//===- LibCallAliasAnalysis.cpp - Implement AliasAnalysis for libcalls ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LibCallAliasAnalysis class. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/LibCallSemantics.h" #include "llvm/Function.h" #include "llvm/Pass.h" #include "llvm/Target/TargetData.h" using namespace llvm; namespace llvm { /// LibCallAliasAnalysis - Alias analysis driven from LibCallInfo. struct LibCallAliasAnalysis : public FunctionPass, AliasAnalysis { static char ID; // Class identification LibCallInfo *LCI; LibCallAliasAnalysis(LibCallInfo *LC = 0) : FunctionPass((intptr_t)&ID), LCI(LC) { } ~LibCallAliasAnalysis() { delete LCI; } ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { // TODO: Could compare two direct calls against each other if we cared to. return AliasAnalysis::getModRefInfo(CS1,CS2); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AliasAnalysis::getAnalysisUsage(AU); AU.addRequired(); AU.setPreservesAll(); // Does not transform code } virtual bool runOnFunction(Function &F) { InitializeAliasAnalysis(this); // set up super class return false; } /// hasNoModRefInfoForCalls - We can provide mod/ref information against /// non-escaping allocations. virtual bool hasNoModRefInfoForCalls() const { return false; } private: ModRefResult AnalyzeLibCallDetails(const LibCallFunctionInfo *FI, CallSite CS, Value *P, unsigned Size); }; // Register this pass... char LibCallAliasAnalysis::ID = 0; RegisterPass X("libcall-aa", "LibCall Alias Analysis", false, true); // Declare that we implement the AliasAnalysis interface RegisterAnalysisGroup Y(X); } // End of llvm namespace FunctionPass *llvm::createLibCallAliasAnalysisPass(LibCallInfo *LCI) { return new LibCallAliasAnalysis(LCI); } /// AnalyzeLibCallDetails - Given a call to a function with the specified /// LibCallFunctionInfo, see if we can improve the mod/ref footprint of the call /// vs the specified pointer/size. AliasAnalysis::ModRefResult LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI, CallSite CS, Value *P, unsigned Size) { // If we have a function, check to see what kind of mod/ref effects it // has. Start by including any info globally known about the function. AliasAnalysis::ModRefResult MRInfo = FI->UniversalBehavior; if (MRInfo == NoModRef) return MRInfo; // If that didn't tell us that the function is 'readnone', check to see // if we have detailed info and if 'P' is any of the locations we know // about. const LibCallFunctionInfo::LocationMRInfo *Details = FI->LocationDetails; if (Details == 0) return MRInfo; // If the details array is of the 'DoesNot' kind, we only know something if // the pointer is a match for one of the locations in 'Details'. If we find a // match, we can prove some interactions cannot happen. // if (FI->DetailsType == LibCallFunctionInfo::DoesNot) { // Find out if the pointer refers to a known location. for (unsigned i = 0; Details[i].LocationID != ~0U; ++i) { const LibCallLocationInfo &Loc = LCI->getLocationInfo(Details[i].LocationID); LibCallLocationInfo::LocResult Res = Loc.isLocation(CS, P, Size); if (Res != LibCallLocationInfo::Yes) continue; // If we find a match against a location that we 'do not' interact with, // learn this info into MRInfo. return ModRefResult(MRInfo & ~Details[i].MRInfo); } return MRInfo; } // If the details are of the 'DoesOnly' sort, we know something if the pointer // is a match for one of the locations in 'Details'. Also, if we can prove // that the pointers is *not* one of the locations in 'Details', we know that // the call is NoModRef. assert(FI->DetailsType == LibCallFunctionInfo::DoesOnly); // Find out if the pointer refers to a known location. bool NoneMatch = true; for (unsigned i = 0; Details[i].LocationID != ~0U; ++i) { const LibCallLocationInfo &Loc = LCI->getLocationInfo(Details[i].LocationID); LibCallLocationInfo::LocResult Res = Loc.isLocation(CS, P, Size); if (Res == LibCallLocationInfo::No) continue; // If we don't know if this pointer points to the location, then we have to // assume it might alias in some case. if (Res == LibCallLocationInfo::Unknown) { NoneMatch = false; continue; } // If we know that this pointer definitely is pointing into the location, // merge in this information. return ModRefResult(MRInfo & Details[i].MRInfo); } // If we found that the pointer is guaranteed to not match any of the // locations in our 'DoesOnly' rule, then we know that the pointer must point // to some other location. Since the libcall doesn't mod/ref any other // locations, return NoModRef. if (NoneMatch) return NoModRef; // Otherwise, return any other info gained so far. return MRInfo; } // getModRefInfo - Check to see if the specified callsite can clobber the // specified memory object. // AliasAnalysis::ModRefResult LibCallAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { ModRefResult MRInfo = ModRef; // If this is a direct call to a function that LCI knows about, get the // information about the runtime function. if (Function *F = CS.getCalledFunction()) { if (LCI && F->isDeclaration()) { if (const LibCallFunctionInfo *FI = LCI->getFunctionInfo(F)) { MRInfo = ModRefResult(MRInfo & AnalyzeLibCallDetails(FI, CS, P, Size)); if (MRInfo == NoModRef) return NoModRef; } } } // The AliasAnalysis base class has some smarts, lets use them. return (ModRefResult)(MRInfo | AliasAnalysis::getModRefInfo(CS, P, Size)); }