//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SmallVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H #include #include #include #include namespace llvm { /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be /// fast without losing generality for large inputs. /// /// Note that this does not attempt to be exception safe. /// template class SmallVector { // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as // something else. An array of char would work great, but might not be // aligned sufficiently. Instead, we either use GCC extensions, or some // number of union instances for the space, which guarantee maximal alignment. union U { double D; long double LD; long long L; void *P; }; /// InlineElts - These are the 'N' elements that are stored inline in the body /// of the vector U InlineElts[(sizeof(T)*N+sizeof(U)-1)/sizeof(U)]; T *Begin, *End, *Capacity; public: // Default ctor - Initialize to empty. SmallVector() : Begin((T*)InlineElts), End(Begin), Capacity(Begin+N) { } SmallVector(const SmallVector &RHS) { unsigned RHSSize = RHS.size(); Begin = (T*)InlineElts; // Doesn't fit in the small case? Allocate space. if (RHSSize > N) { End = Capacity = Begin; grow(RHSSize); } End = Begin+RHSSize; Capacity = Begin+N; std::uninitialized_copy(RHS.begin(), RHS.end(), Begin); } ~SmallVector() { // Destroy the constructed elements in the vector. for (iterator I = Begin, E = End; I != E; ++I) I->~T(); // If this wasn't grown from the inline copy, deallocate the old space. if ((void*)Begin != (void*)InlineElts) delete[] (char*)Begin; } typedef size_t size_type; typedef T* iterator; typedef const T* const_iterator; typedef T& reference; typedef const T& const_reference; bool empty() const { return Begin == End; } size_type size() const { return End-Begin; } iterator begin() { return Begin; } const_iterator begin() const { return Begin; } iterator end() { return End; } const_iterator end() const { return End; } reference operator[](unsigned idx) { assert(idx < size() && "out of range reference!"); return Begin[idx]; } const_reference operator[](unsigned idx) const { assert(idx < size() && "out of range reference!"); return Begin[idx]; } reference back() { assert(!empty() && "SmallVector is empty!"); return end()[-1]; } const_reference back() const { assert(!empty() && "SmallVector is empty!"); return end()[-1]; } void push_back(const_reference Elt) { if (End < Capacity) { Retry: new (End) T(Elt); ++End; return; } grow(); goto Retry; } void pop_back() { assert(!empty() && "SmallVector is empty!"); --End; End->~T(); } /// append - Add the specified range to the end of the SmallVector. /// template void append(in_iter in_start, in_iter in_end) { unsigned NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. if (End+NumInputs > Capacity) grow(size()+NumInputs); // Copy the new elements over. std::uninitialized_copy(in_start, in_end, End); End += NumInputs; } const SmallVector &operator=(const SmallVector &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. unsigned RHSSize = RHS.size(); unsigned CurSize = size(); if (CurSize >= RHSSize) { // Assign common elements. std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); // Destroy excess elements. for (unsigned i = RHSSize; i != CurSize; ++i) Begin[i].~T(); // Trim. End = Begin + RHSSize; return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. if (Capacity-Begin < RHSSize) { // Destroy current elements. for (iterator I = Begin, E = End; I != E; ++I) I->~T(); End = Begin; CurSize = 0; grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.Begin, RHS.Begin+CurSize, Begin); } // Copy construct the new elements in place. std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize); // Set end. End = Begin+RHSSize; } private: /// isSmall - Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { return (void*)Begin == (void*)InlineElts; } /// grow - double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(unsigned MinSize = 0) { unsigned CurCapacity = Capacity-Begin; unsigned CurSize = size(); unsigned NewCapacity = 2*CurCapacity; if (NewCapacity < MinSize) NewCapacity = MinSize; T *NewElts = reinterpret_cast(new char[NewCapacity*sizeof(T)]); // Copy the elements over. std::uninitialized_copy(Begin, End, NewElts); // Destroy the original elements. for (iterator I = Begin, E = End; I != E; ++I) I->~T(); // If this wasn't grown from the inline copy, deallocate the old space. if (!isSmall()) delete[] (char*)Begin; Begin = NewElts; End = NewElts+CurSize; Capacity = Begin+NewCapacity; } }; } // End llvm namespace #endif