//===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // // //===----------------------------------------------------------------------===// #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonFrameLowering.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/MC/MachineLocation.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" using namespace llvm; static cl::opt DisableDeallocRet( "disable-hexagon-dealloc-ret", cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); /// determineFrameLayout - Determine the size of the frame and maximum call /// frame size. void HexagonFrameLowering::determineFrameLayout(MachineFunction &MF) const { MachineFrameInfo *MFI = MF.getFrameInfo(); // Get the number of bytes to allocate from the FrameInfo. unsigned FrameSize = MFI->getStackSize(); // Get the alignments provided by the target. unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment(); // Get the maximum call frame size of all the calls. unsigned maxCallFrameSize = MFI->getMaxCallFrameSize(); // If we have dynamic alloca then maxCallFrameSize needs to be aligned so // that allocations will be aligned. if (MFI->hasVarSizedObjects()) maxCallFrameSize = RoundUpToAlignment(maxCallFrameSize, TargetAlign); // Update maximum call frame size. MFI->setMaxCallFrameSize(maxCallFrameSize); // Include call frame size in total. FrameSize += maxCallFrameSize; // Make sure the frame is aligned. FrameSize = RoundUpToAlignment(FrameSize, TargetAlign); // Update frame info. MFI->setStackSize(FrameSize); } void HexagonFrameLowering::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); MachineBasicBlock::iterator MBBI = MBB.begin(); const HexagonRegisterInfo *QRI = static_cast(MF.getTarget().getRegisterInfo()); DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); determineFrameLayout(MF); // Check if frame moves are needed for EH. bool needsFrameMoves = MMI.hasDebugInfo() || !MF.getFunction()->needsUnwindTableEntry(); // Get the number of bytes to allocate from the FrameInfo. int NumBytes = (int) MFI->getStackSize(); // LLVM expects allocframe not to be the first instruction in the // basic block. MachineBasicBlock::iterator InsertPt = MBB.begin(); // // ALLOCA adjust regs. Iterate over ADJDYNALLOC nodes and change the offset. // HexagonMachineFunctionInfo *FuncInfo = MF.getInfo(); const std::vector& AdjustRegs = FuncInfo->getAllocaAdjustInsts(); for (std::vector::const_iterator i = AdjustRegs.begin(), e = AdjustRegs.end(); i != e; ++i) { MachineInstr* MI = *i; assert((MI->getOpcode() == Hexagon::ADJDYNALLOC) && "Expected adjust alloca node"); MachineOperand& MO = MI->getOperand(2); assert(MO.isImm() && "Expected immediate"); MO.setImm(MFI->getMaxCallFrameSize()); } std::vector &Moves = MMI.getFrameMoves(); if (needsFrameMoves) { // Advance CFA. DW_CFA_def_cfa unsigned FPReg = QRI->getFrameRegister(); unsigned RAReg = QRI->getRARegister(); MachineLocation Dst(MachineLocation::VirtualFP); MachineLocation Src(FPReg, -8); Moves.push_back(MachineMove(0, Dst, Src)); // R31 = (R31 - #4) MachineLocation LRDst(RAReg, -4); MachineLocation LRSrc(RAReg); Moves.push_back(MachineMove(0, LRDst, LRSrc)); // R30 = (R30 - #8) MachineLocation SPDst(FPReg, -8); MachineLocation SPSrc(FPReg); Moves.push_back(MachineMove(0, SPDst, SPSrc)); } // // Only insert ALLOCFRAME if we need to. // if (hasFP(MF)) { // Check for overflow. // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? const int ALLOCFRAME_MAX = 16384; const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); if (NumBytes >= ALLOCFRAME_MAX) { // Emit allocframe(#0). BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::ALLOCFRAME)).addImm(0); // Subtract offset from frame pointer. BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::CONST32_Int_Real), HEXAGON_RESERVED_REG_1).addImm(NumBytes); BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::SUB_rr), QRI->getStackRegister()). addReg(QRI->getStackRegister()). addReg(HEXAGON_RESERVED_REG_1); } else { BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::ALLOCFRAME)).addImm(NumBytes); } } } // Returns true if MBB has a machine instructions that indicates a tail call // in the block. bool HexagonFrameLowering::hasTailCall(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); unsigned RetOpcode = MBBI->getOpcode(); return RetOpcode == Hexagon::TCRETURNtg || RetOpcode == Hexagon::TCRETURNtext;} void HexagonFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = prior(MBB.end()); DebugLoc dl = MBBI->getDebugLoc(); // // Only insert deallocframe if we need to. // if (hasFP(MF)) { MachineBasicBlock::iterator MBBI = prior(MBB.end()); MachineBasicBlock::iterator MBBI_end = MBB.end(); // // For Hexagon, we don't need the frame size. // MachineFrameInfo *MFI = MF.getFrameInfo(); int NumBytes = (int) MFI->getStackSize(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); // Replace 'jumpr r31' instruction with dealloc_return for V4 and higher // versions. if (STI.hasV4TOps() && MBBI->getOpcode() == Hexagon::JMPR && !DisableDeallocRet) { // Remove jumpr node. MBB.erase(MBBI); // Add dealloc_return. BuildMI(MBB, MBBI_end, dl, TII.get(Hexagon::DEALLOC_RET_V4)) .addImm(NumBytes); } else { // Add deallocframe for V2 and V3. BuildMI(MBB, MBBI, dl, TII.get(Hexagon::DEALLOCFRAME)).addImm(NumBytes); } } } bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const HexagonMachineFunctionInfo *FuncInfo = MF.getInfo(); return (MFI->hasCalls() || (MFI->getStackSize() > 0) || FuncInfo->hasClobberLR() ); } bool HexagonFrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { MachineFunction *MF = MBB.getParent(); const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); if (CSI.empty()) { return false; } // We can only schedule double loads if we spill contiguous callee-saved regs // For instance, we cannot scheduled double-word loads if we spill r24, // r26, and r27. // Hexagon_TODO: We can try to double-word align odd registers for -O2 and // above. bool ContiguousRegs = true; for (unsigned i = 0; i < CSI.size(); ++i) { unsigned Reg = CSI[i].getReg(); // // Check if we can use a double-word store. // const unsigned* SuperReg = TRI->getSuperRegisters(Reg); // Assume that there is exactly one superreg. assert(SuperReg[0] && !SuperReg[1] && "Expected exactly one superreg"); bool CanUseDblStore = false; const TargetRegisterClass* SuperRegClass = 0; if (ContiguousRegs && (i < CSI.size()-1)) { const unsigned* SuperRegNext = TRI->getSuperRegisters(CSI[i+1].getReg()); assert(SuperRegNext[0] && !SuperRegNext[1] && "Expected exactly one superreg"); SuperRegClass = TRI->getMinimalPhysRegClass(SuperReg[0]); CanUseDblStore = (SuperRegNext[0] == SuperReg[0]); } if (CanUseDblStore) { TII.storeRegToStackSlot(MBB, MI, SuperReg[0], true, CSI[i+1].getFrameIdx(), SuperRegClass, TRI); MBB.addLiveIn(SuperReg[0]); ++i; } else { // Cannot use a double-word store. ContiguousRegs = false; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i].getFrameIdx(), RC, TRI); MBB.addLiveIn(Reg); } } return true; } bool HexagonFrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { MachineFunction *MF = MBB.getParent(); const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); if (CSI.empty()) { return false; } // We can only schedule double loads if we spill contiguous callee-saved regs // For instance, we cannot scheduled double-word loads if we spill r24, // r26, and r27. // Hexagon_TODO: We can try to double-word align odd registers for -O2 and // above. bool ContiguousRegs = true; for (unsigned i = 0; i < CSI.size(); ++i) { unsigned Reg = CSI[i].getReg(); // // Check if we can use a double-word load. // const unsigned* SuperReg = TRI->getSuperRegisters(Reg); const TargetRegisterClass* SuperRegClass = 0; // Assume that there is exactly one superreg. assert(SuperReg[0] && !SuperReg[1] && "Expected exactly one superreg"); bool CanUseDblLoad = false; if (ContiguousRegs && (i < CSI.size()-1)) { const unsigned* SuperRegNext = TRI->getSuperRegisters(CSI[i+1].getReg()); assert(SuperRegNext[0] && !SuperRegNext[1] && "Expected exactly one superreg"); SuperRegClass = TRI->getMinimalPhysRegClass(SuperReg[0]); CanUseDblLoad = (SuperRegNext[0] == SuperReg[0]); } if (CanUseDblLoad) { TII.loadRegFromStackSlot(MBB, MI, SuperReg[0], CSI[i+1].getFrameIdx(), SuperRegClass, TRI); MBB.addLiveIn(SuperReg[0]); ++i; } else { // Cannot use a double-word load. ContiguousRegs = false; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); MBB.addLiveIn(Reg); } } return true; } int HexagonFrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const { return MF.getFrameInfo()->getObjectOffset(FI); }