperand(1); return 0; } /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by /// or's whos operands are all calls to the isnan predicate. static bool isOnlyUsedByUnorderedComparisons(Value *V) { assert(dyncastIsNan(V) && "The value isn't an isnan call!"); // Check all uses, which will be or's of isnans if this predicate is true. for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ Instruction *I = cast(*UI); if (I->getOpcode() != Instruction::Or) return false; if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false; if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false; } return true; } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. /// void PPC32ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: case Intrinsic::returnaddress: case Intrinsic::frameaddress: // FIXME: should lower these ourselves // case Intrinsic::isunordered: // case Intrinsic::memcpy: -> doCall(). system memcpy almost // guaranteed to be faster than anything we generate ourselves // We directly implement these intrinsics break; case Intrinsic::readio: { // On PPC, memory operations are in-order. Lower this intrinsic // into a volatile load. Instruction *Before = CI->getPrev(); LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); CI->replaceAllUsesWith(LI); BB->getInstList().erase(CI); break; } case Intrinsic::writeio: { // On PPC, memory operations are in-order. Lower this intrinsic // into a volatile store. Instruction *Before = CI->getPrev(); StoreInst *SI = new StoreInst(CI->getOperand(1), CI->getOperand(2), true, CI); CI->replaceAllUsesWith(SI); BB->getInstList().erase(CI); break; } default: // All other intrinsic calls we must lower. Instruction *Before = CI->getPrev(); TM.getIntrinsicLowering().LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } } } void PPC32ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { unsigned TmpReg1, TmpReg2, TmpReg3; switch (ID) { case Intrinsic::vastart: // Get the address of the first vararg value... TmpReg1 = getReg(CI); addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, 0, false); return; case Intrinsic::vacopy: TmpReg1 = getReg(CI); TmpReg2 = getReg(CI.getOperand(1)); BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2); return; case Intrinsic::vaend: return; case Intrinsic::returnaddress: TmpReg1 = getReg(CI); if (cast(CI.getOperand(1))->isNullValue()) { MachineFrameInfo *MFI = F->getFrameInfo(); unsigned NumBytes = MFI->getStackSize(); BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8) .addReg(PPC::R1); } else { // Values other than zero are not implemented yet. BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); } return; case Intrinsic::frameaddress: TmpReg1 = getReg(CI); if (cast(CI.getOperand(1))->isNullValue()) { BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1); } else { // Values other than zero are not implemented yet. BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); } return; #if 0 // This may be useful for supporting isunordered case Intrinsic::isnan: // If this is only used by 'isunordered' style comparisons, don't emit it. if (isOnlyUsedByUnorderedComparisons(&CI)) return; TmpReg1 = getReg(CI.getOperand(1)); emitUCOM(BB, BB->end(), TmpReg1, TmpReg1); TmpReg2 = makeAnotherReg(Type::IntTy); BuildMI(BB, PPC::MFCR, TmpReg2); TmpReg3 = getReg(CI); BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31); return; #endif default: assert(0 && "Error: unknown intrinsics should have been lowered!"); } } /// visitSimpleBinary - Implement simple binary operators for integral types... /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for /// Xor. /// void PPC32ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { if (std::find(SkipList.begin(), SkipList.end(), &B) != SkipList.end()) return; unsigned DestReg = getReg(B); MachineBasicBlock::iterator MI = BB->end(); RlwimiRec RR = InsertMap[&B]; if (RR.Target != 0) { unsigned TargetReg = getReg(RR.Target, BB, MI); unsigned InsertReg = getReg(RR.Insert, BB, MI); BuildMI(*BB, MI, PPC::RLWIMI, 5, DestReg).addReg(TargetReg) .addReg(InsertReg).addImm(RR.Shift).addImm(RR.MB).addImm(RR.ME); return; } unsigned Class = getClassB(B.getType()); Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); emitSimpleBinaryOperation(BB, MI, &B, Op0, Op1, OperatorClass, DestReg); } /// emitBinaryFPOperation - This method handles emission of floating point /// Add (0), Sub (1), Mul (2), and Div (3) operations. void PPC32ISel::emitBinaryFPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned DestReg){ static const unsigned OpcodeTab[][4] = { { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double }; // Special case: R1 = op , R2 if (ConstantFP *Op0C = dyn_cast(Op0)) if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) { // -0.0 - X === -X unsigned op1Reg = getReg(Op1, BB, IP); BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg); return; } unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass]; unsigned Op0r = getReg(Op0, BB, IP); unsigned Op1r = getReg(Op1, BB, IP); BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); } // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It // returns zero when the input is not exactly a power of two. static unsigned ExactLog2(unsigned Val) { if (Val == 0 || (Val & (Val-1))) return 0; unsigned Count = 0; while (Val != 1) { Val >>= 1; ++Count; } return Count; } // isRunOfOnes - returns true if Val consists of one contiguous run of 1's with // any number of 0's on either side. the 1's are allowed to wrap from LSB to // MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1's are not contiguous. static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { bool isRun = true; MB = 0; ME = 0; // look for first set bit int i = 0; for (; i < 32; i++) { if ((Val & (1 << (31 - i))) != 0) { MB = i; ME = i; break; } } // look for last set bit for (; i < 32; i++) { if ((Val & (1 << (31 - i))) == 0) break; ME = i; } // look for next set bit for (; i < 32; i++) { if ((Val & (1 << (31 - i))) != 0) break; } // if we exhausted all the bits, we found a match at this point for 0*1*0* if (i == 32) return true; // since we just encountered more 1's, if it doesn't wrap around to the // most significant bit of the word, then we did not find a match to 1*0*1* so // exit. if (MB != 0) return false; // look for last set bit for (MB = i; i < 32; i++) { if ((Val & (1 << (31 - i))) == 0) break; } // if we exhausted all the bits, then we found a match for 1*0*1*, otherwise, // the value is not a run of ones. if (i == 32) return true; return false; } /// isInsertAndHalf - Helper function for emitBitfieldInsert. Returns true if /// OpUser has one use, is used by an or instruction, and is itself an and whose /// second operand is a constant int. Optionally, set OrI to the Or instruction /// that is the sole user of OpUser, and Op1User to the other operand of the Or /// instruction. static bool isInsertAndHalf(User *OpUser, Instruction **Op1User, Instruction **OrI, unsigned &Mask) { // If this instruction doesn't have one use, then return false. if (!OpUser->hasOneUse()) return false; Mask = 0xFFFFFFFF; if (BinaryOperator *BO = dyn_cast(OpUser)) if (BO->getOpcode() == Instruction::And) { Value *AndUse = *(OpUser->use_begin()); if (BinaryOperator *Or = dyn_cast(AndUse)) { if (Or->getOpcode() == Instruction::Or) { if (ConstantInt *CI = dyn_cast(OpUser->getOperand(1))) { if (OrI) *OrI = Or; if (Op1User) { if (Or->getOperand(0) == OpUser) *Op1User = dyn_cast(Or->getOperand(1)); else *Op1User = dyn_cast(Or->getOperand(0)); } Mask &= CI->getRawValue(); return true; } } } } return false; } /// isInsertShiftHalf - Helper function for emitBitfieldInsert. Returns true if /// OpUser has one use, is used by an or instruction, and is itself a shift /// instruction that is either used directly by the or instruction, or is used /// by an and instruction whose second operand is a constant int, and which is /// used by the or instruction. static bool isInsertShiftHalf(User *OpUser, Instruction **Op1User, Instruction **OrI, Instruction **OptAndI, unsigned &Shift, unsigned &Mask) { // If this instruction doesn't have one use, then return false. if (!OpUser->hasOneUse()) return false; Mask = 0xFFFFFFFF; if (ShiftInst *SI = dyn_cast(OpUser)) { if (ConstantInt *CI = dyn_cast(SI->getOperand(1))) { Shift = CI->getRawValue(); if (SI->getOpcode() == Instruction::Shl) Mask <<= Shift; else if (!SI->getOperand(0)->getType()->isSigned()) { Mask >>= Shift; Shift = 32 - Shift; } // Now check to see if the shift instruction is used by an or. Value *ShiftUse = *(OpUser->use_begin()); Value *OptAndICopy = 0; if (BinaryOperator *BO = dyn_cast(ShiftUse)) { if (BO->getOpcode() == Instruction::And && BO->hasOneUse()) { if (ConstantInt *ACI = dyn_cast(BO->getOperand(1))) { if (OptAndI) *OptAndI = BO; OptAndICopy = BO; Mask &= ACI->getRawValue(); BO = dyn_cast(*(BO->use_begin())); } } if (BO && BO->getOpcode() == Instruction::Or) { if (OrI) *OrI = BO; if (Op1User) { if (BO->getOperand(0) == OpUser || BO->getOperand(0) == OptAndICopy) *Op1User = dyn_cast(BO->getOperand(1)); else *Op1User = dyn_cast(BO->getOperand(0)); } return true; } } } } return false; } /// emitBitfieldInsert - turn a shift used only by an and with immediate into /// the rotate left word immediate then mask insert (rlwimi) instruction. /// Patterns matched: /// 1. or shl, and 5. or (shl-and), and 9. or and, and /// 2. or and, shl 6. or and, (shl-and) /// 3. or shr, and 7. or (shr-and), and /// 4. or and, shr 8. or and, (shr-and) bool PPC32ISel::emitBitfieldInsert(User *OpUser, unsigned DestReg) { // Instructions to skip if we match any of the patterns Instruction *Op0User, *Op1User = 0, *OptAndI = 0, *OrI = 0; unsigned TgtMask, InsMask, Amount = 0; bool matched = false; // We require OpUser to be an instruction to continue Op0User = dyn_cast(OpUser); if (0 == Op0User) return false; // Look for cases 2, 4, 6, 8, and 9 if (isInsertAndHalf(Op0User, &Op1User, &OrI, TgtMask)) if (Op1User) if (isInsertAndHalf(Op1User, 0, 0, InsMask)) matched = true; else if (isInsertShiftHalf(Op1User, 0, 0, &OptAndI, Amount, InsMask)) matched = true; // Look for cases 1, 3, 5, and 7. Force the shift argument to be the one // inserted into the target, since rlwimi can only rotate the value inserted, // not the value being inserted into. if (matched == false) if (isInsertShiftHalf(Op0User, &Op1User, &OrI, &OptAndI, Amount, InsMask)) if (Op1User && isInsertAndHalf(Op1User, 0, 0, TgtMask)) { std::swap(Op0User, Op1User); matched = true; } // We didn't succeed in matching one of the patterns, so return false if (matched == false) return false; // If the masks xor to -1, and the insert mask is a run of ones, then we have // succeeded in matching one of the cases for generating rlwimi. Update the // skip lists and users of the Instruction::Or. unsigned MB, ME; if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && isRunOfOnes(InsMask, MB, ME)) { SkipList.push_back(Op0User); SkipList.push_back(Op1User); SkipList.push_back(OptAndI); InsertMap[OrI] = RlwimiRec(Op0User->getOperand(0), Op1User->getOperand(0), Amount, MB, ME); return true; } return false; } /// emitBitfieldExtract - turn a shift used only by an and with immediate into the /// rotate left word immediate then and with mask (rlwinm) instruction. bool PPC32ISel::emitBitfieldExtract(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, User *OpUser, unsigned DestReg) { return false; /* // Instructions to skip if we match any of the patterns Instruction *Op0User, *Op1User = 0; unsigned ShiftMask, AndMask, Amount = 0; bool matched = false; // We require OpUser to be an instruction to continue Op0User = dyn_cast(OpUser); if (0 == Op0User) return false; if (isExtractShiftHalf) if (isExtractAndHalf) matched = true; if (matched == false && isExtractAndHalf) if (isExtractShiftHalf) matched = true; if (matched == false) return false; if (isRunOfOnes(Imm, MB, ME)) { unsigned SrcReg = getReg(Op, MBB, IP); BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Rotate) .addImm(MB).addImm(ME); Op1User->replaceAllUsesWith(Op0User); SkipList.push_back(BO); return true; } */ } /// emitBinaryConstOperation - Implement simple binary operators for integral /// types with a constant operand. Opcode is one of: 0 for Add, 1 for Sub, /// 2 for And, 3 for Or, 4 for Xor, and 5 for Subtract-From. /// void PPC32ISel::emitBinaryConstOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned Op0Reg, ConstantInt *Op1, unsigned Opcode, unsigned DestReg) { static const unsigned OpTab[] = { PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR, PPC::SUBF }; static const unsigned ImmOpTab[2][6] = { { PPC::ADDI, PPC::ADDI, PPC::ANDIo, PPC::ORI, PPC::XORI, PPC::SUBFIC }, { PPC::ADDIS, PPC::ADDIS, PPC::ANDISo, PPC::ORIS, PPC::XORIS, PPC::SUBFIC } }; // Handle subtract now by inverting the constant value: X-4 == X+(-4) if (Opcode == 1) { Op1 = cast(ConstantExpr::getNeg(Op1)); Opcode = 0; } // xor X, -1 -> not X if (Opcode == 4 && Op1->isAllOnesValue()) { BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg); return; } if (Opcode == 2 && !Op1->isNullValue()) { unsigned MB, ME, mask = Op1->getRawValue(); if (isRunOfOnes(mask, MB, ME)) { BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(0) .addImm(MB).addImm(ME); return; } } // PowerPC 16 bit signed immediates are sign extended before use by the // instruction. Therefore, we can only split up an add of a reg with a 32 bit // immediate into addis and addi if the sign bit of the low 16 bits is cleared // so that for register A, const imm X, we don't end up with // A + XXXX0000 + FFFFXXXX. bool WontSignExtend = (0 == (Op1->getRawValue() & 0x8000)); // For Add, Sub, and SubF the instruction takes a signed immediate. For And, // Or, and Xor, the instruction takes an unsigned immediate. There is no // shifted immediate form of SubF so disallow its opcode for those constants. if (canUseAsImmediateForOpcode(Op1, Opcode, false)) { if (Opcode < 2 || Opcode == 5) BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg) .addSImm(Op1->getRawValue()); else BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg) .addZImm(Op1->getRawValue()); } else if (canUseAsImmediateForOpcode(Op1, Opcode, true) && (Opcode < 5)) { if (Opcode < 2) BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg) .addSImm(Op1->getRawValue() >> 16); else BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg) .addZImm(Op1->getRawValue() >> 16); } else if ((Opcode < 2 && WontSignExtend) || Opcode == 3 || Opcode == 4) { unsigned TmpReg = makeAnotherReg(Op1->getType()); if (Opcode < 2) { BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg) .addSImm(Op1->getRawValue() >> 16); BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg) .addSImm(Op1->getRawValue()); } else { BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg) .addZImm(Op1->getRawValue() >> 16); BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg) .addZImm(Op1->getRawValue()); } } else { unsigned Op1Reg = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, OpTab[Opcode], 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); } } /// emitSimpleBinaryOperation - Implement simple binary operators for integral /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for /// Or, 4 for Xor. /// void PPC32ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, BinaryOperator *BO, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned DestReg) { // Arithmetic and Bitwise operators static const unsigned OpcodeTab[] = { PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR }; static const unsigned LongOpTab[2][5] = { { PPC::ADDC, PPC::SUBC, PPC::AND, PPC::OR, PPC::XOR }, { PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR } }; unsigned Class = getClassB(Op0->getType()); if (Class == cFP32 || Class == cFP64) { assert(OperatorClass < 2 && "No logical ops for FP!"); emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); return; } if (Op0->getType() == Type::BoolTy) { if (OperatorClass == 3) // If this is an or of two isnan's, emit an FP comparison directly instead // of or'ing two isnan's together. if (Value *LHS = dyncastIsNan(Op0)) if (Value *RHS = dyncastIsNan(Op1)) { unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP); unsigned TmpReg = makeAnotherReg(Type::IntTy); emitUCOM(MBB, IP, Op0Reg, Op1Reg); BuildMI(*MBB, IP, PPC::MFCR, TmpReg); BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4) .addImm(31).addImm(31); return; } } // Special case: op , Reg if (ConstantInt *CI = dyn_cast(Op0)) if (Class != cLong) { unsigned Opcode = (OperatorClass == 1) ? 5 : OperatorClass; unsigned Op1r = getReg(Op1, MBB, IP); emitBinaryConstOperation(MBB, IP, Op1r, CI, Opcode, DestReg); return; } // Special case: op Reg, if (ConstantInt *CI = dyn_cast(Op1)) if (Class != cLong) { if (emitBitfieldInsert(BO, DestReg)) return; unsigned Op0r = getReg(Op0, MBB, IP); emitBinaryConstOperation(MBB, IP, Op0r, CI, OperatorClass, DestReg); return; } // We couldn't generate an immediate variant of the op, load both halves into // registers and emit the appropriate opcode. unsigned Op0r = getReg(Op0, MBB, IP); unsigned Op1r = getReg(Op1, MBB, IP); if (Class != cLong) { unsigned Opcode = OpcodeTab[OperatorClass]; BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); } else { BuildMI(*MBB, IP, LongOpTab[0][OperatorClass], 2, DestReg+1).addReg(Op0r+1) .addReg(Op1r+1); BuildMI(*MBB, IP, LongOpTab[1][OperatorClass], 2, DestReg).addReg(Op0r) .addReg(Op1r); } return; } /// doMultiply - Emit appropriate instructions to multiply together the /// Values Op0 and Op1, and put the result in DestReg. /// void PPC32ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, Value *Op1) { unsigned Class0 = getClass(Op0->getType()); unsigned Class1 = getClass(Op1->getType()); unsigned Op0r = getReg(Op0, MBB, IP); unsigned Op1r = getReg(Op1, MBB, IP); // 64 x 64 -> 64 if (Class0 == cLong && Class1 == cLong) { unsigned Tmp1 = makeAnotherReg(Type::IntTy); unsigned Tmp2 = makeAnotherReg(Type::IntTy); unsigned Tmp3 = makeAnotherReg(Type::IntTy); unsigned Tmp4 = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1); BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1); BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r); BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1); BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4); return; } // 64 x 32 or less, promote 32 to 64 and do a 64 x 64 if (Class0 == cLong && Class1 <= cInt) { unsigned Tmp0 = makeAnotherReg(Type::IntTy); unsigned Tmp1 = makeAnotherReg(Type::IntTy); unsigned Tmp2 = makeAnotherReg(Type::IntTy); unsigned Tmp3 = makeAnotherReg(Type::IntTy); unsigned Tmp4 = makeAnotherReg(Type::IntTy); if (Op1->getType()->isSigned()) BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31); else BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0); BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r); BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r); BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0); BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r); BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4); return; } // 32 x 32 -> 32 if (Class0 <= cInt && Class1 <= cInt) { BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r); return; } assert(0 && "doMultiply cannot operate on unknown type!"); } /// doMultiplyConst - This method will multiply the value in Op0 by the /// value of the ContantInt *CI void PPC32ISel::doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, ConstantInt *CI) { unsigned Class = getClass(Op0->getType()); // Mul op0, 0 ==> 0 if (CI->isNullValue()) { BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); if (Class == cLong) BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0); return; } // Mul op0, 1 ==> op0 if (CI->equalsInt(1)) { unsigned Op0r = getReg(Op0, MBB, IP); BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r); if (Class == cLong) BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1); return; } // If the element size is exactly a power of 2, use a shift to get it. if (unsigned Shift = ExactLog2(CI->getRawValue())) { ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift); emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), 0, DestReg); return; } // If 32 bits or less and immediate is in right range, emit mul by immediate if (Class == cByte || Class == cShort || Class == cInt) { if (canUseAsImmediateForOpcode(CI, 0, false)) { unsigned Op0r = getReg(Op0, MBB, IP); unsigned imm = CI->getRawValue() & 0xFFFF; BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm); return; } } doMultiply(MBB, IP, DestReg, Op0, CI); } void PPC32ISel::visitMul(BinaryOperator &I) { unsigned ResultReg = getReg(I); Value *Op0 = I.getOperand(0); Value *Op1 = I.getOperand(1); MachineBasicBlock::iterator IP = BB->end(); emitMultiply(BB, IP, Op0, Op1, ResultReg); } void PPC32ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned DestReg) { TypeClass Class = getClass(Op0->getType()); switch (Class) { case cByte: case cShort: case cInt: case cLong: if (ConstantInt *CI = dyn_cast(Op1)) { doMultiplyConst(MBB, IP, DestReg, Op0, CI); } else { doMultiply(MBB, IP, DestReg, Op0, Op1); } return; case cFP32: case cFP64: emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); return; break; } } /// visitDivRem - Handle division and remainder instructions... these /// instruction both require the same instructions to be generated, they just /// select the result from a different register. Note that both of these /// instructions work differently for signed and unsigned operands. /// void PPC32ISel::visitDivRem(BinaryOperator &I) { unsigned ResultReg = getReg(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); MachineBasicBlock::iterator IP = BB->end(); emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg); } void PPC32ISel::emitDivRemOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, bool isDiv, unsigned ResultReg) { const Type *Ty = Op0->getType(); unsigned Class = getClass(Ty); switch (Class) { case cFP32: if (isDiv) { // Floating point divide... emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg); return; } else { // Floating point remainder via fmodf(float x, float y); unsigned Op0Reg = getReg(Op0, MBB, IP); unsigned Op1Reg = getReg(Op1, MBB, IP); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::FloatTy)); Args.push_back(ValueRecord(Op1Reg, Type::FloatTy)); doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false); } return; case cFP64: if (isDiv) { // Floating point divide... emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg); return; } else { // Floating point remainder via fmod(double x, double y); unsigned Op0Reg = getReg(Op0, MBB, IP); unsigned Op1Reg = getReg(Op1, MBB, IP); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false); } return; case cLong: { static Function* const Funcs[] = { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn }; unsigned Op0Reg = getReg(Op0, MBB, IP); unsigned Op1Reg = getReg(Op1, MBB, IP); unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false); return; } case cByte: case cShort: case cInt: break; // Small integrals, handled below... default: assert(0 && "Unknown class!"); } // Special case signed division by power of 2. if (isDiv) if (ConstantSInt *CI = dyn_cast(Op1)) { assert(Class != cLong && "This doesn't handle 64-bit divides!"); int V = CI->getValue(); if (V == 1) { // X /s 1 => X unsigned Op0Reg = getReg(Op0, MBB, IP); BuildMI(*MBB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg); return; } if (V == -1) { // X /s -1 => -X unsigned Op0Reg = getReg(Op0, MBB, IP); BuildMI(*MBB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg); return; } unsigned log2V = ExactLog2(V); if (log2V != 0 && Ty->isSigned()) { unsigned Op0Reg = getReg(Op0, MBB, IP); unsigned TmpReg = makeAnotherReg(Op0->getType()); BuildMI(*MBB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V); BuildMI(*MBB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg); return; } } unsigned Op0Reg = getReg(Op0, MBB, IP); if (isDiv) { unsigned Op1Reg = getReg(Op1, MBB, IP); unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU; BuildMI(*MBB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); } else { // Remainder // FIXME: don't load the CI part of a CI divide twice ConstantInt *CI = dyn_cast(Op1); unsigned TmpReg1 = makeAnotherReg(Op0->getType()); unsigned TmpReg2 = makeAnotherReg(Op0->getType()); emitDivRemOperation(MBB, IP, Op0, Op1, true, TmpReg1); if (CI && canUseAsImmediateForOpcode(CI, 0, false)) { BuildMI(*MBB, IP, PPC::MULLI, 2, TmpReg2).addReg(TmpReg1) .addSImm(CI->getRawValue()); } else { unsigned Op1Reg = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg); } BuildMI(*MBB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg); } } /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here /// for constant immediate shift values, and for constant immediate /// shift values equal to 1. Even the general case is sort of special, /// because the shift amount has to be in CL, not just any old register. /// void PPC32ISel::visitShiftInst(ShiftInst &I) { if (std::find(SkipList.begin(), SkipList.end(), &I) != SkipList.end()) return; MachineBasicBlock::iterator IP = BB->end(); emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1), I.getOpcode() == Instruction::Shl, I.getType(), &I, getReg(I)); } /// emitShiftOperation - Common code shared between visitShiftInst and /// constant expression support. /// void PPC32ISel::emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op, Value *ShiftAmount, bool isLeftShift, const Type *ResultTy, ShiftInst *SI, unsigned DestReg) { bool isSigned = ResultTy->isSigned (); unsigned Class = getClass (ResultTy); // Longs, as usual, are handled specially... if (Class == cLong) { unsigned SrcReg = getReg (Op, MBB, IP); // If we have a constant shift, we can generate much more efficient code // than for a variable shift by using the rlwimi instruction. if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { unsigned Amount = CUI->getValue(); if (Amount == 0) { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1) .addReg(SrcReg+1).addReg(SrcReg+1); } else if (Amount < 32) { unsigned TempReg = makeAnotherReg(ResultTy); if (isLeftShift) { BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg) .addImm(Amount).addImm(0).addImm(31-Amount); BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg).addReg(TempReg) .addReg(SrcReg+1).addImm(Amount).addImm(32-Amount).addImm(31); BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1) .addImm(Amount).addImm(0).addImm(31-Amount); } else { BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg+1) .addImm(32-Amount).addImm(Amount).addImm(31); BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg+1).addReg(TempReg) .addReg(SrcReg).addImm(32-Amount).addImm(0).addImm(Amount-1); BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(32-Amount).addImm(Amount).addImm(31); } } else { // Shifting more than 32 bits Amount -= 32; if (isLeftShift) { if (Amount != 0) { BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1) .addImm(Amount).addImm(0).addImm(31-Amount); } else { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1) .addReg(SrcReg+1); } BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0); } else { if (Amount != 0) { if (isSigned) BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg) .addImm(Amount); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg) .addImm(32-Amount).addImm(Amount).addImm(31); } else { BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) .addReg(SrcReg); } BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0); } } } else { unsigned TmpReg1 = makeAnotherReg(Type::IntTy); unsigned TmpReg2 = makeAnotherReg(Type::IntTy); unsigned TmpReg3 = makeAnotherReg(Type::IntTy); unsigned TmpReg4 = makeAnotherReg(Type::IntTy); unsigned TmpReg5 = makeAnotherReg(Type::IntTy); unsigned TmpReg6 = makeAnotherReg(Type::IntTy); unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); if (isLeftShift) { BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) .addSImm(32); BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg) .addReg(ShiftAmountReg); BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1) .addReg(TmpReg1); BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3); BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) .addSImm(-32); BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1) .addReg(TmpReg5); BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4) .addReg(TmpReg6); BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1) .addReg(ShiftAmountReg); } else { if (isSigned) { // shift right algebraic MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, TmpMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(TmpMBB); BB->addSuccessor(PhiMBB); BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) .addSImm(32); BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1) .addReg(ShiftAmountReg); BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg) .addReg(TmpReg1); BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2) .addReg(TmpReg3); BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg) .addSImm(-32); BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg) .addReg(TmpReg5); BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg) .addReg(ShiftAmountReg); BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB); // OrMBB: // Select correct least significant half if the shift amount > 32 BB = TmpMBB; unsigned OrReg = makeAnotherReg(Type::IntTy); BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addReg(TmpReg6); TmpMBB->addSuccessor(PhiMBB); BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB) .addReg(OrReg).addMBB(TmpMBB); } else { // shift right logical BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) .addSImm(32); BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1) .addReg(ShiftAmountReg); BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg) .addReg(TmpReg1); BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2) .addReg(TmpReg3); BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) .addSImm(-32); BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg) .addReg(TmpReg5); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4) .addReg(TmpReg6); BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg) .addReg(ShiftAmountReg); } } } return; } if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { // The shift amount is constant, guaranteed to be a ubyte. Get its value. assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); unsigned Amount = CUI->getValue(); // If this is a shift with one use, and that use is an And instruction, // then attempt to emit a bitfield operation. if (SI && emitBitfieldInsert(SI, DestReg)) return; unsigned SrcReg = getReg (Op, MBB, IP); if (Amount == 0) { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); } else if (isLeftShift) { BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(Amount).addImm(0).addImm(31-Amount); } else { if (isSigned) { BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount); } else { BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(32-Amount).addImm(Amount).addImm(31); } } } else { // The shift amount is non-constant. unsigned SrcReg = getReg (Op, MBB, IP); unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); if (isLeftShift) { BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg) .addReg(ShiftAmountReg); } else { BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg) .addReg(SrcReg).addReg(ShiftAmountReg); } } } /// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend. /// Therefore, if this is a byte load and the destination type is signed, we /// would normally need to also emit a sign extend instruction after the load. /// However, store instructions don't care whether a signed type was sign /// extended across a whole register. Also, a SetCC instruction will emit its /// own sign extension to force the value into the appropriate range, so we /// need not emit it here. Ideally, this kind of thing wouldn't be necessary /// once LLVM's type system is improved. static bool LoadNeedsSignExtend(LoadInst &LI) { if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) { bool AllUsesAreStoresOrSetCC = true; for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I){ if (isa(*I)) continue; if (StoreInst *SI = dyn_cast(*I)) if (cByte == getClassB(SI->getOperand(0)->getType())) continue; AllUsesAreStoresOrSetCC = false; break; } if (!AllUsesAreStoresOrSetCC) return true; } return false; } /// visitLoadInst - Implement LLVM load instructions. Pretty straightforward /// mapping of LLVM classes to PPC load instructions, with the exception of /// signed byte loads, which need a sign extension following them. /// void PPC32ISel::visitLoadInst(LoadInst &I) { // Immediate opcodes, for reg+imm addressing static const unsigned ImmOpcodes[] = { PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LWZ }; // Indexed opcodes, for reg+reg addressing static const unsigned IdxOpcodes[] = { PPC::LBZX, PPC::LHZX, PPC::LWZX, PPC::LFSX, PPC::LFDX, PPC::LWZX }; unsigned Class = getClassB(I.getType()); unsigned ImmOpcode = ImmOpcodes[Class]; unsigned IdxOpcode = IdxOpcodes[Class]; unsigned DestReg = getReg(I); Value *SourceAddr = I.getOperand(0); if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA; if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX; // If this is a fixed size alloca, emit a load directly from the stack slot // corresponding to it. if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) { unsigned FI = getFixedSizedAllocaFI(AI); if (Class == cLong) { addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4); } else if (LoadNeedsSignExtend(I)) { unsigned TmpReg = makeAnotherReg(I.getType()); addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI); BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); } return; } // If the offset fits in 16 bits, we can emit a reg+imm load, otherwise, we // use the index from the FoldedGEP struct and use reg+reg addressing. if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { // Generate the code for the GEP and get the components of the folded GEP emitGEPOperation(BB, BB->end(), GEPI, true); unsigned baseReg = GEPMap[GEPI].base; unsigned indexReg = GEPMap[GEPI].index; ConstantSInt *offset = GEPMap[GEPI].offset; if (Class != cLong) { unsigned TmpReg = LoadNeedsSignExtend(I) ? makeAnotherReg(I.getType()) : DestReg; if (indexReg == 0) BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue()) .addReg(baseReg); else BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg); if (LoadNeedsSignExtend(I)) BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { indexReg = (indexReg != 0) ? indexReg : getReg(offset); unsigned indexPlus4 = makeAnotherReg(Type::IntTy); BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4); BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg); BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg); } return; } // The fallback case, where the load was from a source that could not be // folded into the load instruction. unsigned SrcAddrReg = getReg(SourceAddr); if (Class == cLong) { BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg); } else if (LoadNeedsSignExtend(I)) { unsigned TmpReg = makeAnotherReg(I.getType()); BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg); BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); } } /// visitStoreInst - Implement LLVM store instructions /// void PPC32ISel::visitStoreInst(StoreInst &I) { // Immediate opcodes, for reg+imm addressing static const unsigned ImmOpcodes[] = { PPC::STB, PPC::STH, PPC::STW, PPC::STFS, PPC::STFD, PPC::STW }; // Indexed opcodes, for reg+reg addressing static const unsigned IdxOpcodes[] = { PPC::STBX, PPC::STHX, PPC::STWX, PPC::STFSX, PPC::STFDX, PPC::STWX }; Value *SourceAddr = I.getOperand(1); const Type *ValTy = I.getOperand(0)->getType(); unsigned Class = getClassB(ValTy); unsigned ImmOpcode = ImmOpcodes[Class]; unsigned IdxOpcode = IdxOpcodes[Class]; unsigned ValReg = getReg(I.getOperand(0)); // If this is a fixed size alloca, emit a store directly to the stack slot // corresponding to it. if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg), FI); if (Class == cLong) addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1), FI, 4); return; } // If the offset fits in 16 bits, we can emit a reg+imm store, otherwise, we // use the index from the FoldedGEP struct and use reg+reg addressing. if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { // Generate the code for the GEP and get the components of the folded GEP emitGEPOperation(BB, BB->end(), GEPI, true); unsigned baseReg = GEPMap[GEPI].base; unsigned indexReg = GEPMap[GEPI].index; ConstantSInt *offset = GEPMap[GEPI].offset; if (Class != cLong) { if (indexReg == 0) BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue()) .addReg(baseReg); else BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg) .addReg(baseReg); } else { indexReg = (indexReg != 0) ? indexReg : getReg(offset); unsigned indexPlus4 = makeAnotherReg(Type::IntTy); BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4); BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg); BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4) .addReg(baseReg); } return; } // If the store address wasn't the only use of a GEP, we fall back to the // standard path: store the ValReg at the value in AddressReg. unsigned AddressReg = getReg(I.getOperand(1)); if (Class == cLong) { BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg); return; } BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); } /// visitCastInst - Here we have various kinds of copying with or without sign /// extension going on. /// void PPC32ISel::visitCastInst(CastInst &CI) { Value *Op = CI.getOperand(0); unsigned SrcClass = getClassB(Op->getType()); unsigned DestClass = getClassB(CI.getType()); // Noop casts are not emitted: getReg will return the source operand as the // register to use for any uses of the noop cast. if (DestClass == SrcClass) return; // If this is a cast from a 32-bit integer to a Long type, and the only uses // of the cast are GEP instructions, then the cast does not need to be // generated explicitly, it will be folded into the GEP. if (DestClass == cLong && SrcClass == cInt) { bool AllUsesAreGEPs = true; for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) if (!isa(*I)) { AllUsesAreGEPs = false; break; } if (AllUsesAreGEPs) return; } unsigned DestReg = getReg(CI); MachineBasicBlock::iterator MI = BB->end(); // If this is a cast from an integer type to a ubyte, with one use where the // use is the shift amount argument of a shift instruction, just emit a move // instead (since the shift instruction will only look at the low 5 bits // regardless of how it is sign extended) if (CI.getType() == Type::UByteTy && SrcClass <= cInt && CI.hasOneUse()) { ShiftInst *SI = dyn_cast(*(CI.use_begin())); if (SI && (SI->getOperand(1) == &CI)) { unsigned SrcReg = getReg(Op, BB, MI); BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; } } // If this is a cast from an byte, short, or int to an integer type of equal // or lesser width, and all uses of the cast are store instructions then dont // emit them, as the store instruction will implicitly not store the zero or // sign extended bytes. if (SrcClass <= cInt && SrcClass >= DestClass) { bool AllUsesAreStores = true; for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) if (!isa(*I)) { AllUsesAreStores = false; break; } // Turn this cast directly into a move instruction, which the register // allocator will deal with. if (AllUsesAreStores) { unsigned SrcReg = getReg(Op, BB, MI); BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; } } emitCastOperation(BB, MI, Op, CI.getType(), DestReg); } /// emitCastOperation - Common code shared between visitCastInst and constant /// expression cast support. /// void PPC32ISel::emitCastOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned DestReg) { const Type *SrcTy = Src->getType(); unsigned SrcClass = getClassB(SrcTy); unsigned DestClass = getClassB(DestTy); unsigned SrcReg = getReg(Src, MBB, IP); // Implement casts from bool to integer types as a move operation if (SrcTy == Type::BoolTy) { switch (DestClass) { case cByte: case cShort: case cInt: BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; case cLong: BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addImm(0); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg); return; default: break; } } // Implement casts to bool by using compare on the operand followed by set if // not zero on the result. if (DestTy == Type::BoolTy) { switch (SrcClass) { case cByte: case cShort: case cInt: { unsigned TmpReg = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1); BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg); break; } case cLong: { unsigned TmpReg = makeAnotherReg(Type::IntTy); unsigned SrcReg2 = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1); BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1); BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg) .addReg(SrcReg2); break; } case cFP32: case cFP64: unsigned TmpReg = makeAnotherReg(Type::IntTy); unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP); BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero); BuildMI(*MBB, IP, PPC::MFCR, TmpReg); BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31) .addImm(31).addImm(31); } return; } // Handle cast of Float -> Double if (SrcClass == cFP32 && DestClass == cFP64) { BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg); return; } // Handle cast of Double -> Float if (SrcClass == cFP64 && DestClass == cFP32) { BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg); return; } // Handle casts from integer to floating point now... if (DestClass == cFP32 || DestClass == cFP64) { // Emit a library call for long to float conversion if (SrcClass == cLong) { Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn; if (SrcTy->isSigned()) { std::vector Args; Args.push_back(ValueRecord(SrcReg, SrcTy)); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); } else { std::vector CmpArgs, ClrArgs, SetArgs; unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0)); unsigned CondReg = makeAnotherReg(Type::IntTy); // Update machine-CFG edges MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, ClrMBB); F->getBasicBlockList().insert(It, SetMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(ClrMBB); BB->addSuccessor(SetMBB); CmpArgs.push_back(ValueRecord(SrcReg, SrcTy)); CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy)); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true); doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false); BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0); BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB); // ClrMBB BB = ClrMBB; unsigned ClrReg = makeAnotherReg(DestTy); ClrArgs.push_back(ValueRecord(SrcReg, SrcTy)); TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false); BuildMI(BB, PPC::B, 1).addMBB(PhiMBB); BB->addSuccessor(PhiMBB); // SetMBB BB = SetMBB; unsigned SetReg = makeAnotherReg(DestTy); unsigned CallReg = makeAnotherReg(DestTy); unsigned ShiftedReg = makeAnotherReg(SrcTy); ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1); emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, 0, ShiftedReg); SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy)); TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false); unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD; BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg); BB->addSuccessor(PhiMBB); // PhiMBB BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB) .addReg(SetReg).addMBB(SetMBB); } return; } // Make sure we're dealing with a full 32 bits if (SrcClass < cInt) { unsigned TmpReg = makeAnotherReg(Type::IntTy); promote32(TmpReg, ValueRecord(SrcReg, SrcTy)); SrcReg = TmpReg; } // Spill the integer to memory and reload it from there. // Also spill room for a special conversion constant int ValueFrameIdx = F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); MachineConstantPool *CP = F->getConstantPool(); unsigned constantHi = makeAnotherReg(Type::IntTy); unsigned TempF = makeAnotherReg(Type::DoubleTy); if (!SrcTy->isSigned()) { ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52); unsigned ConstF = getReg(CFP, BB, IP); BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi), ValueFrameIdx); addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg), ValueFrameIdx, 4); addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); } else { ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52); unsigned ConstF = getReg(CFP, BB, IP); unsigned TempLo = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi), ValueFrameIdx); BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000); addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo), ValueFrameIdx, 4); addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); } return; } // Handle casts from floating point to integer now... if (SrcClass == cFP32 || SrcClass == cFP64) { static Function* const Funcs[] = { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn }; // emit library call if (DestClass == cLong) { bool isDouble = SrcClass == cFP64; unsigned nameIndex = 2 * DestTy->isSigned() + isDouble; std::vector Args; Args.push_back(ValueRecord(SrcReg, SrcTy)); Function *floatFn = Funcs[nameIndex]; MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); return; } int ValueFrameIdx = F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); if (DestTy->isSigned()) { unsigned TempReg = makeAnotherReg(Type::DoubleTy); // Convert to integer in the FP reg and store it to a stack slot BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg); addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3) .addReg(TempReg), ValueFrameIdx); // There is no load signed byte opcode, so we must emit a sign extend for // that particular size. Make sure to source the new integer from the // correct offset. if (DestClass == cByte) { unsigned TempReg2 = makeAnotherReg(DestTy); addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2), ValueFrameIdx, 7); BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2); } else { int offset = (DestClass == cShort) ? 6 : 4; unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ; addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg), ValueFrameIdx, offset); } } else { unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f)); double maxInt = (1LL << 32) - 1; unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt)); double border = 1LL << 31; unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border)); unsigned UseZero = makeAnotherReg(Type::DoubleTy); unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy); unsigned UseChoice = makeAnotherReg(Type::DoubleTy); unsigned TmpReg = makeAnotherReg(Type::DoubleTy); unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy); unsigned ConvReg = makeAnotherReg(Type::DoubleTy); unsigned IntTmp = makeAnotherReg(Type::IntTy); unsigned XorReg = makeAnotherReg(Type::IntTy); int FrameIdx = F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); // Update machine-CFG edges MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, XorMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(XorMBB); BB->addSuccessor(PhiMBB); // Convert from floating point to unsigned 32-bit value // Use 0 if incoming value is < 0.0 BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg) .addReg(Zero); // Use 2**32 - 1 if incoming value is >= 2**32 BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg); BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt) .addReg(UseZero).addReg(MaxInt); // Subtract 2**31 BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border); // Use difference if >= 2**31 BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice) .addReg(Border); BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg) .addReg(UseChoice); // Convert to integer BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2); addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg), FrameIdx); if (DestClass == cByte) { addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg), FrameIdx, 7); } else if (DestClass == cShort) { addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg), FrameIdx, 6); } if (DestClass == cInt) { addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp), FrameIdx, 4); BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB); BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB); // XorMBB: // add 2**31 if input was >= 2**31 BB = XorMBB; BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000); XorMBB->addSuccessor(PhiMBB); // PhiMBB: // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ] BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB) .addReg(XorReg).addMBB(XorMBB); } } return; } // Check our invariants assert((SrcClass <= cInt || SrcClass == cLong) && "Unhandled source class for cast operation!"); assert((DestClass <= cInt || DestClass == cLong) && "Unhandled destination class for cast operation!"); bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; bool destUnsigned = DestTy->isUnsigned(); // Unsigned -> Unsigned, clear if larger, if (sourceUnsigned && destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) .addReg(SrcReg); return; } // handle u{ byte, short, int } x u{ byte, short, int } unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16; switch (SrcClass) { case cByte: case cShort: BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); break; case cLong: ++SrcReg; // Fall through case cInt: BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); break; } return; } // Signed -> Signed if (!sourceUnsigned && !destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) .addReg(SrcReg); return; } // handle { byte, short, int } x { byte, short, int } switch (SrcClass) { case cByte: BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); break; case cShort: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); break; case cLong: ++SrcReg; // Fall through case cInt: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else if (DestClass == cShort) BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); break; } return; } // Unsigned -> Signed if (sourceUnsigned && !destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) .addReg(SrcReg); return; } // handle u{ byte, short, int } -> { byte, short, int } switch (SrcClass) { case cByte: // uByte 255 -> signed short/int == 255 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) .addImm(24).addImm(31); break; case cShort: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) .addImm(16).addImm(31); break; case cLong: ++SrcReg; // Fall through case cInt: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else if (DestClass == cShort) BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); break; } return; } // Signed -> Unsigned if (!sourceUnsigned && destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31); BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg) .addReg(SrcReg); return; } // handle { byte, short, int } -> u{ byte, short, int } unsigned clearBits = (DestClass == cByte) ? 24 : 16; switch (SrcClass) { case cByte: BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); break; case cShort: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); else BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); break; case cLong: ++SrcReg; // Fall through case cInt: if (DestClass == cInt) BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); break; } return; } // Anything we haven't handled already, we can't (yet) handle at all. std::cerr << "Unhandled cast from " << SrcTy->getDescription() << "to " << DestTy->getDescription() << '\n'; abort(); } /// visitVANextInst - Implement the va_next instruction... /// void PPC32ISel::visitVANextInst(VANextInst &I) { unsigned VAList = getReg(I.getOperand(0)); unsigned DestReg = getReg(I); unsigned Size; switch (I.getArgType()->getTypeID()) { default: std::cerr << I; assert(0 && "Error: bad type for va_next instruction!"); return; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: Size = 4; break; case Type::ULongTyID: case Type::LongTyID: case Type::DoubleTyID: Size = 8; break; } // Increment the VAList pointer... BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size); } void PPC32ISel::visitVAArgInst(VAArgInst &I) { unsigned VAList = getReg(I.getOperand(0)); unsigned DestReg = getReg(I); switch (I.getType()->getTypeID()) { default: std::cerr << I; assert(0 && "Error: bad type for va_next instruction!"); return; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); break; case Type::ULongTyID: case Type::LongTyID: BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList); break; case Type::FloatTyID: BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList); break; case Type::DoubleTyID: BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList); break; } } /// visitGetElementPtrInst - instruction-select GEP instructions /// void PPC32ISel::visitGetElementPtrInst(GetElementPtrInst &I) { if (canFoldGEPIntoLoadOrStore(&I)) return; emitGEPOperation(BB, BB->end(), &I, false); } /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void PPC32ISel::emitGEPOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, GetElementPtrInst *GEPI, bool GEPIsFolded) { // If we've already emitted this particular GEP, just return to avoid // multiple definitions of the base register. if (GEPIsFolded && (GEPMap[GEPI].base != 0)) return; Value *Src = GEPI->getOperand(0); User::op_iterator IdxBegin = GEPI->op_begin()+1; User::op_iterator IdxEnd = GEPI->op_end(); const TargetData &TD = TM.getTargetData(); const Type *Ty = Src->getType(); int64_t constValue = 0; // Record the operations to emit the GEP in a vector so that we can emit them // after having analyzed the entire instruction. std::vector ops; // GEPs have zero or more indices; we must perform a struct access // or array access for each one. for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; ++oi) { Value *idx = *oi; if (const StructType *StTy = dyn_cast(Ty)) { // It's a struct access. idx is the index into the structure, // which names the field. Use the TargetData structure to // pick out what the layout of the structure is in memory. // Use the (constant) structure index's value to find the // right byte offset from the StructLayout class's list of // structure member offsets. unsigned fieldIndex = cast(idx)->getValue(); // StructType member offsets are always constant values. Add it to the // running total. constValue += TD.getStructLayout(StTy)->MemberOffsets[fieldIndex]; // The next type is the member of the structure selected by the index. Ty = StTy->getElementType (fieldIndex); } else if (const SequentialType *SqTy = dyn_cast(Ty)) { // Many GEP instructions use a [cast (int/uint) to LongTy] as their // operand. Handle this case directly now... if (CastInst *CI = dyn_cast(idx)) if (CI->getOperand(0)->getType() == Type::IntTy || CI->getOperand(0)->getType() == Type::UIntTy) idx = CI->getOperand(0); // It's an array or pointer access: [ArraySize x ElementType]. // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we // must find the size of the pointed-to type (Not coincidentally, the next // type is the type of the elements in the array). Ty = SqTy->getElementType(); unsigned elementSize = TD.getTypeSize(Ty); if (ConstantInt *C = dyn_cast(idx)) { if (ConstantSInt *CS = dyn_cast(C)) constValue += CS->getValue() * elementSize; else if (ConstantUInt *CU = dyn_cast(C)) constValue += CU->getValue() * elementSize; else assert(0 && "Invalid ConstantInt GEP index type!"); } else { // Push current gep state to this point as an add and multiply ops.push_back(CollapsedGepOp( ConstantSInt::get(Type::IntTy, constValue), idx, ConstantUInt::get(Type::UIntTy, elementSize))); constValue = 0; } } } // Emit instructions for all the collapsed ops unsigned indexReg = 0; for(std::vector::iterator cgo_i = ops.begin(), cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) { CollapsedGepOp& cgo = *cgo_i; // Avoid emitting known move instructions here for the register allocator // to deal with later. val * 1 == val. val + 0 == val. unsigned TmpReg1; if (cgo.size->getValue() == 1) { TmpReg1 = getReg(cgo.index, MBB, IP); } else { TmpReg1 = makeAnotherReg(Type::IntTy); doMultiplyConst(MBB, IP, TmpReg1, cgo.index, cgo.size); } unsigned TmpReg2; if (cgo.offset->isNullValue()) { TmpReg2 = TmpReg1; } else { TmpReg2 = makeAnotherReg(Type::IntTy); emitBinaryConstOperation(MBB, IP, TmpReg1, cgo.offset, 0, TmpReg2); } if (indexReg == 0) indexReg = TmpReg2; else { unsigned TmpReg3 = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg3).addReg(indexReg).addReg(TmpReg2); indexReg = TmpReg3; } } // We now have a base register, an index register, and possibly a constant // remainder. If the GEP is going to be folded, we try to generate the // optimal addressing mode. ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue); // If we are emitting this during a fold, copy the current base register to // the target, and save the current constant offset so the folding load or // store can try and use it as an immediate. if (GEPIsFolded) { if (indexReg == 0) { if (!canUseAsImmediateForOpcode(remainder, 0, false)) { indexReg = getReg(remainder, MBB, IP); remainder = 0; } } else if (!remainder->isNullValue()) { unsigned TmpReg = makeAnotherReg(Type::IntTy); emitBinaryConstOperation(MBB, IP, indexReg, remainder, 0, TmpReg); indexReg = TmpReg; remainder = 0; } unsigned basePtrReg = getReg(Src, MBB, IP); GEPMap[GEPI] = FoldedGEP(basePtrReg, indexReg, remainder); return; } // We're not folding, so collapse the base, index, and any remainder into the // destination register. unsigned TargetReg = getReg(GEPI, MBB, IP); unsigned basePtrReg = getReg(Src, MBB, IP); if ((indexReg == 0) && remainder->isNullValue()) { BuildMI(*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg) .addReg(basePtrReg); return; } if (!remainder->isNullValue()) { unsigned TmpReg = (indexReg == 0) ? TargetReg : makeAnotherReg(Type::IntTy); emitBinaryConstOperation(MBB, IP, basePtrReg, remainder, 0, TmpReg); basePtrReg = TmpReg; } if (indexReg != 0) BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(indexReg) .addReg(basePtrReg); } /// visitAllocaInst - If this is a fixed size alloca, allocate space from the /// frame manager, otherwise do it the hard way. /// void PPC32ISel::visitAllocaInst(AllocaInst &I) { // If this is a fixed size alloca in the entry block for the function, we // statically stack allocate the space, so we don't need to do anything here. // if (dyn_castFixedAlloca(&I)) return; // Find the data size of the alloca inst's getAllocatedType. const Type *Ty = I.getAllocatedType(); unsigned TySize = TM.getTargetData().getTypeSize(Ty); // Create a register to hold the temporary result of multiplying the type size // constant by the variable amount. unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); // TotalSizeReg = mul , MachineBasicBlock::iterator MBBI = BB->end(); ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize); doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI); // AddedSize = add , 15 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15); // AlignedSize = and , ~15 unsigned AlignedSize = makeAnotherReg(Type::UIntTy); BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0) .addImm(0).addImm(27); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize); // Put a pointer to the space into the result register, by copying // the stack pointer. BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1); // Inform the Frame Information that we have just allocated a variable-sized // object. F->getFrameInfo()->CreateVariableSizedObject(); } /// visitMallocInst - Malloc instructions are code generated into direct calls /// to the library malloc. /// void PPC32ISel::visitMallocInst(MallocInst &I) { unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); unsigned Arg; if (ConstantUInt *C = dyn_cast(I.getOperand(0))) { Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); } else { Arg = makeAnotherReg(Type::UIntTy); MachineBasicBlock::iterator MBBI = BB->end(); ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize); doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI); } std::vector Args; Args.push_back(ValueRecord(Arg, Type::UIntTy)); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true); doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false); } /// visitFreeInst - Free instructions are code gen'd to call the free libc /// function. /// void PPC32ISel::visitFreeInst(FreeInst &I) { std::vector Args; Args.push_back(ValueRecord(I.getOperand(0))); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true); doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false); } /// createPPC32ISelSimple - This pass converts an LLVM function into a machine /// code representation is a very simple peep-hole fashion. /// FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) { return new PPC32ISel(TM); }