//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAG class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Constants.h" #include "llvm/GlobalValue.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include using namespace llvm; static bool isCommutativeBinOp(unsigned Opcode) { switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: return true; default: return false; // FIXME: Need commutative info for user ops! } } static bool isAssociativeBinOp(unsigned Opcode) { switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: return true; default: return false; // FIXME: Need associative info for user ops! } } // isInvertibleForFree - Return true if there is no cost to emitting the logical // inverse of this node. static bool isInvertibleForFree(SDOperand N) { if (isa(N.Val)) return true; if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse()) return true; return false; } //===----------------------------------------------------------------------===// // ConstantFPSDNode Class //===----------------------------------------------------------------------===// /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool ConstantFPSDNode::isExactlyValue(double V) const { return DoubleToBits(V) == DoubleToBits(Value); } //===----------------------------------------------------------------------===// // ISD Class //===----------------------------------------------------------------------===// /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { // To perform this operation, we just need to swap the L and G bits of the // operation. unsigned OldL = (Operation >> 2) & 1; unsigned OldG = (Operation >> 1) & 1; return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits (OldL << 1) | // New G bit (OldG << 2)); // New L bit. } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { unsigned Operation = Op; if (isInteger) Operation ^= 7; // Flip L, G, E bits, but not U. else Operation ^= 15; // Flip all of the condition bits. if (Operation > ISD::SETTRUE2) Operation &= ~8; // Don't let N and U bits get set. return ISD::CondCode(Operation); } /// isSignedOp - For an integer comparison, return 1 if the comparison is a /// signed operation and 2 if the result is an unsigned comparison. Return zero /// if the operation does not depend on the sign of the input (setne and seteq). static int isSignedOp(ISD::CondCode Opcode) { switch (Opcode) { default: assert(0 && "Illegal integer setcc operation!"); case ISD::SETEQ: case ISD::SETNE: return 0; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return 1; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return 2; } } /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function /// returns SETCC_INVALID if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed integer setcc with an unsigned integer setcc. return ISD::SETCC_INVALID; unsigned Op = Op1 | Op2; // Combine all of the condition bits. // If the N and U bits get set then the resultant comparison DOES suddenly // care about orderedness, and is true when ordered. if (Op > ISD::SETTRUE2) Op &= ~16; // Clear the N bit. return ISD::CondCode(Op); } /// getSetCCAndOperation - Return the result of a logical AND between different /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns zero if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed setcc with an unsigned setcc. return ISD::SETCC_INVALID; // Combine all of the condition bits. return ISD::CondCode(Op1 & Op2); } const TargetMachine &SelectionDAG::getTarget() const { return TLI.getTargetMachine(); } //===----------------------------------------------------------------------===// // SelectionDAG Class //===----------------------------------------------------------------------===// /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG, including nodes (like loads) that have uses of their token /// chain but no other uses and no side effect. If a node is passed in as an /// argument, it is used as the seed for node deletion. void SelectionDAG::RemoveDeadNodes(SDNode *N) { std::set AllNodeSet(AllNodes.begin(), AllNodes.end()); // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted. SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot()); // If we have a hint to start from, use it. if (N) DeleteNodeIfDead(N, &AllNodeSet); Restart: unsigned NumNodes = AllNodeSet.size(); for (std::set::iterator I = AllNodeSet.begin(), E = AllNodeSet.end(); I != E; ++I) { // Try to delete this node. DeleteNodeIfDead(*I, &AllNodeSet); // If we actually deleted any nodes, do not use invalid iterators in // AllNodeSet. if (AllNodeSet.size() != NumNodes) goto Restart; } // Restore AllNodes. if (AllNodes.size() != NumNodes) AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end()); // If the root changed (e.g. it was a dead load, update the root). setRoot(DummyNode->getOperand(0)); // Now that we are done with the dummy node, delete it. DummyNode->getOperand(0).Val->removeUser(DummyNode); delete DummyNode; } void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) { if (!N->use_empty()) return; // Okay, we really are going to delete this node. First take this out of the // appropriate CSE map. RemoveNodeFromCSEMaps(N); // Next, brutally remove the operand list. This is safe to do, as there are // no cycles in the graph. while (!N->Operands.empty()) { SDNode *O = N->Operands.back().Val; N->Operands.pop_back(); O->removeUser(N); // Now that we removed this operand, see if there are no uses of it left. DeleteNodeIfDead(O, NodeSet); } // Remove the node from the nodes set and delete it. std::set &AllNodeSet = *(std::set*)NodeSet; AllNodeSet.erase(N); // Now that the node is gone, check to see if any of the operands of this node // are dead now. delete N; } /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that /// correspond to it. This is useful when we're about to delete or repurpose /// the node. We don't want future request for structurally identical nodes /// to return N anymore. void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { switch (N->getOpcode()) { case ISD::Constant: Constants.erase(std::make_pair(cast(N)->getValue(), N->getValueType(0))); break; case ISD::TargetConstant: TargetConstants.erase(std::make_pair(cast(N)->getValue(), N->getValueType(0))); break; case ISD::ConstantFP: { uint64_t V = DoubleToBits(cast(N)->getValue()); ConstantFPs.erase(std::make_pair(V, N->getValueType(0))); break; } case ISD::CONDCODE: assert(CondCodeNodes[cast(N)->get()] && "Cond code doesn't exist!"); CondCodeNodes[cast(N)->get()] = 0; break; case ISD::GlobalAddress: GlobalValues.erase(cast(N)->getGlobal()); break; case ISD::TargetGlobalAddress: TargetGlobalValues.erase(cast(N)->getGlobal()); break; case ISD::FrameIndex: FrameIndices.erase(cast(N)->getIndex()); break; case ISD::ConstantPool: ConstantPoolIndices.erase(cast(N)->getIndex()); break; case ISD::BasicBlock: BBNodes.erase(cast(N)->getBasicBlock()); break; case ISD::ExternalSymbol: ExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::VALUETYPE: ValueTypeNodes[cast(N)->getVT()] = 0; break; case ISD::Register: RegNodes[cast(N)->getReg()] = 0; break; case ISD::SRCVALUE: { SrcValueSDNode *SVN = cast(N); ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset())); break; } case ISD::LOAD: Loads.erase(std::make_pair(N->getOperand(1), std::make_pair(N->getOperand(0), N->getValueType(0)))); break; default: if (N->getNumOperands() == 1) UnaryOps.erase(std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getValueType(0)))); else if (N->getNumOperands() == 2) BinaryOps.erase(std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getOperand(1)))); else if (N->getNumValues() == 1) { std::vector Ops(N->op_begin(), N->op_end()); OneResultNodes.erase(std::make_pair(N->getOpcode(), std::make_pair(N->getValueType(0), Ops))); } else { // Remove the node from the ArbitraryNodes map. std::vector RV(N->value_begin(), N->value_end()); std::vector Ops(N->op_begin(), N->op_end()); ArbitraryNodes.erase(std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))); } break; } } /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It /// has been taken out and modified in some way. If the specified node already /// exists in the CSE maps, do not modify the maps, but return the existing node /// instead. If it doesn't exist, add it and return null. /// SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { assert(N->getNumOperands() && "This is a leaf node!"); if (N->getOpcode() == ISD::LOAD) { SDNode *&L = Loads[std::make_pair(N->getOperand(1), std::make_pair(N->getOperand(0), N->getValueType(0)))]; if (L) return L; L = N; } else if (N->getNumOperands() == 1) { SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getValueType(0)))]; if (U) return U; U = N; } else if (N->getNumOperands() == 2) { SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getOperand(1)))]; if (B) return B; B = N; } else if (N->getNumValues() == 1) { std::vector Ops(N->op_begin(), N->op_end()); SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(), std::make_pair(N->getValueType(0), Ops))]; if (ORN) return ORN; ORN = N; } else { // Remove the node from the ArbitraryNodes map. std::vector RV(N->value_begin(), N->value_end()); std::vector Ops(N->op_begin(), N->op_end()); SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))]; if (AN) return AN; AN = N; } return 0; } SelectionDAG::~SelectionDAG() { for (unsigned i = 0, e = AllNodes.size(); i != e; ++i) delete AllNodes[i]; } SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { if (Op.getValueType() == VT) return Op; int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); return getNode(ISD::AND, Op.getValueType(), Op, getConstant(Imm, Op.getValueType())); } SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) { assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); // Mask out any bits that are not valid for this constant. if (VT != MVT::i64) Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; SDNode *&N = Constants[std::make_pair(Val, VT)]; if (N) return SDOperand(N, 0); N = new ConstantSDNode(false, Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) { assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); // Mask out any bits that are not valid for this constant. if (VT != MVT::i64) Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; SDNode *&N = TargetConstants[std::make_pair(Val, VT)]; if (N) return SDOperand(N, 0); N = new ConstantSDNode(true, Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) { assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); if (VT == MVT::f32) Val = (float)Val; // Mask out extra precision. // Do the map lookup using the actual bit pattern for the floating point // value, so that we don't have problems with 0.0 comparing equal to -0.0, and // we don't have issues with SNANs. SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)]; if (N) return SDOperand(N, 0); N = new ConstantFPSDNode(Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, MVT::ValueType VT) { SDNode *&N = GlobalValues[GV]; if (N) return SDOperand(N, 0); N = new GlobalAddressSDNode(false, GV, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV, MVT::ValueType VT) { SDNode *&N = TargetGlobalValues[GV]; if (N) return SDOperand(N, 0); N = new GlobalAddressSDNode(true, GV, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) { SDNode *&N = FrameIndices[FI]; if (N) return SDOperand(N, 0); N = new FrameIndexSDNode(FI, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantPool(unsigned CPIdx, MVT::ValueType VT) { SDNode *N = ConstantPoolIndices[CPIdx]; if (N) return SDOperand(N, 0); N = new ConstantPoolSDNode(CPIdx, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { SDNode *&N = BBNodes[MBB]; if (N) return SDOperand(N, 0); N = new BasicBlockSDNode(MBB); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { if ((unsigned)VT >= ValueTypeNodes.size()) ValueTypeNodes.resize(VT+1); if (ValueTypeNodes[VT] == 0) { ValueTypeNodes[VT] = new VTSDNode(VT); AllNodes.push_back(ValueTypeNodes[VT]); } return SDOperand(ValueTypeNodes[VT], 0); } SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { SDNode *&N = ExternalSymbols[Sym]; if (N) return SDOperand(N, 0); N = new ExternalSymbolSDNode(Sym, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { if ((unsigned)Cond >= CondCodeNodes.size()) CondCodeNodes.resize(Cond+1); if (CondCodeNodes[Cond] == 0) { CondCodeNodes[Cond] = new CondCodeSDNode(Cond); AllNodes.push_back(CondCodeNodes[Cond]); } return SDOperand(CondCodeNodes[Cond], 0); } SDOperand SelectionDAG::getRegister(unsigned Reg, MVT::ValueType VT) { if (Reg >= RegNodes.size()) RegNodes.resize(Reg+1); RegisterSDNode *&Result = RegNodes[Reg]; if (Result) { assert(Result->getValueType(0) == VT && "Inconsistent value types for machine registers"); } else { Result = new RegisterSDNode(Reg, VT); AllNodes.push_back(Result); } return SDOperand(Result, 0); } SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1, SDOperand N2, ISD::CondCode Cond) { // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return getConstant(0, VT); case ISD::SETTRUE: case ISD::SETTRUE2: return getConstant(1, VT); } if (ConstantSDNode *N2C = dyn_cast(N2.Val)) { uint64_t C2 = N2C->getValue(); if (ConstantSDNode *N1C = dyn_cast(N1.Val)) { uint64_t C1 = N1C->getValue(); // Sign extend the operands if required if (ISD::isSignedIntSetCC(Cond)) { C1 = N1C->getSignExtended(); C2 = N2C->getSignExtended(); } switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETULT: return getConstant(C1 < C2, VT); case ISD::SETUGT: return getConstant(C1 > C2, VT); case ISD::SETULE: return getConstant(C1 <= C2, VT); case ISD::SETUGE: return getConstant(C1 >= C2, VT); case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT); case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT); case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT); case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT); } } else { // If the LHS is a ZERO_EXTEND and if this is an ==/!= comparison, perform // the comparison on the input. if (N1.getOpcode() == ISD::ZERO_EXTEND) { unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType()); // If the comparison constant has bits in the upper part, the // zero-extended value could never match. if (C2 & (~0ULL << InSize)) { unsigned VSize = MVT::getSizeInBits(N1.getValueType()); switch (Cond) { case ISD::SETUGT: case ISD::SETUGE: case ISD::SETEQ: return getConstant(0, VT); case ISD::SETULT: case ISD::SETULE: case ISD::SETNE: return getConstant(1, VT); case ISD::SETGT: case ISD::SETGE: // True if the sign bit of C2 is set. return getConstant((C2 & (1ULL << VSize)) != 0, VT); case ISD::SETLT: case ISD::SETLE: // True if the sign bit of C2 isn't set. return getConstant((C2 & (1ULL << VSize)) == 0, VT); default: break; } } // Otherwise, we can perform the comparison with the low bits. switch (Cond) { case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULT: case ISD::SETULE: return getSetCC(VT, N1.getOperand(0), getConstant(C2, N1.getOperand(0).getValueType()), Cond); default: break; // todo, be more careful with signed comparisons } } uint64_t MinVal, MaxVal; unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0)); if (ISD::isSignedIntSetCC(Cond)) { MinVal = 1ULL << (OperandBitSize-1); if (OperandBitSize != 1) // Avoid X >> 64, which is undefined. MaxVal = ~0ULL >> (65-OperandBitSize); else MaxVal = 0; } else { MinVal = 0; MaxVal = ~0ULL >> (64-OperandBitSize); } // Canonicalize GE/LE comparisons to use GT/LT comparisons. if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { if (C2 == MinVal) return getConstant(1, VT); // X >= MIN --> true --C2; // X >= C1 --> X > (C1-1) return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); } if (Cond == ISD::SETLE || Cond == ISD::SETULE) { if (C2 == MaxVal) return getConstant(1, VT); // X <= MAX --> true ++C2; // X <= C1 --> X < (C1+1) return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); } if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal) return getConstant(0, VT); // X < MIN --> false // Canonicalize setgt X, Min --> setne X, Min if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal) return getSetCC(VT, N1, N2, ISD::SETNE); // If we have setult X, 1, turn it into seteq X, 0 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1) return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1) return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()), ISD::SETEQ); // If we have "setcc X, C1", check to see if we can shrink the immediate // by changing cc. // SETUGT X, SINTMAX -> SETLT X, 0 if (Cond == ISD::SETUGT && OperandBitSize != 1 && C2 == (~0ULL >> (65-OperandBitSize))) return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT); // FIXME: Implement the rest of these. // Fold bit comparisons when we can. if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && VT == N1.getValueType() && N1.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N1.getOperand(1))) { if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { return getNode(ISD::SRL, VT, N1, getConstant(Log2_64(AndRHS->getValue()), TLI.getShiftAmountTy())); } } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) { // (X & 8) == 8 --> (X & 8) >> 3 // Perform the xform if C2 is a single bit. if ((C2 & (C2-1)) == 0) { return getNode(ISD::SRL, VT, N1, getConstant(Log2_64(C2),TLI.getShiftAmountTy())); } } } } } else if (isa(N1.Val)) { // Ensure that the constant occurs on the RHS. return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); } if (ConstantFPSDNode *N1C = dyn_cast(N1.Val)) if (ConstantFPSDNode *N2C = dyn_cast(N2.Val)) { double C1 = N1C->getValue(), C2 = N2C->getValue(); switch (Cond) { default: break; // FIXME: Implement the rest of these! case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETLT: return getConstant(C1 < C2, VT); case ISD::SETGT: return getConstant(C1 > C2, VT); case ISD::SETLE: return getConstant(C1 <= C2, VT); case ISD::SETGE: return getConstant(C1 >= C2, VT); } } else { // Ensure that the constant occurs on the RHS. return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); } if (N1 == N2) { // We can always fold X == Y for integer setcc's. if (MVT::isInteger(N1.getValueType())) return getConstant(ISD::isTrueWhenEqual(Cond), VT); unsigned UOF = ISD::getUnorderedFlavor(Cond); if (UOF == 2) // FP operators that are undefined on NaNs. return getConstant(ISD::isTrueWhenEqual(Cond), VT); if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) return getConstant(UOF, VT); // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO // if it is not already. ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO; if (NewCond != Cond) return getSetCC(VT, N1, N2, NewCond); } if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && MVT::isInteger(N1.getValueType())) { if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::XOR) { // Simplify (X+Y) == (X+Z) --> Y == Z if (N1.getOpcode() == N2.getOpcode()) { if (N1.getOperand(0) == N2.getOperand(0)) return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond); if (N1.getOperand(1) == N2.getOperand(1)) return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond); if (isCommutativeBinOp(N1.getOpcode())) { // If X op Y == Y op X, try other combinations. if (N1.getOperand(0) == N2.getOperand(1)) return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond); if (N1.getOperand(1) == N2.getOperand(0)) return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond); } } // FIXME: move this stuff to the DAG Combiner when it exists! // Simplify (X+Z) == X --> Z == 0 if (N1.getOperand(0) == N2) return getSetCC(VT, N1.getOperand(1), getConstant(0, N1.getValueType()), Cond); if (N1.getOperand(1) == N2) { if (isCommutativeBinOp(N1.getOpcode())) return getSetCC(VT, N1.getOperand(0), getConstant(0, N1.getValueType()), Cond); else { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); // (Z-X) == X --> Z == X<<1 return getSetCC(VT, N1.getOperand(0), getNode(ISD::SHL, N2.getValueType(), N2, getConstant(1, TLI.getShiftAmountTy())), Cond); } } } if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB || N2.getOpcode() == ISD::XOR) { // Simplify X == (X+Z) --> Z == 0 if (N2.getOperand(0) == N1) { return getSetCC(VT, N2.getOperand(1), getConstant(0, N2.getValueType()), Cond); } else if (N2.getOperand(1) == N1) { if (isCommutativeBinOp(N2.getOpcode())) { return getSetCC(VT, N2.getOperand(0), getConstant(0, N2.getValueType()), Cond); } else { assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!"); // X == (Z-X) --> X<<1 == Z return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1, getConstant(1, TLI.getShiftAmountTy())), N2.getOperand(0), Cond); } } } } // Fold away ALL boolean setcc's. if (N1.getValueType() == MVT::i1) { switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: // X == Y -> (X^Y)^1 N1 = getNode(ISD::XOR, MVT::i1, getNode(ISD::XOR, MVT::i1, N1, N2), getConstant(1, MVT::i1)); break; case ISD::SETNE: // X != Y --> (X^Y) N1 = getNode(ISD::XOR, MVT::i1, N1, N2); break; case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y case ISD::SETULT: // X X == 0 & Y == 1 --> X^1 & Y N1 = getNode(ISD::AND, MVT::i1, N2, getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1))); break; case ISD::SETLT: // X X == 1 & Y == 0 --> Y^1 & X case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X N1 = getNode(ISD::AND, MVT::i1, N1, getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1))); break; case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y N1 = getNode(ISD::OR, MVT::i1, N2, getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1))); break; case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X N1 = getNode(ISD::OR, MVT::i1, N1, getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1))); break; } if (VT != MVT::i1) N1 = getNode(ISD::ZERO_EXTEND, VT, N1); return N1; } // Could not fold it. return SDOperand(); } SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4, ISD::CondCode CC) { MVT::ValueType VT = N3.getValueType(); ConstantSDNode *N2C = dyn_cast(N2.Val); ConstantSDNode *N3C = dyn_cast(N3.Val); ConstantSDNode *N4C = dyn_cast(N4.Val); // Check to see if we can simplify the select into an fabs node if (ConstantFPSDNode *CFP = dyn_cast(N2)) { // Allow either -0.0 or 0.0 if (CFP->getValue() == 0.0) { // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs if ((CC == ISD::SETGE || CC == ISD::SETGT) && N1 == N3 && N4.getOpcode() == ISD::FNEG && N1 == N4.getOperand(0)) return getNode(ISD::FABS, VT, N1); // select (setl[te] X, +/-0.0), fneg(X), X -> fabs if ((CC == ISD::SETLT || CC == ISD::SETLE) && N1 == N4 && N3.getOpcode() == ISD::FNEG && N3.getOperand(0) == N4) return getNode(ISD::FABS, VT, N4); } } // Check to see if we can perform the "gzip trick", transforming // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() && MVT::isInteger(N1.getValueType()) && MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) { MVT::ValueType XType = N1.getValueType(); MVT::ValueType AType = N3.getValueType(); if (XType >= AType) { // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a // single-bit constant. FIXME: remove once the dag combiner // exists. if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) { unsigned ShCtV = Log2_64(N3C->getValue()); ShCtV = MVT::getSizeInBits(XType)-ShCtV-1; SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy()); SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt); if (XType > AType) Shift = getNode(ISD::TRUNCATE, AType, Shift); return getNode(ISD::AND, AType, Shift, N3); } SDOperand Shift = getNode(ISD::SRA, XType, N1, getConstant(MVT::getSizeInBits(XType)-1, TLI.getShiftAmountTy())); if (XType > AType) Shift = getNode(ISD::TRUNCATE, AType, Shift); return getNode(ISD::AND, AType, Shift, N3); } } // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> // Y = sra (X, size(X)-1); xor (add (X, Y), Y) if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) { if (ConstantSDNode *SubC = dyn_cast(N3.getOperand(0))) { MVT::ValueType XType = N1.getValueType(); if (SubC->isNullValue() && MVT::isInteger(XType)) { SDOperand Shift = getNode(ISD::SRA, XType, N1, getConstant(MVT::getSizeInBits(XType)-1, TLI.getShiftAmountTy())); return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift), Shift); } } } // Could not fold it. return SDOperand(); } /// getNode - Gets or creates the specified node. /// SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { SDNode *N = new SDNode(Opcode, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand Operand) { if (ConstantSDNode *C = dyn_cast(Operand.Val)) { uint64_t Val = C->getValue(); switch (Opcode) { default: break; case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); case ISD::ZERO_EXTEND: return getConstant(Val, VT); case ISD::TRUNCATE: return getConstant(Val, VT); case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT); case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT); } } if (ConstantFPSDNode *C = dyn_cast(Operand.Val)) switch (Opcode) { case ISD::FNEG: return getConstantFP(-C->getValue(), VT); case ISD::FP_ROUND: case ISD::FP_EXTEND: return getConstantFP(C->getValue(), VT); case ISD::FP_TO_SINT: return getConstant((int64_t)C->getValue(), VT); case ISD::FP_TO_UINT: return getConstant((uint64_t)C->getValue(), VT); } unsigned OpOpcode = Operand.Val->getOpcode(); switch (Opcode) { case ISD::TokenFactor: return Operand; // Factor of one node? No factor. case ISD::SIGN_EXTEND: if (Operand.getValueType() == VT) return Operand; // noop extension if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); break; case ISD::ZERO_EXTEND: if (Operand.getValueType() == VT) return Operand; // noop extension if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); break; case ISD::TRUNCATE: if (Operand.getValueType() == VT) return Operand; // noop truncate if (OpOpcode == ISD::TRUNCATE) return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) { // If the source is smaller than the dest, we still need an extend. if (Operand.Val->getOperand(0).getValueType() < VT) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); else if (Operand.Val->getOperand(0).getValueType() > VT) return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); else return Operand.Val->getOperand(0); } break; case ISD::FNEG: if (OpOpcode == ISD::SUB) // -(X-Y) -> (Y-X) return getNode(ISD::SUB, VT, Operand.Val->getOperand(1), Operand.Val->getOperand(0)); if (OpOpcode == ISD::FNEG) // --X -> X return Operand.Val->getOperand(0); break; case ISD::FABS: if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); break; } SDNode *&N = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))]; if (N) return SDOperand(N, 0); N = new SDNode(Opcode, Operand); N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. V and Mask are known to /// be the same type. static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask, const TargetLowering &TLI) { unsigned SrcBits; if (Mask == 0) return true; // If we know the result of a setcc has the top bits zero, use this info. switch (Op.getOpcode()) { case ISD::Constant: return (cast(Op)->getValue() & Mask) == 0; case ISD::SETCC: return ((Mask & 1) == 0) && TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult; case ISD::ZEXTLOAD: SrcBits = MVT::getSizeInBits(cast(Op.getOperand(3))->getVT()); return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits. case ISD::ZERO_EXTEND: SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType()); return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI); case ISD::AND: // (X & C1) & C2 == 0 iff C1 & C2 == 0. if (ConstantSDNode *AndRHS = dyn_cast(Op.getOperand(1))) return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI); // FALL THROUGH case ISD::OR: case ISD::XOR: return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) && MaskedValueIsZero(Op.getOperand(1), Mask, TLI); case ISD::SELECT: return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) && MaskedValueIsZero(Op.getOperand(2), Mask, TLI); case ISD::SRL: // (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0 if (ConstantSDNode *ShAmt = dyn_cast(Op.getOperand(1))) { uint64_t NewVal = Mask << ShAmt->getValue(); SrcBits = MVT::getSizeInBits(Op.getValueType()); if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1; return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); } return false; case ISD::SHL: // (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0 if (ConstantSDNode *ShAmt = dyn_cast(Op.getOperand(1))) { uint64_t NewVal = Mask >> ShAmt->getValue(); return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); } return false; // TODO we could handle some SRA cases here. default: break; } return false; } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2) { #ifndef NDEBUG switch (Opcode) { case ISD::TokenFactor: assert(VT == MVT::Other && N1.getValueType() == MVT::Other && N2.getValueType() == MVT::Other && "Invalid token factor!"); break; case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::UDIV: case ISD::UREM: case ISD::MULHU: case ISD::MULHS: assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); // fall through case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SDIV: case ISD::SREM: assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: assert(VT == N1.getValueType() && "Shift operators return type must be the same as their first arg"); assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && VT != MVT::i1 && "Shifts only work on integers"); break; case ISD::FP_ROUND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg round!"); assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && "Cannot FP_ROUND_INREG integer types"); assert(EVT <= VT && "Not rounding down!"); break; } case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && "Cannot *_EXTEND_INREG FP types"); assert(EVT <= VT && "Not extending!"); } default: break; } #endif ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); if (N1C) { if (N2C) { uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); switch (Opcode) { case ISD::ADD: return getConstant(C1 + C2, VT); case ISD::SUB: return getConstant(C1 - C2, VT); case ISD::MUL: return getConstant(C1 * C2, VT); case ISD::UDIV: if (C2) return getConstant(C1 / C2, VT); break; case ISD::UREM : if (C2) return getConstant(C1 % C2, VT); break; case ISD::SDIV : if (C2) return getConstant(N1C->getSignExtended() / N2C->getSignExtended(), VT); break; case ISD::SREM : if (C2) return getConstant(N1C->getSignExtended() % N2C->getSignExtended(), VT); break; case ISD::AND : return getConstant(C1 & C2, VT); case ISD::OR : return getConstant(C1 | C2, VT); case ISD::XOR : return getConstant(C1 ^ C2, VT); case ISD::SHL : return getConstant(C1 << (int)C2, VT); case ISD::SRL : return getConstant(C1 >> (unsigned)C2, VT); case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT); default: break; } } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1C, N2C); std::swap(N1, N2); } } switch (Opcode) { default: break; case ISD::SHL: // shl 0, X -> 0 if (N1C->isNullValue()) return N1; break; case ISD::SRL: // srl 0, X -> 0 if (N1C->isNullValue()) return N1; break; case ISD::SRA: // sra -1, X -> -1 if (N1C->isAllOnesValue()) return N1; break; case ISD::SIGN_EXTEND_INREG: // SIGN_EXTEND_INREG N1C, EVT // Extending a constant? Just return the extended constant. SDOperand Tmp = getNode(ISD::TRUNCATE, cast(N2)->getVT(), N1); return getNode(ISD::SIGN_EXTEND, VT, Tmp); } } if (N2C) { uint64_t C2 = N2C->getValue(); switch (Opcode) { case ISD::ADD: if (!C2) return N1; // add X, 0 -> X break; case ISD::SUB: if (!C2) return N1; // sub X, 0 -> X return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT)); case ISD::MUL: if (!C2) return N2; // mul X, 0 -> 0 if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X return getNode(ISD::SUB, VT, getConstant(0, VT), N1); // FIXME: Move this to the DAG combiner when it exists. if ((C2 & C2-1) == 0) { SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy()); return getNode(ISD::SHL, VT, N1, ShAmt); } break; case ISD::MULHU: case ISD::MULHS: if (!C2) return N2; // mul X, 0 -> 0 if (C2 == 1) // 0X*01 -> 0X hi(0X) == 0 return getConstant(0, VT); // Many others could be handled here, including -1, powers of 2, etc. break; case ISD::UDIV: // FIXME: Move this to the DAG combiner when it exists. if ((C2 & C2-1) == 0 && C2) { SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy()); return getNode(ISD::SRL, VT, N1, ShAmt); } break; case ISD::SHL: case ISD::SRL: case ISD::SRA: // If the shift amount is bigger than the size of the data, then all the // bits are shifted out. Simplify to undef. if (C2 >= MVT::getSizeInBits(N1.getValueType())) { return getNode(ISD::UNDEF, N1.getValueType()); } if (C2 == 0) return N1; if (Opcode == ISD::SRA) { // If the sign bit is known to be zero, switch this to a SRL. if (MaskedValueIsZero(N1, 1ULL << (MVT::getSizeInBits(N1.getValueType())-1), TLI)) return getNode(ISD::SRL, N1.getValueType(), N1, N2); } else { // If the part left over is known to be zero, the whole thing is zero. uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType())); if (Opcode == ISD::SRL) { if (MaskedValueIsZero(N1, TypeMask << C2, TLI)) return getConstant(0, N1.getValueType()); } else if (Opcode == ISD::SHL) { if (MaskedValueIsZero(N1, TypeMask >> C2, TLI)) return getConstant(0, N1.getValueType()); } } if (Opcode == ISD::SHL && N1.getNumOperands() == 2) if (ConstantSDNode *OpSA = dyn_cast(N1.getOperand(1))) { unsigned OpSAC = OpSA->getValue(); if (N1.getOpcode() == ISD::SHL) { if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType())) return getConstant(0, N1.getValueType()); return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0), getConstant(C2+OpSAC, N2.getValueType())); } else if (N1.getOpcode() == ISD::SRL) { // (X >> C1) << C2: if C2 > C1, ((X & ~0< OpSAC) { return getNode(ISD::SHL, VT, Mask, getConstant(C2-OpSAC, N2.getValueType())); } else { // (X >> C1) << C2: if C2 <= C1, ((X & ~0<> C1-C2) return getNode(ISD::SRL, VT, Mask, getConstant(OpSAC-C2, N2.getValueType())); } } else if (N1.getOpcode() == ISD::SRA) { // if C1 == C2, just mask out low bits. if (C2 == OpSAC) return getNode(ISD::AND, VT, N1.getOperand(0), getConstant(~0ULL << C2, VT)); } } break; case ISD::AND: if (!C2) return N2; // X and 0 -> 0 if (N2C->isAllOnesValue()) return N1; // X and -1 -> X if (MaskedValueIsZero(N1, C2, TLI)) // X and 0 -> 0 return getConstant(0, VT); { uint64_t NotC2 = ~C2; if (VT != MVT::i64) NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1; if (MaskedValueIsZero(N1, NotC2, TLI)) return N1; // if (X & ~C2) -> 0, the and is redundant } // FIXME: Should add a corresponding version of this for // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which // we don't have yet. // and (sign_extend_inreg x:16:32), 1 -> and x, 1 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { // If we are masking out the part of our input that was extended, just // mask the input to the extension directly. unsigned ExtendBits = MVT::getSizeInBits(cast(N1.getOperand(1))->getVT()); if ((C2 & (~0ULL << ExtendBits)) == 0) return getNode(ISD::AND, VT, N1.getOperand(0), N2); } else if (N1.getOpcode() == ISD::OR) { if (ConstantSDNode *ORI = dyn_cast(N1.getOperand(1))) if ((ORI->getValue() & C2) == C2) { // If the 'or' is setting all of the bits that we are masking for, // we know the result of the AND will be the AND mask itself. return N2; } } break; case ISD::OR: if (!C2)return N1; // X or 0 -> X if (N2C->isAllOnesValue()) return N2; // X or -1 -> -1 break; case ISD::XOR: if (!C2) return N1; // X xor 0 -> X if (N2C->isAllOnesValue()) { if (N1.Val->getOpcode() == ISD::SETCC){ SDNode *SetCC = N1.Val; // !(X op Y) -> (X !op Y) bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType()); ISD::CondCode CC = cast(SetCC->getOperand(2))->get(); return getSetCC(SetCC->getValueType(0), SetCC->getOperand(0), SetCC->getOperand(1), ISD::getSetCCInverse(CC, isInteger)); } else if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) { SDNode *Op = N1.Val; // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1); if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) { LHS = getNode(ISD::XOR, VT, LHS, N2); // RHS = ~LHS RHS = getNode(ISD::XOR, VT, RHS, N2); // RHS = ~RHS if (Op->getOpcode() == ISD::AND) return getNode(ISD::OR, VT, LHS, RHS); return getNode(ISD::AND, VT, LHS, RHS); } } // X xor -1 -> not(x) ? } break; } // Reassociate ((X op C1) op C2) if possible. if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode)) if (ConstantSDNode *N3C = dyn_cast(N1.Val->getOperand(1))) return getNode(Opcode, VT, N1.Val->getOperand(0), getNode(Opcode, VT, N2, N1.Val->getOperand(1))); } ConstantFPSDNode *N1CFP = dyn_cast(N1.Val); ConstantFPSDNode *N2CFP = dyn_cast(N2.Val); if (N1CFP) { if (N2CFP) { double C1 = N1CFP->getValue(), C2 = N2CFP->getValue(); switch (Opcode) { case ISD::ADD: return getConstantFP(C1 + C2, VT); case ISD::SUB: return getConstantFP(C1 - C2, VT); case ISD::MUL: return getConstantFP(C1 * C2, VT); case ISD::SDIV: if (C2) return getConstantFP(C1 / C2, VT); break; case ISD::SREM : if (C2) return getConstantFP(fmod(C1, C2), VT); break; default: break; } } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1CFP, N2CFP); std::swap(N1, N2); } } if (Opcode == ISD::FP_ROUND_INREG) return getNode(ISD::FP_EXTEND, VT, getNode(ISD::FP_ROUND, cast(N2)->getVT(), N1)); } // Finally, fold operations that do not require constants. switch (Opcode) { case ISD::TokenFactor: if (N1.getOpcode() == ISD::EntryToken) return N2; if (N2.getOpcode() == ISD::EntryToken) return N1; break; case ISD::AND: case ISD::OR: if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){ SDNode *LHS = N1.Val, *RHS = N2.Val; SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0); SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1); ISD::CondCode Op1 = cast(LHS->getOperand(2))->get(); ISD::CondCode Op2 = cast(RHS->getOperand(2))->get(); if (LR == RR && isa(LR) && Op2 == Op1 && MVT::isInteger(LL.getValueType())) { // (X != 0) | (Y != 0) -> (X|Y != 0) // (X == 0) & (Y == 0) -> (X|Y == 0) // (X < 0) | (Y < 0) -> (X|Y < 0) if (cast(LR)->getValue() == 0 && ((Op2 == ISD::SETEQ && Opcode == ISD::AND) || (Op2 == ISD::SETNE && Opcode == ISD::OR) || (Op2 == ISD::SETLT && Opcode == ISD::OR))) return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR, Op2); if (cast(LR)->isAllOnesValue()) { // (X == -1) & (Y == -1) -> (X&Y == -1) // (X != -1) | (Y != -1) -> (X&Y != -1) // (X > -1) | (Y > -1) -> (X&Y > -1) if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) || (Opcode == ISD::OR && Op2 == ISD::SETNE) || (Opcode == ISD::OR && Op2 == ISD::SETGT)) return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL), LR, Op2); // (X > -1) & (Y > -1) -> (X|Y > -1) if (Opcode == ISD::AND && Op2 == ISD::SETGT) return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR, Op2); } } // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y) if (LL == RR && LR == RL) { Op2 = ISD::getSetCCSwappedOperands(Op2); goto MatchedBackwards; } if (LL == RL && LR == RR) { MatchedBackwards: ISD::CondCode Result; bool isInteger = MVT::isInteger(LL.getValueType()); if (Opcode == ISD::OR) Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger); else Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger); if (Result != ISD::SETCC_INVALID) return getSetCC(LHS->getValueType(0), LL, LR, Result); } } // and/or zext(a), zext(b) -> zext(and/or a, b) if (N1.getOpcode() == ISD::ZERO_EXTEND && N2.getOpcode() == ISD::ZERO_EXTEND && N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType()) return getNode(ISD::ZERO_EXTEND, VT, getNode(Opcode, N1.getOperand(0).getValueType(), N1.getOperand(0), N2.getOperand(0))); break; case ISD::XOR: if (N1 == N2) return getConstant(0, VT); // xor X, Y -> 0 break; case ISD::ADD: if (N2.getOpcode() == ISD::FNEG) // (A+ (-B) -> A-B return getNode(ISD::SUB, VT, N1, N2.getOperand(0)); if (N1.getOpcode() == ISD::FNEG) // ((-A)+B) -> B-A return getNode(ISD::SUB, VT, N2, N1.getOperand(0)); if (N1.getOpcode() == ISD::SUB && isa(N1.getOperand(0)) && cast(N1.getOperand(0))->getValue() == 0) return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A if (N2.getOpcode() == ISD::SUB && isa(N2.getOperand(0)) && cast(N2.getOperand(0))->getValue() == 0) return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) && !MVT::isFloatingPoint(N2.getValueType())) return N2.Val->getOperand(0); // A+(B-A) -> B break; case ISD::SUB: if (N1.getOpcode() == ISD::ADD) { if (N1.Val->getOperand(0) == N2 && !MVT::isFloatingPoint(N2.getValueType())) return N1.Val->getOperand(1); // (A+B)-A == B if (N1.Val->getOperand(1) == N2 && !MVT::isFloatingPoint(N2.getValueType())) return N1.Val->getOperand(0); // (A+B)-B == A } if (N2.getOpcode() == ISD::FNEG) // (A- (-B) -> A+B return getNode(ISD::ADD, VT, N1, N2.getOperand(0)); break; case ISD::FP_ROUND_INREG: if (cast(N2)->getVT() == VT) return N1; // Not actually rounding. break; case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); if (EVT == VT) return N1; // Not actually extending // If we are sign extending an extension, use the original source. if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) if (cast(N1.getOperand(1))->getVT() <= EVT) return N1; // If we are sign extending a sextload, return just the load. if (N1.getOpcode() == ISD::SEXTLOAD) if (cast(N1.getOperand(3))->getVT() <= EVT) return N1; // If we are extending the result of a setcc, and we already know the // contents of the top bits, eliminate the extension. if (N1.getOpcode() == ISD::SETCC && TLI.getSetCCResultContents() == TargetLowering::ZeroOrNegativeOneSetCCResult) return N1; // If we are sign extending the result of an (and X, C) operation, and we // know the extended bits are zeros already, don't do the extend. if (N1.getOpcode() == ISD::AND) if (ConstantSDNode *N1C = dyn_cast(N1.getOperand(1))) { uint64_t Mask = N1C->getValue(); unsigned NumBits = MVT::getSizeInBits(EVT); if ((Mask & (~0ULL << (NumBits-1))) == 0) return N1; } break; } // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SHL: case ISD::SRL: case ISD::SRA: if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N2.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2.getOperand(0)); else if (N2.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N2.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = MVT::getSizeInBits(VT); if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2.getOperand(0)); } break; #endif } // Memoize this node if possible. SDNode *N; if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END) { SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))]; if (BON) return SDOperand(BON, 0); BON = N = new SDNode(Opcode, N1, N2); } else { N = new SDNode(Opcode, N1, N2); } N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } // setAdjCallChain - This method changes the token chain of an // CALLSEQ_START/END node to be the specified operand. void SDNode::setAdjCallChain(SDOperand N) { assert(N.getValueType() == MVT::Other); assert((getOpcode() == ISD::CALLSEQ_START || getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!"); Operands[0].Val->removeUser(this); Operands[0] = N; N.Val->Uses.push_back(this); } SDOperand SelectionDAG::getLoad(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV) { SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))]; if (N) return SDOperand(N, 0); N = new SDNode(ISD::LOAD, Chain, Ptr, SV); // Loads have a token chain. N->setValueTypes(VT, MVT::Other); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV, MVT::ValueType EVT) { std::vector Ops; Ops.reserve(4); Ops.push_back(Chain); Ops.push_back(Ptr); Ops.push_back(SV); Ops.push_back(getValueType(EVT)); std::vector VTs; VTs.reserve(2); VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain. return getNode(Opcode, VTs, Ops); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3) { // Perform various simplifications. ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); ConstantSDNode *N3C = dyn_cast(N3.Val); switch (Opcode) { case ISD::SETCC: { // Use SimplifySetCC to simplify SETCC's. SDOperand Simp = SimplifySetCC(VT, N1, N2, cast(N3)->get()); if (Simp.Val) return Simp; break; } case ISD::SELECT: if (N1C) if (N1C->getValue()) return N2; // select true, X, Y -> X else return N3; // select false, X, Y -> Y if (N2 == N3) return N2; // select C, X, X -> X if (VT == MVT::i1) { // Boolean SELECT if (N2C) { if (N2C->getValue()) // select C, 1, X -> C | X return getNode(ISD::OR, VT, N1, N3); else // select C, 0, X -> ~C & X return getNode(ISD::AND, VT, getNode(ISD::XOR, N1.getValueType(), N1, getConstant(1, N1.getValueType())), N3); } else if (N3C) { if (N3C->getValue()) // select C, X, 1 -> ~C | X return getNode(ISD::OR, VT, getNode(ISD::XOR, N1.getValueType(), N1, getConstant(1, N1.getValueType())), N2); else // select C, X, 0 -> C & X return getNode(ISD::AND, VT, N1, N2); } if (N1 == N2) // X ? X : Y --> X ? 1 : Y --> X | Y return getNode(ISD::OR, VT, N1, N3); if (N1 == N3) // X ? Y : X --> X ? Y : 0 --> X & Y return getNode(ISD::AND, VT, N1, N2); } if (N1.getOpcode() == ISD::SETCC) { SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2, N3, cast(N1.getOperand(2))->get()); if (Simp.Val) return Simp; } break; case ISD::BRCOND: if (N2C) if (N2C->getValue()) // Unconditional branch return getNode(ISD::BR, MVT::Other, N1, N3); else return N1; // Never-taken branch break; } std::vector Ops; Ops.reserve(3); Ops.push_back(N1); Ops.push_back(N2); Ops.push_back(N3); // Memoize nodes. SDNode *&N = OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))]; if (N) return SDOperand(N, 0); N = new SDNode(Opcode, N1, N2, N3); N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4) { std::vector Ops; Ops.reserve(4); Ops.push_back(N1); Ops.push_back(N2); Ops.push_back(N3); Ops.push_back(N4); return getNode(Opcode, VT, Ops); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4, SDOperand N5) { if (ISD::SELECT_CC == Opcode) { assert(N1.getValueType() == N2.getValueType() && "LHS and RHS of condition must have same type!"); assert(N3.getValueType() == N4.getValueType() && "True and False arms of SelectCC must have same type!"); assert(N3.getValueType() == VT && "select_cc node must be of same type as true and false value!"); SDOperand Simp = SimplifySelectCC(N1, N2, N3, N4, cast(N5)->get()); if (Simp.Val) return Simp; } std::vector Ops; Ops.reserve(5); Ops.push_back(N1); Ops.push_back(N2); Ops.push_back(N3); Ops.push_back(N4); Ops.push_back(N5); return getNode(Opcode, VT, Ops); } SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { assert((!V || isa(V->getType())) && "SrcValue is not a pointer?"); SDNode *&N = ValueNodes[std::make_pair(V, Offset)]; if (N) return SDOperand(N, 0); N = new SrcValueSDNode(V, Offset); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, std::vector &Ops) { switch (Ops.size()) { case 0: return getNode(Opcode, VT); case 1: return getNode(Opcode, VT, Ops[0]); case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); default: break; } ConstantSDNode *N1C = dyn_cast(Ops[1].Val); switch (Opcode) { default: break; case ISD::BRCONDTWOWAY: if (N1C) if (N1C->getValue()) // Unconditional branch to true dest. return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]); else // Unconditional branch to false dest. return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]); break; case ISD::BRTWOWAY_CC: assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "LHS and RHS of comparison must have same type!"); break; case ISD::TRUNCSTORE: { assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!"); MVT::ValueType EVT = cast(Ops[4])->getVT(); #if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store // If this is a truncating store of a constant, convert to the desired type // and store it instead. if (isa(Ops[0])) { SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1); if (isa(Op)) N1 = Op; } // Also for ConstantFP? #endif if (Ops[0].getValueType() == EVT) // Normal store? return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]); assert(Ops[1].getValueType() > EVT && "Not a truncation?"); assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) && "Can't do FP-INT conversion!"); break; } } // Memoize nodes. SDNode *&N = OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))]; if (N) return SDOperand(N, 0); N = new SDNode(Opcode, Ops); N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, std::vector &ResultTys, std::vector &Ops) { if (ResultTys.size() == 1) return getNode(Opcode, ResultTys[0], Ops); switch (Opcode) { case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: { MVT::ValueType EVT = cast(Ops[3])->getVT(); assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!"); // If they are asking for an extending load from/to the same thing, return a // normal load. if (ResultTys[0] == EVT) return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]); assert(EVT < ResultTys[0] && "Should only be an extending load, not truncating!"); assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) && "Cannot sign/zero extend a FP load!"); assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) && "Cannot convert from FP to Int or Int -> FP!"); break; } // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SRA_PARTS: case ISD::SRL_PARTS: case ISD::SHL_PARTS: if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N3.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); else if (N3.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N3.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = MVT::getSizeInBits(VT)*2; if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); } break; #endif } // Memoize the node. SDNode *&N = ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))]; if (N) return SDOperand(N, 0); N = new SDNode(Opcode, Ops); N->setValueTypes(ResultTys); AllNodes.push_back(N); return SDOperand(N, 0); } /// SelectNodeTo - These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT, unsigned TargetOpc, SDOperand Op1) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1); } void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT, unsigned TargetOpc, SDOperand Op1, SDOperand Op2) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2); } void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT1, MVT::ValueType VT2, unsigned TargetOpc, SDOperand Op1, SDOperand Op2) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT1, VT2); N->setOperands(Op1, Op2); } void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT, unsigned TargetOpc, SDOperand Op1, SDOperand Op2, SDOperand Op3) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3); } void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT1, MVT::ValueType VT2, unsigned TargetOpc, SDOperand Op1, SDOperand Op2, SDOperand Op3) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT1, VT2); N->setOperands(Op1, Op2, Op3); } void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT, unsigned TargetOpc, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4); } void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT, unsigned TargetOpc, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4, Op5); } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { assert(From != To && "Cannot replace uses of with self"); while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) if (U->getOperand(i).Val == From) { assert(From->getValueType(U->getOperand(i).ResNo) == To->getValueType(U->getOperand(i).ResNo)); From->removeUser(U); U->Operands[i].Val = To; To->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) ReplaceAllUsesWith(U, Existing); // U is now dead. } } //===----------------------------------------------------------------------===// // SDNode Class //===----------------------------------------------------------------------===// /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) { assert(Value < getNumValues() && "Bad value!"); // If there is only one value, this is easy. if (getNumValues() == 1) return use_size() == NUses; if (Uses.size() < NUses) return false; SDOperand TheValue(this, Value); std::set UsersHandled; for (std::vector::iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { SDNode *User = *UI; if (User->getNumOperands() == 1 || UsersHandled.insert(User).second) // First time we've seen this? for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheValue) { if (NUses == 0) return false; // too many uses --NUses; } } // Found exactly the right number of uses? return NUses == 0; } const char *SDNode::getOperationName(const SelectionDAG *G) const { switch (getOpcode()) { default: if (getOpcode() < ISD::BUILTIN_OP_END) return "<>"; else { if (G) if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); return "<>"; } case ISD::PCMARKER: return "PCMarker"; case ISD::SRCVALUE: return "SrcValue"; case ISD::VALUETYPE: return "ValueType"; case ISD::EntryToken: return "EntryToken"; case ISD::TokenFactor: return "TokenFactor"; case ISD::Constant: return "Constant"; case ISD::TargetConstant: return "TargetConstant"; case ISD::ConstantFP: return "ConstantFP"; case ISD::GlobalAddress: return "GlobalAddress"; case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; case ISD::FrameIndex: return "FrameIndex"; case ISD::BasicBlock: return "BasicBlock"; case ISD::Register: return "Register"; case ISD::ExternalSymbol: return "ExternalSymbol"; case ISD::ConstantPool: return "ConstantPoolIndex"; case ISD::CopyToReg: return "CopyToReg"; case ISD::CopyFromReg: return "CopyFromReg"; case ISD::ImplicitDef: return "ImplicitDef"; case ISD::UNDEF: return "undef"; // Unary operators case ISD::FABS: return "fabs"; case ISD::FNEG: return "fneg"; case ISD::FSQRT: return "fsqrt"; case ISD::FSIN: return "fsin"; case ISD::FCOS: return "fcos"; // Binary operators case ISD::ADD: return "add"; case ISD::SUB: return "sub"; case ISD::MUL: return "mul"; case ISD::MULHU: return "mulhu"; case ISD::MULHS: return "mulhs"; case ISD::SDIV: return "sdiv"; case ISD::UDIV: return "udiv"; case ISD::SREM: return "srem"; case ISD::UREM: return "urem"; case ISD::AND: return "and"; case ISD::OR: return "or"; case ISD::XOR: return "xor"; case ISD::SHL: return "shl"; case ISD::SRA: return "sra"; case ISD::SRL: return "srl"; case ISD::SETCC: return "setcc"; case ISD::SELECT: return "select"; case ISD::SELECT_CC: return "select_cc"; case ISD::ADD_PARTS: return "add_parts"; case ISD::SUB_PARTS: return "sub_parts"; case ISD::SHL_PARTS: return "shl_parts"; case ISD::SRA_PARTS: return "sra_parts"; case ISD::SRL_PARTS: return "srl_parts"; // Conversion operators. case ISD::SIGN_EXTEND: return "sign_extend"; case ISD::ZERO_EXTEND: return "zero_extend"; case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; case ISD::TRUNCATE: return "truncate"; case ISD::FP_ROUND: return "fp_round"; case ISD::FP_ROUND_INREG: return "fp_round_inreg"; case ISD::FP_EXTEND: return "fp_extend"; case ISD::SINT_TO_FP: return "sint_to_fp"; case ISD::UINT_TO_FP: return "uint_to_fp"; case ISD::FP_TO_SINT: return "fp_to_sint"; case ISD::FP_TO_UINT: return "fp_to_uint"; // Control flow instructions case ISD::BR: return "br"; case ISD::BRCOND: return "brcond"; case ISD::BRCONDTWOWAY: return "brcondtwoway"; case ISD::BR_CC: return "br_cc"; case ISD::BRTWOWAY_CC: return "brtwoway_cc"; case ISD::RET: return "ret"; case ISD::CALL: return "call"; case ISD::TAILCALL:return "tailcall"; case ISD::CALLSEQ_START: return "callseq_start"; case ISD::CALLSEQ_END: return "callseq_end"; // Other operators case ISD::LOAD: return "load"; case ISD::STORE: return "store"; case ISD::EXTLOAD: return "extload"; case ISD::SEXTLOAD: return "sextload"; case ISD::ZEXTLOAD: return "zextload"; case ISD::TRUNCSTORE: return "truncstore"; case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; case ISD::EXTRACT_ELEMENT: return "extract_element"; case ISD::BUILD_PAIR: return "build_pair"; case ISD::MEMSET: return "memset"; case ISD::MEMCPY: return "memcpy"; case ISD::MEMMOVE: return "memmove"; // Bit counting case ISD::CTPOP: return "ctpop"; case ISD::CTTZ: return "cttz"; case ISD::CTLZ: return "ctlz"; // IO Intrinsics case ISD::READPORT: return "readport"; case ISD::WRITEPORT: return "writeport"; case ISD::READIO: return "readio"; case ISD::WRITEIO: return "writeio"; case ISD::CONDCODE: switch (cast(this)->get()) { default: assert(0 && "Unknown setcc condition!"); case ISD::SETOEQ: return "setoeq"; case ISD::SETOGT: return "setogt"; case ISD::SETOGE: return "setoge"; case ISD::SETOLT: return "setolt"; case ISD::SETOLE: return "setole"; case ISD::SETONE: return "setone"; case ISD::SETO: return "seto"; case ISD::SETUO: return "setuo"; case ISD::SETUEQ: return "setue"; case ISD::SETUGT: return "setugt"; case ISD::SETUGE: return "setuge"; case ISD::SETULT: return "setult"; case ISD::SETULE: return "setule"; case ISD::SETUNE: return "setune"; case ISD::SETEQ: return "seteq"; case ISD::SETGT: return "setgt"; case ISD::SETGE: return "setge"; case ISD::SETLT: return "setlt"; case ISD::SETLE: return "setle"; case ISD::SETNE: return "setne"; } } } void SDNode::dump() const { dump(0); } void SDNode::dump(const SelectionDAG *G) const { std::cerr << (void*)this << ": "; for (unsigned i = 0, e = getNumValues(); i != e; ++i) { if (i) std::cerr << ","; if (getValueType(i) == MVT::Other) std::cerr << "ch"; else std::cerr << MVT::getValueTypeString(getValueType(i)); } std::cerr << " = " << getOperationName(G); std::cerr << " "; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { if (i) std::cerr << ", "; std::cerr << (void*)getOperand(i).Val; if (unsigned RN = getOperand(i).ResNo) std::cerr << ":" << RN; } if (const ConstantSDNode *CSDN = dyn_cast(this)) { std::cerr << "<" << CSDN->getValue() << ">"; } else if (const ConstantFPSDNode *CSDN = dyn_cast(this)) { std::cerr << "<" << CSDN->getValue() << ">"; } else if (const GlobalAddressSDNode *GADN = dyn_cast(this)) { std::cerr << "<"; WriteAsOperand(std::cerr, GADN->getGlobal()) << ">"; } else if (const FrameIndexSDNode *FIDN = dyn_cast(this)) { std::cerr << "<" << FIDN->getIndex() << ">"; } else if (const ConstantPoolSDNode *CP = dyn_cast(this)){ std::cerr << "<" << CP->getIndex() << ">"; } else if (const BasicBlockSDNode *BBDN = dyn_cast(this)) { std::cerr << "<"; const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); if (LBB) std::cerr << LBB->getName() << " "; std::cerr << (const void*)BBDN->getBasicBlock() << ">"; } else if (const RegisterSDNode *R = dyn_cast(this)) { if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) { std::cerr << " " <getTarget().getRegisterInfo()->getName(R->getReg()); } else { std::cerr << " #" << R->getReg(); } } else if (const ExternalSymbolSDNode *ES = dyn_cast(this)) { std::cerr << "'" << ES->getSymbol() << "'"; } else if (const SrcValueSDNode *M = dyn_cast(this)) { if (M->getValue()) std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; else std::cerr << "getOffset() << ">"; } else if (const VTSDNode *N = dyn_cast(this)) { std::cerr << ":" << getValueTypeString(N->getVT()); } } static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i).Val->hasOneUse()) DumpNodes(N->getOperand(i).Val, indent+2, G); else std::cerr << "\n" << std::string(indent+2, ' ') << (void*)N->getOperand(i).Val << ": "; std::cerr << "\n" << std::string(indent, ' '); N->dump(G); } void SelectionDAG::dump() const { std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; std::vector Nodes(AllNodes); std::sort(Nodes.begin(), Nodes.end()); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) DumpNodes(Nodes[i], 2, this); } DumpNodes(getRoot().Val, 2, this); std::cerr << "\n\n"; }