//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "X86ISelLowering.h" #include "Utils/X86ShuffleDecode.h" #include "X86CallingConv.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" #include "X86TargetObjectFile.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/VariadicFunction.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "X86IntrinsicsInfo.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "x86-isel" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt ExperimentalVectorWideningLegalization( "x86-experimental-vector-widening-legalization", cl::init(false), cl::desc("Enable an experimental vector type legalization through widening " "rather than promotion."), cl::Hidden); static cl::opt ExperimentalVectorShuffleLowering( "x86-experimental-vector-shuffle-lowering", cl::init(true), cl::desc("Enable an experimental vector shuffle lowering code path."), cl::Hidden); static cl::opt ExperimentalVectorShuffleLegality( "x86-experimental-vector-shuffle-legality", cl::init(false), cl::desc("Enable experimental shuffle legality based on the experimental " "shuffle lowering. Should only be used with the experimental " "shuffle lowering."), cl::Hidden); static cl::opt ReciprocalEstimateRefinementSteps( "x86-recip-refinement-steps", cl::init(1), cl::desc("Specify the number of Newton-Raphson iterations applied to the " "result of the hardware reciprocal estimate instruction."), cl::NotHidden); // Forward declarations. static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1, SDValue V2); static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl, unsigned vectorWidth) { assert((vectorWidth == 128 || vectorWidth == 256) && "Unsupported vector width"); EVT VT = Vec.getValueType(); EVT ElVT = VT.getVectorElementType(); unsigned Factor = VT.getSizeInBits()/vectorWidth; EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, VT.getVectorNumElements()/Factor); // Extract from UNDEF is UNDEF. if (Vec.getOpcode() == ISD::UNDEF) return DAG.getUNDEF(ResultVT); // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); // This is the index of the first element of the vectorWidth-bit chunk // we want. unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth) * ElemsPerChunk); // If the input is a buildvector just emit a smaller one. if (Vec.getOpcode() == ISD::BUILD_VECTOR) return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, makeArrayRef(Vec->op_begin() + NormalizedIdxVal, ElemsPerChunk)); SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); } /// Generate a DAG to grab 128-bits from a vector > 128 bits. This /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 /// instructions or a simple subregister reference. Idx is an index in the /// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes /// lowering EXTRACT_VECTOR_ELT operations easier. static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert((Vec.getValueType().is256BitVector() || Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); return ExtractSubVector(Vec, IdxVal, DAG, dl, 128); } /// Generate a DAG to grab 256-bits from a 512-bit vector. static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); return ExtractSubVector(Vec, IdxVal, DAG, dl, 256); } static SDValue InsertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl, unsigned vectorWidth) { assert((vectorWidth == 128 || vectorWidth == 256) && "Unsupported vector width"); // Inserting UNDEF is Result if (Vec.getOpcode() == ISD::UNDEF) return Result; EVT VT = Vec.getValueType(); EVT ElVT = VT.getVectorElementType(); EVT ResultVT = Result.getValueType(); // Insert the relevant vectorWidth bits. unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); // This is the index of the first element of the vectorWidth-bit chunk // we want. unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth) * ElemsPerChunk); SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); } /// Generate a DAG to put 128-bits into a vector > 128 bits. This /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a /// simple superregister reference. Idx is an index in the 128 bits /// we want. It need not be aligned to a 128-bit boundary. That makes /// lowering INSERT_VECTOR_ELT operations easier. static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,SDLoc dl) { assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128); } static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!"); return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256); } /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 /// instructions. This is used because creating CONCAT_VECTOR nodes of /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower /// large BUILD_VECTORS. static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, unsigned NumElems, SelectionDAG &DAG, SDLoc dl) { SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); return Insert128BitVector(V, V2, NumElems/2, DAG, dl); } static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT, unsigned NumElems, SelectionDAG &DAG, SDLoc dl) { SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); return Insert256BitVector(V, V2, NumElems/2, DAG, dl); } // FIXME: This should stop caching the target machine as soon as // we can remove resetOperationActions et al. X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM) : TargetLowering(TM) { Subtarget = &TM.getSubtarget(); X86ScalarSSEf64 = Subtarget->hasSSE2(); X86ScalarSSEf32 = Subtarget->hasSSE1(); TD = getDataLayout(); resetOperationActions(); } void X86TargetLowering::resetOperationActions() { const TargetMachine &TM = getTargetMachine(); static bool FirstTimeThrough = true; // If none of the target options have changed, then we don't need to reset the // operation actions. if (!FirstTimeThrough && TO == TM.Options) return; if (!FirstTimeThrough) { // Reinitialize the actions. initActions(); FirstTimeThrough = false; } TO = TM.Options; // Set up the TargetLowering object. static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; // X86 is weird. It always uses i8 for shift amounts and setcc results. setBooleanContents(ZeroOrOneBooleanContent); // X86-SSE is even stranger. It uses -1 or 0 for vector masks. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // For 64-bit, since we have so many registers, use the ILP scheduler. // For 32-bit, use the register pressure specific scheduling. // For Atom, always use ILP scheduling. if (Subtarget->isAtom()) setSchedulingPreference(Sched::ILP); else if (Subtarget->is64Bit()) setSchedulingPreference(Sched::ILP); else setSchedulingPreference(Sched::RegPressure); const X86RegisterInfo *RegInfo = TM.getSubtarget().getRegisterInfo(); setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); // Bypass expensive divides on Atom when compiling with O2. if (TM.getOptLevel() >= CodeGenOpt::Default) { if (Subtarget->hasSlowDivide32()) addBypassSlowDiv(32, 8); if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit()) addBypassSlowDiv(64, 16); } if (Subtarget->isTargetKnownWindowsMSVC()) { // Setup Windows compiler runtime calls. setLibcallName(RTLIB::SDIV_I64, "_alldiv"); setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); setLibcallName(RTLIB::SREM_I64, "_allrem"); setLibcallName(RTLIB::UREM_I64, "_aullrem"); setLibcallName(RTLIB::MUL_I64, "_allmul"); setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); // The _ftol2 runtime function has an unusual calling conv, which // is modeled by a special pseudo-instruction. setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr); setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr); setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr); setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr); } if (Subtarget->isTargetDarwin()) { // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(false); setUseUnderscoreLongJmp(false); } else if (Subtarget->isTargetWindowsGNU()) { // MS runtime is weird: it exports _setjmp, but longjmp! setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(false); } else { setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); } // Set up the register classes. addRegisterClass(MVT::i8, &X86::GR8RegClass); addRegisterClass(MVT::i16, &X86::GR16RegClass); addRegisterClass(MVT::i32, &X86::GR32RegClass); if (Subtarget->is64Bit()) addRegisterClass(MVT::i64, &X86::GR64RegClass); for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); // We don't accept any truncstore of integer registers. setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i8 , Expand); setTruncStoreAction(MVT::i32, MVT::i16, Expand); setTruncStoreAction(MVT::i32, MVT::i8 , Expand); setTruncStoreAction(MVT::i16, MVT::i8, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // SETOEQ and SETUNE require checking two conditions. setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); } else if (!TM.Options.UseSoftFloat) { // We have an algorithm for SSE2->double, and we turn this into a // 64-bit FILD followed by conditional FADD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); // We have an algorithm for SSE2, and we turn this into a 64-bit // FILD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); } // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); if (!TM.Options.UseSoftFloat) { // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSEf32) { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); } // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 // are Legal, f80 is custom lowered. setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (X86ScalarSSEf32) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); } else if (!TM.Options.UseSoftFloat) { // Since AVX is a superset of SSE3, only check for SSE here. if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else // With SSE3 we can use fisttpll to convert to a signed i64; without // SSE, we're stuck with a fistpll. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); } if (isTargetFTOL()) { // Use the _ftol2 runtime function, which has a pseudo-instruction // to handle its weird calling convention. setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); } // TODO: when we have SSE, these could be more efficient, by using movd/movq. if (!X86ScalarSSEf64) { setOperationAction(ISD::BITCAST , MVT::f32 , Expand); setOperationAction(ISD::BITCAST , MVT::i32 , Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::BITCAST , MVT::f64 , Expand); // Without SSE, i64->f64 goes through memory. setOperationAction(ISD::BITCAST , MVT::i64 , Expand); } } // Scalar integer divide and remainder are lowered to use operations that // produce two results, to match the available instructions. This exposes // the two-result form to trivial CSE, which is able to combine x/y and x%y // into a single instruction. // // Scalar integer multiply-high is also lowered to use two-result // operations, to match the available instructions. However, plain multiply // (low) operations are left as Legal, as there are single-result // instructions for this in x86. Using the two-result multiply instructions // when both high and low results are needed must be arranged by dagcombine. for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { MVT VT = IntVTs[i]; setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. setOperationAction(ISD::ADDC, VT, Custom); setOperationAction(ISD::ADDE, VT, Custom); setOperationAction(ISD::SUBC, VT, Custom); setOperationAction(ISD::SUBE, VT, Custom); } setOperationAction(ISD::BR_JT , MVT::Other, Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BR_CC , MVT::f32, Expand); setOperationAction(ISD::BR_CC , MVT::f64, Expand); setOperationAction(ISD::BR_CC , MVT::f80, Expand); setOperationAction(ISD::BR_CC , MVT::i8, Expand); setOperationAction(ISD::BR_CC , MVT::i16, Expand); setOperationAction(ISD::BR_CC , MVT::i32, Expand); setOperationAction(ISD::BR_CC , MVT::i64, Expand); setOperationAction(ISD::SELECT_CC , MVT::f32, Expand); setOperationAction(ISD::SELECT_CC , MVT::f64, Expand); setOperationAction(ISD::SELECT_CC , MVT::f80, Expand); setOperationAction(ISD::SELECT_CC , MVT::i8, Expand); setOperationAction(ISD::SELECT_CC , MVT::i16, Expand); setOperationAction(ISD::SELECT_CC , MVT::i32, Expand); setOperationAction(ISD::SELECT_CC , MVT::i64, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::FREM , MVT::f80 , Expand); setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); // Promote the i8 variants and force them on up to i32 which has a shorter // encoding. setOperationAction(ISD::CTTZ , MVT::i8 , Promote); AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32); setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote); AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32); if (Subtarget->hasBMI()) { setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); } else { setOperationAction(ISD::CTTZ , MVT::i16 , Custom); setOperationAction(ISD::CTTZ , MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::CTTZ , MVT::i64 , Custom); } if (Subtarget->hasLZCNT()) { // When promoting the i8 variants, force them to i32 for a shorter // encoding. setOperationAction(ISD::CTLZ , MVT::i8 , Promote); AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote); AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); } else { setOperationAction(ISD::CTLZ , MVT::i8 , Custom); setOperationAction(ISD::CTLZ , MVT::i16 , Custom); setOperationAction(ISD::CTLZ , MVT::i32 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::CTLZ , MVT::i64 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); } } // Special handling for half-precision floating point conversions. // If we don't have F16C support, then lower half float conversions // into library calls. if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) { setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); } // There's never any support for operations beyond MVT::f32. setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f80, MVT::f16, Expand); if (Subtarget->hasPOPCNT()) { setOperationAction(ISD::CTPOP , MVT::i8 , Promote); } else { setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); setOperationAction(ISD::CTPOP , MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTPOP , MVT::i64 , Expand); } setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); if (!Subtarget->hasMOVBE()) setOperationAction(ISD::BSWAP , MVT::i16 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i8 , Custom); setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SELECT , MVT::f80 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::f80 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SELECT , MVT::i64 , Custom); setOperationAction(ISD::SETCC , MVT::i64 , Custom); } setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support // SjLj exception handling but a light-weight setjmp/longjmp replacement to // support continuation, user-level threading, and etc.. As a result, no // other SjLj exception interfaces are implemented and please don't build // your own exception handling based on them. // LLVM/Clang supports zero-cost DWARF exception handling. setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); setOperationAction(ISD::JumpTable , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); setOperationAction(ISD::JumpTable , MVT::i64 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); } // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); } if (Subtarget->hasSSE1()) setOperationAction(ISD::PREFETCH , MVT::Other, Legal); setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); // Expand certain atomics for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { MVT VT = IntVTs[i]; setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); setOperationAction(ISD::ATOMIC_STORE, VT, Custom); } if (Subtarget->hasCmpxchg16b()) { setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); } // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) { setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); } if (Subtarget->is64Bit()) { setExceptionPointerRegister(X86::RAX); setExceptionSelectorRegister(X86::RDX); } else { setExceptionPointerRegister(X86::EAX); setExceptionSelectorRegister(X86::EDX); } setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); setOperationAction(ISD::VAEND , MVT::Other, Expand); if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) { // TargetInfo::X86_64ABIBuiltinVaList setOperationAction(ISD::VAARG , MVT::Other, Custom); setOperationAction(ISD::VACOPY , MVT::Other, Custom); } else { // TargetInfo::CharPtrBuiltinVaList setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); } setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom); if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) { // f32 and f64 use SSE. // Set up the FP register classes. addRegisterClass(MVT::f32, &X86::FR32RegClass); addRegisterClass(MVT::f64, &X86::FR64RegClass); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // Use ANDPD and ORPD to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // Lower this to FGETSIGNx86 plus an AND. setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. addLegalFPImmediate(APFloat(+0.0)); // xorpd addLegalFPImmediate(APFloat(+0.0f)); // xorps } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) { // Use SSE for f32, x87 for f64. // Set up the FP register classes. addRegisterClass(MVT::f32, &X86::FR32RegClass); addRegisterClass(MVT::f64, &X86::RFP64RegClass); // Use ANDPS to simulate FABS. setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f32, Custom); setOperationAction(ISD::UNDEF, MVT::f64, Expand); // Use ANDPS and ORPS to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Special cases we handle for FP constants. addLegalFPImmediate(APFloat(+0.0f)); // xorps addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); } } else if (!TM.Options.UseSoftFloat) { // f32 and f64 in x87. // Set up the FP register classes. addRegisterClass(MVT::f64, &X86::RFP64RegClass); addRegisterClass(MVT::f32, &X86::RFP32RegClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); setOperationAction(ISD::UNDEF, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS addLegalFPImmediate(APFloat(+0.0f)); // FLD0 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS } // We don't support FMA. setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); // Long double always uses X87. if (!TM.Options.UseSoftFloat) { addRegisterClass(MVT::f80, &X86::RFP80RegClass); setOperationAction(ISD::UNDEF, MVT::f80, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); { APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); addLegalFPImmediate(TmpFlt); // FLD0 TmpFlt.changeSign(); addLegalFPImmediate(TmpFlt); // FLD0/FCHS bool ignored; APFloat TmpFlt2(+1.0); TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, &ignored); addLegalFPImmediate(TmpFlt2); // FLD1 TmpFlt2.changeSign(); addLegalFPImmediate(TmpFlt2); // FLD1/FCHS } if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f80, Expand); setOperationAction(ISD::FCOS , MVT::f80, Expand); setOperationAction(ISD::FSINCOS, MVT::f80, Expand); } setOperationAction(ISD::FFLOOR, MVT::f80, Expand); setOperationAction(ISD::FCEIL, MVT::f80, Expand); setOperationAction(ISD::FTRUNC, MVT::f80, Expand); setOperationAction(ISD::FRINT, MVT::f80, Expand); setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); setOperationAction(ISD::FMA, MVT::f80, Expand); } // Always use a library call for pow. setOperationAction(ISD::FPOW , MVT::f32 , Expand); setOperationAction(ISD::FPOW , MVT::f64 , Expand); setOperationAction(ISD::FPOW , MVT::f80 , Expand); setOperationAction(ISD::FLOG, MVT::f80, Expand); setOperationAction(ISD::FLOG2, MVT::f80, Expand); setOperationAction(ISD::FLOG10, MVT::f80, Expand); setOperationAction(ISD::FEXP, MVT::f80, Expand); setOperationAction(ISD::FEXP2, MVT::f80, Expand); setOperationAction(ISD::FMINNUM, MVT::f80, Expand); setOperationAction(ISD::FMAXNUM, MVT::f80, Expand); // First set operation action for all vector types to either promote // (for widening) or expand (for scalarization). Then we will selectively // turn on ones that can be effectively codegen'd. for (MVT VT : MVT::vector_valuetypes()) { setOperationAction(ISD::ADD , VT, Expand); setOperationAction(ISD::SUB , VT, Expand); setOperationAction(ISD::FADD, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::FSUB, VT, Expand); setOperationAction(ISD::MUL , VT, Expand); setOperationAction(ISD::FMUL, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::LOAD, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FMA, VT, Expand); setOperationAction(ISD::FPOWI, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::SHL, VT, Expand); setOperationAction(ISD::SRA, VT, Expand); setOperationAction(ISD::SRL, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::SETCC, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); setOperationAction(ISD::TRUNCATE, VT, Expand); setOperationAction(ISD::SIGN_EXTEND, VT, Expand); setOperationAction(ISD::ZERO_EXTEND, VT, Expand); setOperationAction(ISD::ANY_EXTEND, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); for (MVT InnerVT : MVT::vector_valuetypes()) { setTruncStoreAction(InnerVT, VT, Expand); setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand); // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like // types, we have to deal with them whether we ask for Expansion or not. // Setting Expand causes its own optimisation problems though, so leave // them legal. if (VT.getVectorElementType() == MVT::i1) setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); } } // FIXME: In order to prevent SSE instructions being expanded to MMX ones // with -msoft-float, disable use of MMX as well. if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) { addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); // No operations on x86mmx supported, everything uses intrinsics. } // MMX-sized vectors (other than x86mmx) are expected to be expanded // into smaller operations. setOperationAction(ISD::MULHS, MVT::v8i8, Expand); setOperationAction(ISD::MULHS, MVT::v4i16, Expand); setOperationAction(ISD::MULHS, MVT::v2i32, Expand); setOperationAction(ISD::MULHS, MVT::v1i64, Expand); setOperationAction(ISD::AND, MVT::v8i8, Expand); setOperationAction(ISD::AND, MVT::v4i16, Expand); setOperationAction(ISD::AND, MVT::v2i32, Expand); setOperationAction(ISD::AND, MVT::v1i64, Expand); setOperationAction(ISD::OR, MVT::v8i8, Expand); setOperationAction(ISD::OR, MVT::v4i16, Expand); setOperationAction(ISD::OR, MVT::v2i32, Expand); setOperationAction(ISD::OR, MVT::v1i64, Expand); setOperationAction(ISD::XOR, MVT::v8i8, Expand); setOperationAction(ISD::XOR, MVT::v4i16, Expand); setOperationAction(ISD::XOR, MVT::v2i32, Expand); setOperationAction(ISD::XOR, MVT::v1i64, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); setOperationAction(ISD::SELECT, MVT::v8i8, Expand); setOperationAction(ISD::SELECT, MVT::v4i16, Expand); setOperationAction(ISD::SELECT, MVT::v2i32, Expand); setOperationAction(ISD::SELECT, MVT::v1i64, Expand); setOperationAction(ISD::BITCAST, MVT::v8i8, Expand); setOperationAction(ISD::BITCAST, MVT::v4i16, Expand); setOperationAction(ISD::BITCAST, MVT::v2i32, Expand); setOperationAction(ISD::BITCAST, MVT::v1i64, Expand); if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) { addRegisterClass(MVT::v4f32, &X86::VR128RegClass); setOperationAction(ISD::FADD, MVT::v4f32, Legal); setOperationAction(ISD::FSUB, MVT::v4f32, Legal); setOperationAction(ISD::FMUL, MVT::v4f32, Legal); setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::FNEG, MVT::v4f32, Custom); setOperationAction(ISD::FABS, MVT::v4f32, Custom); setOperationAction(ISD::LOAD, MVT::v4f32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::SELECT, MVT::v4f32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); } if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) { addRegisterClass(MVT::v2f64, &X86::VR128RegClass); // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM // registers cannot be used even for integer operations. addRegisterClass(MVT::v16i8, &X86::VR128RegClass); addRegisterClass(MVT::v8i16, &X86::VR128RegClass); addRegisterClass(MVT::v4i32, &X86::VR128RegClass); addRegisterClass(MVT::v2i64, &X86::VR128RegClass); setOperationAction(ISD::ADD, MVT::v16i8, Legal); setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::ADD, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom); setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom); setOperationAction(ISD::MULHU, MVT::v8i16, Legal); setOperationAction(ISD::MULHS, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v4i32, Legal); setOperationAction(ISD::SUB, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::FADD, MVT::v2f64, Legal); setOperationAction(ISD::FSUB, MVT::v2f64, Legal); setOperationAction(ISD::FMUL, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::FNEG, MVT::v2f64, Custom); setOperationAction(ISD::FABS, MVT::v2f64, Custom); setOperationAction(ISD::SETCC, MVT::v2i64, Custom); setOperationAction(ISD::SETCC, MVT::v16i8, Custom); setOperationAction(ISD::SETCC, MVT::v8i16, Custom); setOperationAction(ISD::SETCC, MVT::v4i32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); // Only provide customized ctpop vector bit twiddling for vector types we // know to perform better than using the popcnt instructions on each vector // element. If popcnt isn't supported, always provide the custom version. if (!Subtarget->hasPOPCNT()) { setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); setOperationAction(ISD::CTPOP, MVT::v2i64, Custom); } // Custom lower build_vector, vector_shuffle, and extract_vector_elt. for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to custom lower non-power-of-2 vectors if (!isPowerOf2_32(VT.getVectorNumElements())) continue; // Do not attempt to custom lower non-128-bit vectors if (!VT.is128BitVector()) continue; setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); } // We support custom legalizing of sext and anyext loads for specific // memory vector types which we can load as a scalar (or sequence of // scalars) and extend in-register to a legal 128-bit vector type. For sext // loads these must work with a single scalar load. for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom); } setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to promote non-128-bit vectors if (!VT.is128BitVector()) continue; setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v2i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v2i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v2i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v2i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); } // Custom lower v2i64 and v2f64 selects. setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::LOAD, MVT::v2i64, Legal); setOperationAction(ISD::SELECT, MVT::v2f64, Custom); setOperationAction(ISD::SELECT, MVT::v2i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); // As there is no 64-bit GPR available, we need build a special custom // sequence to convert from v2i32 to v2f32. if (!Subtarget->is64Bit()) setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); for (MVT VT : MVT::fp_vector_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal); setOperationAction(ISD::BITCAST, MVT::v2i32, Custom); setOperationAction(ISD::BITCAST, MVT::v4i16, Custom); setOperationAction(ISD::BITCAST, MVT::v8i8, Custom); } if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) { setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::FRINT, MVT::v4f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::FRINT, MVT::v2f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); // FIXME: Do we need to handle scalar-to-vector here? setOperationAction(ISD::MUL, MVT::v4i32, Legal); setOperationAction(ISD::VSELECT, MVT::v2f64, Custom); setOperationAction(ISD::VSELECT, MVT::v2i64, Custom); setOperationAction(ISD::VSELECT, MVT::v4i32, Custom); setOperationAction(ISD::VSELECT, MVT::v4f32, Custom); setOperationAction(ISD::VSELECT, MVT::v8i16, Custom); // There is no BLENDI for byte vectors. We don't need to custom lower // some vselects for now. setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); // SSE41 brings specific instructions for doing vector sign extend even in // cases where we don't have SRA. for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom); } // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); // i8 and i16 vectors are custom because the source register and source // source memory operand types are not the same width. f32 vectors are // custom since the immediate controlling the insert encodes additional // information. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); // FIXME: these should be Legal, but that's only for the case where // the index is constant. For now custom expand to deal with that. if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } } if (Subtarget->hasSSE2()) { setOperationAction(ISD::SRL, MVT::v8i16, Custom); setOperationAction(ISD::SRL, MVT::v16i8, Custom); setOperationAction(ISD::SHL, MVT::v8i16, Custom); setOperationAction(ISD::SHL, MVT::v16i8, Custom); setOperationAction(ISD::SRA, MVT::v8i16, Custom); setOperationAction(ISD::SRA, MVT::v16i8, Custom); // In the customized shift lowering, the legal cases in AVX2 will be // recognized. setOperationAction(ISD::SRL, MVT::v2i64, Custom); setOperationAction(ISD::SRL, MVT::v4i32, Custom); setOperationAction(ISD::SHL, MVT::v2i64, Custom); setOperationAction(ISD::SHL, MVT::v4i32, Custom); setOperationAction(ISD::SRA, MVT::v4i32, Custom); } if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) { addRegisterClass(MVT::v32i8, &X86::VR256RegClass); addRegisterClass(MVT::v16i16, &X86::VR256RegClass); addRegisterClass(MVT::v8i32, &X86::VR256RegClass); addRegisterClass(MVT::v8f32, &X86::VR256RegClass); addRegisterClass(MVT::v4i64, &X86::VR256RegClass); addRegisterClass(MVT::v4f64, &X86::VR256RegClass); setOperationAction(ISD::LOAD, MVT::v8f32, Legal); setOperationAction(ISD::LOAD, MVT::v4f64, Legal); setOperationAction(ISD::LOAD, MVT::v4i64, Legal); setOperationAction(ISD::FADD, MVT::v8f32, Legal); setOperationAction(ISD::FSUB, MVT::v8f32, Legal); setOperationAction(ISD::FMUL, MVT::v8f32, Legal); setOperationAction(ISD::FDIV, MVT::v8f32, Legal); setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal); setOperationAction(ISD::FCEIL, MVT::v8f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal); setOperationAction(ISD::FRINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEG, MVT::v8f32, Custom); setOperationAction(ISD::FABS, MVT::v8f32, Custom); setOperationAction(ISD::FADD, MVT::v4f64, Legal); setOperationAction(ISD::FSUB, MVT::v4f64, Legal); setOperationAction(ISD::FMUL, MVT::v4f64, Legal); setOperationAction(ISD::FDIV, MVT::v4f64, Legal); setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); setOperationAction(ISD::FRINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEG, MVT::v4f64, Custom); setOperationAction(ISD::FABS, MVT::v4f64, Custom); // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted // even though v8i16 is a legal type. setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); for (MVT VT : MVT::fp_vector_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal); setOperationAction(ISD::SRL, MVT::v16i16, Custom); setOperationAction(ISD::SRL, MVT::v32i8, Custom); setOperationAction(ISD::SHL, MVT::v16i16, Custom); setOperationAction(ISD::SHL, MVT::v32i8, Custom); setOperationAction(ISD::SRA, MVT::v16i16, Custom); setOperationAction(ISD::SRA, MVT::v32i8, Custom); setOperationAction(ISD::SETCC, MVT::v32i8, Custom); setOperationAction(ISD::SETCC, MVT::v16i16, Custom); setOperationAction(ISD::SETCC, MVT::v8i32, Custom); setOperationAction(ISD::SETCC, MVT::v4i64, Custom); setOperationAction(ISD::SELECT, MVT::v4f64, Custom); setOperationAction(ISD::SELECT, MVT::v4i64, Custom); setOperationAction(ISD::SELECT, MVT::v8f32, Custom); setOperationAction(ISD::VSELECT, MVT::v4f64, Custom); setOperationAction(ISD::VSELECT, MVT::v4i64, Custom); setOperationAction(ISD::VSELECT, MVT::v8i32, Custom); setOperationAction(ISD::VSELECT, MVT::v8f32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); if (Subtarget->hasFMA() || Subtarget->hasFMA4()) { setOperationAction(ISD::FMA, MVT::v8f32, Legal); setOperationAction(ISD::FMA, MVT::v4f64, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); setOperationAction(ISD::FMA, MVT::v2f64, Legal); setOperationAction(ISD::FMA, MVT::f32, Legal); setOperationAction(ISD::FMA, MVT::f64, Legal); } if (Subtarget->hasInt256()) { setOperationAction(ISD::ADD, MVT::v4i64, Legal); setOperationAction(ISD::ADD, MVT::v8i32, Legal); setOperationAction(ISD::ADD, MVT::v16i16, Legal); setOperationAction(ISD::ADD, MVT::v32i8, Legal); setOperationAction(ISD::SUB, MVT::v4i64, Legal); setOperationAction(ISD::SUB, MVT::v8i32, Legal); setOperationAction(ISD::SUB, MVT::v16i16, Legal); setOperationAction(ISD::SUB, MVT::v32i8, Legal); setOperationAction(ISD::MUL, MVT::v4i64, Custom); setOperationAction(ISD::MUL, MVT::v8i32, Legal); setOperationAction(ISD::MUL, MVT::v16i16, Legal); // Don't lower v32i8 because there is no 128-bit byte mul setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom); setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom); setOperationAction(ISD::MULHU, MVT::v16i16, Legal); setOperationAction(ISD::MULHS, MVT::v16i16, Legal); setOperationAction(ISD::VSELECT, MVT::v16i16, Custom); setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); // The custom lowering for UINT_TO_FP for v8i32 becomes interesting // when we have a 256bit-wide blend with immediate. setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom); // Only provide customized ctpop vector bit twiddling for vector types we // know to perform better than using the popcnt instructions on each // vector element. If popcnt isn't supported, always provide the custom // version. if (!Subtarget->hasPOPCNT()) setOperationAction(ISD::CTPOP, MVT::v4i64, Custom); // Custom CTPOP always performs better on natively supported v8i32 setOperationAction(ISD::CTPOP, MVT::v8i32, Custom); // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i32, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i32, Legal); } else { setOperationAction(ISD::ADD, MVT::v4i64, Custom); setOperationAction(ISD::ADD, MVT::v8i32, Custom); setOperationAction(ISD::ADD, MVT::v16i16, Custom); setOperationAction(ISD::ADD, MVT::v32i8, Custom); setOperationAction(ISD::SUB, MVT::v4i64, Custom); setOperationAction(ISD::SUB, MVT::v8i32, Custom); setOperationAction(ISD::SUB, MVT::v16i16, Custom); setOperationAction(ISD::SUB, MVT::v32i8, Custom); setOperationAction(ISD::MUL, MVT::v4i64, Custom); setOperationAction(ISD::MUL, MVT::v8i32, Custom); setOperationAction(ISD::MUL, MVT::v16i16, Custom); // Don't lower v32i8 because there is no 128-bit byte mul } // In the customized shift lowering, the legal cases in AVX2 will be // recognized. setOperationAction(ISD::SRL, MVT::v4i64, Custom); setOperationAction(ISD::SRL, MVT::v8i32, Custom); setOperationAction(ISD::SHL, MVT::v4i64, Custom); setOperationAction(ISD::SHL, MVT::v8i32, Custom); setOperationAction(ISD::SRA, MVT::v8i32, Custom); // Custom lower several nodes for 256-bit types. for (MVT VT : MVT::vector_valuetypes()) { if (VT.getScalarSizeInBits() >= 32) { setOperationAction(ISD::MLOAD, VT, Legal); setOperationAction(ISD::MSTORE, VT, Legal); } // Extract subvector is special because the value type // (result) is 128-bit but the source is 256-bit wide. if (VT.is128BitVector()) { setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); } // Do not attempt to custom lower other non-256-bit vectors if (!VT.is256BitVector()) continue; setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); } // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. for (int i = MVT::v32i8; i != MVT::v4i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to promote non-256-bit vectors if (!VT.is256BitVector()) continue; setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v4i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v4i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v4i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); } } if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) { addRegisterClass(MVT::v16i32, &X86::VR512RegClass); addRegisterClass(MVT::v16f32, &X86::VR512RegClass); addRegisterClass(MVT::v8i64, &X86::VR512RegClass); addRegisterClass(MVT::v8f64, &X86::VR512RegClass); addRegisterClass(MVT::i1, &X86::VK1RegClass); addRegisterClass(MVT::v8i1, &X86::VK8RegClass); addRegisterClass(MVT::v16i1, &X86::VK16RegClass); for (MVT VT : MVT::fp_vector_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal); setOperationAction(ISD::BR_CC, MVT::i1, Expand); setOperationAction(ISD::SETCC, MVT::i1, Custom); setOperationAction(ISD::XOR, MVT::i1, Legal); setOperationAction(ISD::OR, MVT::i1, Legal); setOperationAction(ISD::AND, MVT::i1, Legal); setOperationAction(ISD::LOAD, MVT::v16f32, Legal); setOperationAction(ISD::LOAD, MVT::v8f64, Legal); setOperationAction(ISD::LOAD, MVT::v8i64, Legal); setOperationAction(ISD::LOAD, MVT::v16i32, Legal); setOperationAction(ISD::LOAD, MVT::v16i1, Legal); setOperationAction(ISD::FADD, MVT::v16f32, Legal); setOperationAction(ISD::FSUB, MVT::v16f32, Legal); setOperationAction(ISD::FMUL, MVT::v16f32, Legal); setOperationAction(ISD::FDIV, MVT::v16f32, Legal); setOperationAction(ISD::FSQRT, MVT::v16f32, Legal); setOperationAction(ISD::FNEG, MVT::v16f32, Custom); setOperationAction(ISD::FADD, MVT::v8f64, Legal); setOperationAction(ISD::FSUB, MVT::v8f64, Legal); setOperationAction(ISD::FMUL, MVT::v8f64, Legal); setOperationAction(ISD::FDIV, MVT::v8f64, Legal); setOperationAction(ISD::FSQRT, MVT::v8f64, Legal); setOperationAction(ISD::FNEG, MVT::v8f64, Custom); setOperationAction(ISD::FMA, MVT::v8f64, Legal); setOperationAction(ISD::FMA, MVT::v16f32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); if (Subtarget->is64Bit()) { setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal); } setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal); setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal); setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Legal); setOperationAction(ISD::SETCC, MVT::v16i1, Custom); setOperationAction(ISD::SETCC, MVT::v8i1, Custom); setOperationAction(ISD::MUL, MVT::v8i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom); setOperationAction(ISD::SELECT, MVT::v8f64, Custom); setOperationAction(ISD::SELECT, MVT::v8i64, Custom); setOperationAction(ISD::SELECT, MVT::v16f32, Custom); setOperationAction(ISD::ADD, MVT::v8i64, Legal); setOperationAction(ISD::ADD, MVT::v16i32, Legal); setOperationAction(ISD::SUB, MVT::v8i64, Legal); setOperationAction(ISD::SUB, MVT::v16i32, Legal); setOperationAction(ISD::MUL, MVT::v16i32, Legal); setOperationAction(ISD::SRL, MVT::v8i64, Custom); setOperationAction(ISD::SRL, MVT::v16i32, Custom); setOperationAction(ISD::SHL, MVT::v8i64, Custom); setOperationAction(ISD::SHL, MVT::v16i32, Custom); setOperationAction(ISD::SRA, MVT::v8i64, Custom); setOperationAction(ISD::SRA, MVT::v16i32, Custom); setOperationAction(ISD::AND, MVT::v8i64, Legal); setOperationAction(ISD::OR, MVT::v8i64, Legal); setOperationAction(ISD::XOR, MVT::v8i64, Legal); setOperationAction(ISD::AND, MVT::v16i32, Legal); setOperationAction(ISD::OR, MVT::v16i32, Legal); setOperationAction(ISD::XOR, MVT::v16i32, Legal); if (Subtarget->hasCDI()) { setOperationAction(ISD::CTLZ, MVT::v8i64, Legal); setOperationAction(ISD::CTLZ, MVT::v16i32, Legal); } // Custom lower several nodes. for (MVT VT : MVT::vector_valuetypes()) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); // Extract subvector is special because the value type // (result) is 256/128-bit but the source is 512-bit wide. if (VT.is128BitVector() || VT.is256BitVector()) { setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); } if (VT.getVectorElementType() == MVT::i1) setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); // Do not attempt to custom lower other non-512-bit vectors if (!VT.is512BitVector()) continue; if ( EltSize >= 32) { setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VSELECT, VT, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::MLOAD, VT, Legal); setOperationAction(ISD::MSTORE, VT, Legal); } } for (int i = MVT::v32i8; i != MVT::v8i64; ++i) { MVT VT = (MVT::SimpleValueType)i; // Do not attempt to promote non-512-bit vectors. if (!VT.is512BitVector()) continue; setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v8i64); } }// has AVX-512 if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) { addRegisterClass(MVT::v32i16, &X86::VR512RegClass); addRegisterClass(MVT::v64i8, &X86::VR512RegClass); addRegisterClass(MVT::v32i1, &X86::VK32RegClass); addRegisterClass(MVT::v64i1, &X86::VK64RegClass); setOperationAction(ISD::LOAD, MVT::v32i16, Legal); setOperationAction(ISD::LOAD, MVT::v64i8, Legal); setOperationAction(ISD::SETCC, MVT::v32i1, Custom); setOperationAction(ISD::SETCC, MVT::v64i1, Custom); setOperationAction(ISD::ADD, MVT::v32i16, Legal); setOperationAction(ISD::ADD, MVT::v64i8, Legal); setOperationAction(ISD::SUB, MVT::v32i16, Legal); setOperationAction(ISD::SUB, MVT::v64i8, Legal); setOperationAction(ISD::MUL, MVT::v32i16, Legal); for (int i = MVT::v32i8; i != MVT::v8i64; ++i) { const MVT VT = (MVT::SimpleValueType)i; const unsigned EltSize = VT.getVectorElementType().getSizeInBits(); // Do not attempt to promote non-512-bit vectors. if (!VT.is512BitVector()) continue; if (EltSize < 32) { setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VSELECT, VT, Legal); } } } if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) { addRegisterClass(MVT::v4i1, &X86::VK4RegClass); addRegisterClass(MVT::v2i1, &X86::VK2RegClass); setOperationAction(ISD::SETCC, MVT::v4i1, Custom); setOperationAction(ISD::SETCC, MVT::v2i1, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Legal); setOperationAction(ISD::AND, MVT::v8i32, Legal); setOperationAction(ISD::OR, MVT::v8i32, Legal); setOperationAction(ISD::XOR, MVT::v8i32, Legal); setOperationAction(ISD::AND, MVT::v4i32, Legal); setOperationAction(ISD::OR, MVT::v4i32, Legal); setOperationAction(ISD::XOR, MVT::v4i32, Legal); } // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion // of this type with custom code. for (MVT VT : MVT::vector_valuetypes()) setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); if (!Subtarget->is64Bit()) setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't // handle type legalization for these operations here. // // FIXME: We really should do custom legalization for addition and // subtraction on x86-32 once PR3203 is fixed. We really can't do much better // than generic legalization for 64-bit multiplication-with-overflow, though. for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { // Add/Sub/Mul with overflow operations are custom lowered. MVT VT = IntVTs[i]; setOperationAction(ISD::SADDO, VT, Custom); setOperationAction(ISD::UADDO, VT, Custom); setOperationAction(ISD::SSUBO, VT, Custom); setOperationAction(ISD::USUBO, VT, Custom); setOperationAction(ISD::SMULO, VT, Custom); setOperationAction(ISD::UMULO, VT, Custom); } if (!Subtarget->is64Bit()) { // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); } // Combine sin / cos into one node or libcall if possible. if (Subtarget->hasSinCos()) { setLibcallName(RTLIB::SINCOS_F32, "sincosf"); setLibcallName(RTLIB::SINCOS_F64, "sincos"); if (Subtarget->isTargetDarwin()) { // For MacOSX, we don't want the normal expansion of a libcall to sincos. // We want to issue a libcall to __sincos_stret to avoid memory traffic. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } } if (Subtarget->isTargetWin64()) { setOperationAction(ISD::SDIV, MVT::i128, Custom); setOperationAction(ISD::UDIV, MVT::i128, Custom); setOperationAction(ISD::SREM, MVT::i128, Custom); setOperationAction(ISD::UREM, MVT::i128, Custom); setOperationAction(ISD::SDIVREM, MVT::i128, Custom); setOperationAction(ISD::UDIVREM, MVT::i128, Custom); } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::VSELECT); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::FMA); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::MLOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::MSTORE); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::BUILD_VECTOR); if (Subtarget->is64Bit()) setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::XOR); computeRegisterProperties(); // On Darwin, -Os means optimize for size without hurting performance, // do not reduce the limit. MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; setPrefLoopAlignment(4); // 2^4 bytes. // Predictable cmov don't hurt on atom because it's in-order. PredictableSelectIsExpensive = !Subtarget->isAtom(); EnableExtLdPromotion = true; setPrefFunctionAlignment(4); // 2^4 bytes. verifyIntrinsicTables(); } // This has so far only been implemented for 64-bit MachO. bool X86TargetLowering::useLoadStackGuardNode() const { return Subtarget->isTargetMachO() && Subtarget->is64Bit(); } TargetLoweringBase::LegalizeTypeAction X86TargetLowering::getPreferredVectorAction(EVT VT) const { if (ExperimentalVectorWideningLegalization && VT.getVectorNumElements() != 1 && VT.getVectorElementType().getSimpleVT() != MVT::i1) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) return Subtarget->hasAVX512() ? MVT::i1: MVT::i8; const unsigned NumElts = VT.getVectorNumElements(); const EVT EltVT = VT.getVectorElementType(); if (VT.is512BitVector()) { if (Subtarget->hasAVX512()) if (EltVT == MVT::i32 || EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) switch(NumElts) { case 8: return MVT::v8i1; case 16: return MVT::v16i1; } if (Subtarget->hasBWI()) if (EltVT == MVT::i8 || EltVT == MVT::i16) switch(NumElts) { case 32: return MVT::v32i1; case 64: return MVT::v64i1; } } if (VT.is256BitVector() || VT.is128BitVector()) { if (Subtarget->hasVLX()) if (EltVT == MVT::i32 || EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) switch(NumElts) { case 2: return MVT::v2i1; case 4: return MVT::v4i1; case 8: return MVT::v8i1; } if (Subtarget->hasBWI() && Subtarget->hasVLX()) if (EltVT == MVT::i8 || EltVT == MVT::i16) switch(NumElts) { case 8: return MVT::v8i1; case 16: return MVT::v16i1; case 32: return MVT::v32i1; } } return VT.changeVectorElementTypeToInteger(); } /// Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { if (MaxAlign == 16) return; if (VectorType *VTy = dyn_cast(Ty)) { if (VTy->getBitWidth() == 128) MaxAlign = 16; } else if (ArrayType *ATy = dyn_cast(Ty)) { unsigned EltAlign = 0; getMaxByValAlign(ATy->getElementType(), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; } else if (StructType *STy = dyn_cast(Ty)) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { unsigned EltAlign = 0; getMaxByValAlign(STy->getElementType(i), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; if (MaxAlign == 16) break; } } } /// Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contain SSE vectors are placed at 16-byte boundaries while the rest /// are at 4-byte boundaries. unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const { if (Subtarget->is64Bit()) { // Max of 8 and alignment of type. unsigned TyAlign = TD->getABITypeAlignment(Ty); if (TyAlign > 8) return TyAlign; return 8; } unsigned Align = 4; if (Subtarget->hasSSE1()) getMaxByValAlign(Ty, Align); return Align; } /// Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If 'IsMemset' is /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { const Function *F = MF.getFunction(); if ((!IsMemset || ZeroMemset) && !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) { if (Size >= 16 && (Subtarget->isUnalignedMemAccessFast() || ((DstAlign == 0 || DstAlign >= 16) && (SrcAlign == 0 || SrcAlign >= 16)))) { if (Size >= 32) { if (Subtarget->hasInt256()) return MVT::v8i32; if (Subtarget->hasFp256()) return MVT::v8f32; } if (Subtarget->hasSSE2()) return MVT::v4i32; if (Subtarget->hasSSE1()) return MVT::v4f32; } else if (!MemcpyStrSrc && Size >= 8 && !Subtarget->is64Bit() && Subtarget->hasSSE2()) { // Do not use f64 to lower memcpy if source is string constant. It's // better to use i32 to avoid the loads. return MVT::f64; } } if (Subtarget->is64Bit() && Size >= 8) return MVT::i64; return MVT::i32; } bool X86TargetLowering::isSafeMemOpType(MVT VT) const { if (VT == MVT::f32) return X86ScalarSSEf32; else if (VT == MVT::f64) return X86ScalarSSEf64; return true; } bool X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, unsigned, bool *Fast) const { if (Fast) *Fast = Subtarget->isUnalignedMemAccessFast(); return true; } /// Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. unsigned X86TargetLowering::getJumpTableEncoding() const { // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF // symbol. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()) return MachineJumpTableInfo::EK_Custom32; // Otherwise, use the normal jump table encoding heuristics. return TargetLowering::getJumpTableEncoding(); } const MCExpr * X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid,MCContext &Ctx) const{ assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()); // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF // entries. return MCSymbolRefExpr::Create(MBB->getSymbol(), MCSymbolRefExpr::VK_GOTOFF, Ctx); } /// Returns relocation base for the given PIC jumptable. SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { if (!Subtarget->is64Bit()) // This doesn't have SDLoc associated with it, but is not really the // same as a Register. return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()); return Table; } /// This returns the relocation base for the given PIC jumptable, /// the same as getPICJumpTableRelocBase, but as an MCExpr. const MCExpr *X86TargetLowering:: getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const { // X86-64 uses RIP relative addressing based on the jump table label. if (Subtarget->isPICStyleRIPRel()) return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); // Otherwise, the reference is relative to the PIC base. return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); } // FIXME: Why this routine is here? Move to RegInfo! std::pair X86TargetLowering::findRepresentativeClass(MVT VT) const{ const TargetRegisterClass *RRC = nullptr; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(VT); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; break; case MVT::x86mmx: RRC = &X86::VR64RegClass; break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: case MVT::v4f64: RRC = &X86::VR128RegClass; break; } return std::make_pair(RRC, Cost); } bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const { if (!Subtarget->isTargetLinux()) return false; if (Subtarget->is64Bit()) { // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: Offset = 0x28; if (getTargetMachine().getCodeModel() == CodeModel::Kernel) AddressSpace = 256; else AddressSpace = 257; } else { // %gs:0x14 on i386 Offset = 0x14; AddressSpace = 256; } return true; } bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { assert(SrcAS != DestAS && "Expected different address spaces!"); return SrcAS < 256 && DestAS < 256; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// #include "X86GenCallingConv.inc" bool X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_X86); } const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; return ScratchRegs; } SDValue X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Operand #1 = Bytes To Pop RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), MVT::i16)); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue ValToCopy = OutVals[i]; EVT ValVT = ValToCopy.getValueType(); // Promote values to the appropriate types. if (VA.getLocInfo() == CCValAssign::SExt) ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::ZExt) ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::AExt) ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::BCvt) ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy); assert(VA.getLocInfo() != CCValAssign::FPExt && "Unexpected FP-extend for return value."); // If this is x86-64, and we disabled SSE, we can't return FP values, // or SSE or MMX vectors. if ((ValVT == MVT::f32 || ValVT == MVT::f64 || VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } // Likewise we can't return F64 values with SSE1 only. gcc does so, but // llvm-gcc has never done it right and no one has noticed, so this // should be OK for now. if (ValVT == MVT::f64 && (Subtarget->is64Bit() && !Subtarget->hasSSE2())) report_fatal_error("SSE2 register return with SSE2 disabled"); // Returns in ST0/ST1 are handled specially: these are pushed as operands to // the RET instruction and handled by the FP Stackifier. if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) { // If this is a copy from an xmm register to ST(0), use an FPExtend to // change the value to the FP stack register class. if (isScalarFPTypeInSSEReg(VA.getValVT())) ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); RetOps.push_back(ValToCopy); // Don't emit a copytoreg. continue; } // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 // which is returned in RAX / RDX. if (Subtarget->is64Bit()) { if (ValVT == MVT::x86mmx) { if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); // If we don't have SSE2 available, convert to v4f32 so the generated // register is legal. if (!Subtarget->hasSSE2()) ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); } } } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // The x86-64 ABIs require that for returning structs by value we copy // the sret argument into %rax/%eax (depending on ABI) for the return. // Win32 requires us to put the sret argument to %eax as well. // We saved the argument into a virtual register in the entry block, // so now we copy the value out and into %rax/%eax. if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() && (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); unsigned Reg = FuncInfo->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()."); SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); unsigned RetValReg = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? X86::RAX : X86::EAX; Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); Flag = Chain.getValue(1); // RAX/EAX now acts like a return value. RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps); } bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() != ISD::FP_EXTEND) return false; bool HasRet = false; for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != X86ISD::RET_FLAG) return false; // If we are returning more than one value, we can definitely // not make a tail call see PR19530 if (UI->getNumOperands() > 4) return false; if (UI->getNumOperands() == 4 && UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } EVT X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, ISD::NodeType ExtendKind) const { MVT ReturnMVT; // TODO: Is this also valid on 32-bit? if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) ReturnMVT = MVT::i8; else ReturnMVT = MVT::i32; EVT MinVT = getRegisterType(Context, ReturnMVT); return VT.bitsLT(MinVT) ? MinVT : VT; } /// Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. /// SDValue X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Assign locations to each value returned by this call. SmallVector RVLocs; bool Is64Bit = Subtarget->is64Bit(); CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; EVT CopyVT = VA.getValVT(); // If this is x86-64, and we disabled SSE, we can't return FP values if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } // If we prefer to use the value in xmm registers, copy it out as f80 and // use a truncate to move it from fp stack reg to xmm reg. if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag).getValue(1); SDValue Val = Chain.getValue(0); if (CopyVT != VA.getValVT()) Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, // This truncation won't change the value. DAG.getIntPtrConstant(1)); InFlag = Chain.getValue(2); InVals.push_back(Val); } return Chain; } //===----------------------------------------------------------------------===// // C & StdCall & Fast Calling Convention implementation //===----------------------------------------------------------------------===// // StdCall calling convention seems to be standard for many Windows' API // routines and around. It differs from C calling convention just a little: // callee should clean up the stack, not caller. Symbols should be also // decorated in some fancy way :) It doesn't support any vector arguments. // For info on fast calling convention see Fast Calling Convention (tail call) // implementation LowerX86_32FastCCCallTo. /// CallIsStructReturn - Determines whether a call uses struct return /// semantics. enum StructReturnType { NotStructReturn, RegStructReturn, StackStructReturn }; static StructReturnType callIsStructReturn(const SmallVectorImpl &Outs) { if (Outs.empty()) return NotStructReturn; const ISD::ArgFlagsTy &Flags = Outs[0].Flags; if (!Flags.isSRet()) return NotStructReturn; if (Flags.isInReg()) return RegStructReturn; return StackStructReturn; } /// Determines whether a function uses struct return semantics. static StructReturnType argsAreStructReturn(const SmallVectorImpl &Ins) { if (Ins.empty()) return NotStructReturn; const ISD::ArgFlagsTy &Flags = Ins[0].Flags; if (!Flags.isSRet()) return NotStructReturn; if (Flags.isInReg()) return RegStructReturn; return StackStructReturn; } /// Make a copy of an aggregate at address specified by "Src" to address /// "Dst" with size and alignment information specified by the specific /// parameter attribute. The copy will be passed as a byval function parameter. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*isVolatile*/false, /*AlwaysInline=*/true, MachinePointerInfo(), MachinePointerInfo()); } /// Return true if the calling convention is one that /// supports tail call optimization. static bool IsTailCallConvention(CallingConv::ID CC) { return (CC == CallingConv::Fast || CC == CallingConv::GHC || CC == CallingConv::HiPE); } /// \brief Return true if the calling convention is a C calling convention. static bool IsCCallConvention(CallingConv::ID CC) { return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 || CC == CallingConv::X86_64_SysV); } bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls) return false; CallSite CS(CI); CallingConv::ID CalleeCC = CS.getCallingConv(); if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC)) return false; return true; } /// Return true if the function is being made into /// a tailcall target by changing its ABI. static bool FuncIsMadeTailCallSafe(CallingConv::ID CC, bool GuaranteedTailCallOpt) { return GuaranteedTailCallOpt && IsTailCallConvention(CC); } SDValue X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned i) const { // Create the nodes corresponding to a load from this parameter slot. ISD::ArgFlagsTy Flags = Ins[i].Flags; bool AlwaysUseMutable = FuncIsMadeTailCallSafe( CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); EVT ValVT; // If value is passed by pointer we have address passed instead of the value // itself. if (VA.getLocInfo() == CCValAssign::Indirect) ValVT = VA.getLocVT(); else ValVT = VA.getValVT(); // FIXME: For now, all byval parameter objects are marked mutable. This can be // changed with more analysis. // In case of tail call optimization mark all arguments mutable. Since they // could be overwritten by lowering of arguments in case of a tail call. if (Flags.isByVal()) { unsigned Bytes = Flags.getByValSize(); if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); return DAG.getFrameIndex(FI, getPointerTy()); } else { int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), isImmutable); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); return DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } } // FIXME: Get this from tablegen. static ArrayRef get64BitArgumentGPRs(CallingConv::ID CallConv, const X86Subtarget *Subtarget) { assert(Subtarget->is64Bit()); if (Subtarget->isCallingConvWin64(CallConv)) { static const MCPhysReg GPR64ArgRegsWin64[] = { X86::RCX, X86::RDX, X86::R8, X86::R9 }; return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); } static const MCPhysReg GPR64ArgRegs64Bit[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 }; return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); } // FIXME: Get this from tablegen. static ArrayRef get64BitArgumentXMMs(MachineFunction &MF, CallingConv::ID CallConv, const X86Subtarget *Subtarget) { assert(Subtarget->is64Bit()); if (Subtarget->isCallingConvWin64(CallConv)) { // The XMM registers which might contain var arg parameters are shadowed // in their paired GPR. So we only need to save the GPR to their home // slots. // TODO: __vectorcall will change this. return None; } const Function *Fn = MF.getFunction(); bool NoImplicitFloatOps = Fn->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) && "SSE register cannot be used when SSE is disabled!"); if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) // Kernel mode asks for SSE to be disabled, so there are no XMM argument // registers. return None; static const MCPhysReg XMMArgRegs64Bit[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit)); } SDValue X86TargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); const Function* Fn = MF.getFunction(); if (Fn->hasExternalLinkage() && Subtarget->isTargetCygMing() && Fn->getName() == "main") FuncInfo->setForceFramePointer(true); MachineFrameInfo *MFI = MF.getFrameInfo(); bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); assert(!(isVarArg && IsTailCallConvention(CallConv)) && "Var args not supported with calling convention fastcc, ghc or hipe"); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsWin64) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeFormalArguments(Ins, CC_X86); unsigned LastVal = ~0U; SDValue ArgValue; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // TODO: If an arg is passed in two places (e.g. reg and stack), skip later // places. assert(VA.getValNo() != LastVal && "Don't support value assigned to multiple locs yet"); (void)LastVal; LastVal = VA.getValNo(); if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &X86::GR32RegClass; else if (Is64Bit && RegVT == MVT::i64) RC = &X86::GR64RegClass; else if (RegVT == MVT::f32) RC = &X86::FR32RegClass; else if (RegVT == MVT::f64) RC = &X86::FR64RegClass; else if (RegVT.is512BitVector()) RC = &X86::VR512RegClass; else if (RegVT.is256BitVector()) RC = &X86::VR256RegClass; else if (RegVT.is128BitVector()) RC = &X86::VR128RegClass; else if (RegVT == MVT::x86mmx) RC = &X86::VR64RegClass; else if (RegVT == MVT::i1) RC = &X86::VK1RegClass; else if (RegVT == MVT::v8i1) RC = &X86::VK8RegClass; else if (RegVT == MVT::v16i1) RC = &X86::VK16RegClass; else if (RegVT == MVT::v32i1) RC = &X86::VK32RegClass; else if (RegVT == MVT::v64i1) RC = &X86::VK64RegClass; else llvm_unreachable("Unknown argument type!"); unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::BCvt) ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); if (VA.isExtInLoc()) { // Handle MMX values passed in XMM regs. if (RegVT.isVector()) ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); else ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } } else { assert(VA.isMemLoc()); ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); } // If value is passed via pointer - do a load. if (VA.getLocInfo() == CCValAssign::Indirect) ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo(), false, false, false, 0); InVals.push_back(ArgValue); } if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) { for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { // The x86-64 ABIs require that for returning structs by value we copy // the sret argument into %rax/%eax (depending on ABI) for the return. // Win32 requires us to put the sret argument to %eax as well. // Save the argument into a virtual register so that we can access it // from the return points. if (Ins[i].Flags.isSRet()) { unsigned Reg = FuncInfo->getSRetReturnReg(); if (!Reg) { MVT PtrTy = getPointerTy(); Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); FuncInfo->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); break; } } } unsigned StackSize = CCInfo.getNextStackOffset(); // Align stack specially for tail calls. if (FuncIsMadeTailCallSafe(CallConv, MF.getTarget().Options.GuaranteedTailCallOpt)) StackSize = GetAlignedArgumentStackSize(StackSize, DAG); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. We // can skip this if there are no va_start calls. if (MFI->hasVAStart() && (Is64Bit || (CallConv != CallingConv::X86_FastCall && CallConv != CallingConv::X86_ThisCall))) { FuncInfo->setVarArgsFrameIndex( MFI->CreateFixedObject(1, StackSize, true)); } // Figure out if XMM registers are in use. assert(!(MF.getTarget().Options.UseSoftFloat && Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) && "SSE register cannot be used when SSE is disabled!"); // 64-bit calling conventions support varargs and register parameters, so we // have to do extra work to spill them in the prologue. if (Is64Bit && isVarArg && MFI->hasVAStart()) { // Find the first unallocated argument registers. ArrayRef ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); ArrayRef ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget); unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs.data(), ArgGPRs.size()); unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs.data(), ArgXMMs.size()); assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && "SSE register cannot be used when SSE is disabled!"); // Gather all the live in physical registers. SmallVector LiveGPRs; SmallVector LiveXMMRegs; SDValue ALVal; for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) { unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass); LiveGPRs.push_back( DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64)); } if (!ArgXMMs.empty()) { unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8); for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) { unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass); LiveXMMRegs.push_back( DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32)); } } if (IsWin64) { const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); // Get to the caller-allocated home save location. Add 8 to account // for the return address. int HomeOffset = TFI.getOffsetOfLocalArea() + 8; FuncInfo->setRegSaveFrameIndex( MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); // Fixup to set vararg frame on shadow area (4 x i64). if (NumIntRegs < 4) FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); } else { // For X86-64, if there are vararg parameters that are passed via // registers, then we must store them to their spots on the stack so // they may be loaded by deferencing the result of va_next. FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject( ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false)); } // Store the integer parameter registers. SmallVector MemOps; SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy()); unsigned Offset = FuncInfo->getVarArgsGPOffset(); for (SDValue Val : LiveGPRs) { SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, DAG.getIntPtrConstant(Offset)); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo::getFixedStack( FuncInfo->getRegSaveFrameIndex(), Offset), false, false, 0); MemOps.push_back(Store); Offset += 8; } if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) { // Now store the XMM (fp + vector) parameter registers. SmallVector SaveXMMOps; SaveXMMOps.push_back(Chain); SaveXMMOps.push_back(ALVal); SaveXMMOps.push_back(DAG.getIntPtrConstant( FuncInfo->getRegSaveFrameIndex())); SaveXMMOps.push_back(DAG.getIntPtrConstant( FuncInfo->getVarArgsFPOffset())); SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(), LiveXMMRegs.end()); MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, MVT::Other, SaveXMMOps)); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); } if (isVarArg && MFI->hasMustTailInVarArgFunc()) { // Find the largest legal vector type. MVT VecVT = MVT::Other; // FIXME: Only some x86_32 calling conventions support AVX512. if (Subtarget->hasAVX512() && (Is64Bit || (CallConv == CallingConv::X86_VectorCall || CallConv == CallingConv::Intel_OCL_BI))) VecVT = MVT::v16f32; else if (Subtarget->hasAVX()) VecVT = MVT::v8f32; else if (Subtarget->hasSSE2()) VecVT = MVT::v4f32; // We forward some GPRs and some vector types. SmallVector RegParmTypes; MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32; RegParmTypes.push_back(IntVT); if (VecVT != MVT::Other) RegParmTypes.push_back(VecVT); // Compute the set of forwarded registers. The rest are scratch. SmallVectorImpl &Forwards = FuncInfo->getForwardedMustTailRegParms(); CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86); // Conservatively forward AL on x86_64, since it might be used for varargs. if (Is64Bit && !CCInfo.isAllocated(X86::AL)) { unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass); Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8)); } // Copy all forwards from physical to virtual registers. for (ForwardedRegister &F : Forwards) { // FIXME: Can we use a less constrained schedule? SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal); } } // Some CCs need callee pop. if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, MF.getTarget().Options.GuaranteedTailCallOpt)) { FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. } else { FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. // If this is an sret function, the return should pop the hidden pointer. if (!Is64Bit && !IsTailCallConvention(CallConv) && !Subtarget->getTargetTriple().isOSMSVCRT() && argsAreStructReturn(Ins) == StackStructReturn) FuncInfo->setBytesToPopOnReturn(4); } if (!Is64Bit) { // RegSaveFrameIndex is X86-64 only. FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); if (CallConv == CallingConv::X86_FastCall || CallConv == CallingConv::X86_ThisCall) // fastcc functions can't have varargs. FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); } FuncInfo->setArgumentStackSize(StackSize); return Chain; } SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); if (Flags.isByVal()) return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); return DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo::getStack(LocMemOffset), false, false, 0); } /// Emit a load of return address if tail call /// optimization is performed and it is required. SDValue X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, SDLoc dl) const { // Adjust the Return address stack slot. EVT VT = getPointerTy(); OutRetAddr = getReturnAddressFrameIndex(DAG); // Load the "old" Return address. OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), false, false, false, 0); return SDValue(OutRetAddr.getNode(), 1); } /// Emit a store of the return address if tail call /// optimization is performed and it is required (FPDiff!=0). static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT, unsigned SlotSize, int FPDiff, SDLoc dl) { // Store the return address to the appropriate stack slot. if (!FPDiff) return Chain; // Calculate the new stack slot for the return address. int NewReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, false); SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, MachinePointerInfo::getFixedStack(NewReturnAddrFI), false, false, 0); return Chain; } SDValue X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; CallingConv::ID CallConv = CLI.CallConv; bool &isTailCall = CLI.IsTailCall; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); StructReturnType SR = callIsStructReturn(Outs); bool IsSibcall = false; X86MachineFunctionInfo *X86Info = MF.getInfo(); if (MF.getTarget().Options.DisableTailCalls) isTailCall = false; bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall(); if (IsMustTail) { // Force this to be a tail call. The verifier rules are enough to ensure // that we can lower this successfully without moving the return address // around. isTailCall = true; } else if (isTailCall) { // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, SR != NotStructReturn, MF.getFunction()->hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins, DAG); // Sibcalls are automatically detected tailcalls which do not require // ABI changes. if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) IsSibcall = true; if (isTailCall) ++NumTailCalls; } assert(!(isVarArg && IsTailCallConvention(CallConv)) && "Var args not supported with calling convention fastcc, ghc or hipe"); // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsWin64) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeCallOperands(Outs, CC_X86); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (IsSibcall) // This is a sibcall. The memory operands are available in caller's // own caller's stack. NumBytes = 0; else if (MF.getTarget().Options.GuaranteedTailCallOpt && IsTailCallConvention(CallConv)) NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); int FPDiff = 0; if (isTailCall && !IsSibcall && !IsMustTail) { // Lower arguments at fp - stackoffset + fpdiff. unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); FPDiff = NumBytesCallerPushed - NumBytes; // Set the delta of movement of the returnaddr stackslot. // But only set if delta is greater than previous delta. if (FPDiff < X86Info->getTCReturnAddrDelta()) X86Info->setTCReturnAddrDelta(FPDiff); } unsigned NumBytesToPush = NumBytes; unsigned NumBytesToPop = NumBytes; // If we have an inalloca argument, all stack space has already been allocated // for us and be right at the top of the stack. We don't support multiple // arguments passed in memory when using inalloca. if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { NumBytesToPush = 0; if (!ArgLocs.back().isMemLoc()) report_fatal_error("cannot use inalloca attribute on a register " "parameter"); if (ArgLocs.back().getLocMemOffset() != 0) report_fatal_error("any parameter with the inalloca attribute must be " "the only memory argument"); } if (!IsSibcall) Chain = DAG.getCALLSEQ_START( Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl); SDValue RetAddrFrIdx; // Load return address for tail calls. if (isTailCall && FPDiff) Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit, FPDiff, dl); SmallVector, 8> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization arguments are handle later. const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { // Skip inalloca arguments, they have already been written. ISD::ArgFlagsTy Flags = Outs[i].Flags; if (Flags.isInAlloca()) continue; CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[i]; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: if (RegVT.is128BitVector()) { // Special case: passing MMX values in XMM registers. Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); } else Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); break; case CCValAssign::Indirect: { // Store the argument. SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); int FI = cast(SpillSlot)->getIndex(); Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, MachinePointerInfo::getFixedStack(FI), false, false, 0); Arg = SpillSlot; break; } } if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); if (isVarArg && IsWin64) { // Win64 ABI requires argument XMM reg to be copied to the corresponding // shadow reg if callee is a varargs function. unsigned ShadowReg = 0; switch (VA.getLocReg()) { case X86::XMM0: ShadowReg = X86::RCX; break; case X86::XMM1: ShadowReg = X86::RDX; break; case X86::XMM2: ShadowReg = X86::R8; break; case X86::XMM3: ShadowReg = X86::R9; break; } if (ShadowReg) RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); } } else if (!IsSibcall && (!isTailCall || isByVal)) { assert(VA.isMemLoc()); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); if (Subtarget->isPICStyleGOT()) { // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (!isTailCall) { RegsToPass.push_back(std::make_pair(unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()))); } else { // If we are tail calling and generating PIC/GOT style code load the // address of the callee into ECX. The value in ecx is used as target of // the tail jump. This is done to circumvent the ebx/callee-saved problem // for tail calls on PIC/GOT architectures. Normally we would just put the // address of GOT into ebx and then call target@PLT. But for tail calls // ebx would be restored (since ebx is callee saved) before jumping to the // target@PLT. // Note: The actual moving to ECX is done further down. GlobalAddressSDNode *G = dyn_cast(Callee); if (G && !G->getGlobal()->hasHiddenVisibility() && !G->getGlobal()->hasProtectedVisibility()) Callee = LowerGlobalAddress(Callee, DAG); else if (isa(Callee)) Callee = LowerExternalSymbol(Callee, DAG); } } if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. // Count the number of XMM registers allocated. static const MCPhysReg XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); assert((Subtarget->hasSSE1() || !NumXMMRegs) && "SSE registers cannot be used when SSE is disabled"); RegsToPass.push_back(std::make_pair(unsigned(X86::AL), DAG.getConstant(NumXMMRegs, MVT::i8))); } if (isVarArg && IsMustTail) { const auto &Forwards = X86Info->getForwardedMustTailRegParms(); for (const auto &F : Forwards) { SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); } } // For tail calls lower the arguments to the 'real' stack slots. Sibcalls // don't need this because the eligibility check rejects calls that require // shuffling arguments passed in memory. if (!IsSibcall && isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); SmallVector MemOpChains2; SDValue FIN; int FI = 0; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Skip inalloca arguments. They don't require any work. if (Flags.isInAlloca()) continue; // Create frame index. int32_t Offset = VA.getLocMemOffset()+FPDiff; uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); FIN = DAG.getFrameIndex(FI, getPointerTy()); if (Flags.isByVal()) { // Copy relative to framepointer. SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), getPointerTy()); Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, dl)); } else { // Store relative to framepointer. MemOpChains2.push_back( DAG.getStore(ArgChain, dl, Arg, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } } if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, getPointerTy(), RegInfo->getSlotSize(), FPDiff, dl); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (DAG.getTarget().getCodeModel() == CodeModel::Large) { assert(Is64Bit && "Large code model is only legal in 64-bit mode."); // In the 64-bit large code model, we have to make all calls // through a register, since the call instruction's 32-bit // pc-relative offset may not be large enough to hold the whole // address. } else if (Callee->getOpcode() == ISD::GlobalAddress) { // If the callee is a GlobalAddress node (quite common, every direct call // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack // it. GlobalAddressSDNode* G = cast(Callee); // We should use extra load for direct calls to dllimported functions in // non-JIT mode. const GlobalValue *GV = G->getGlobal(); if (!GV->hasDLLImportStorageClass()) { unsigned char OpFlags = 0; bool ExtraLoad = false; unsigned WrapperKind = ISD::DELETED_NODE; // On ELF targets, in both X86-64 and X86-32 mode, direct calls to // external symbols most go through the PLT in PIC mode. If the symbol // has hidden or protected visibility, or if it is static or local, then // we don't need to use the PLT - we can directly call it. if (Subtarget->isTargetELF() && DAG.getTarget().getRelocationModel() == Reloc::PIC_ && GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } else if (Subtarget->isPICStyleRIPRel() && isa(GV) && cast(GV)->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NonLazyBind)) { // If the function is marked as non-lazy, generate an indirect call // which loads from the GOT directly. This avoids runtime overhead // at the cost of eager binding (and one extra byte of encoding). OpFlags = X86II::MO_GOTPCREL; WrapperKind = X86ISD::WrapperRIP; ExtraLoad = true; } Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), G->getOffset(), OpFlags); // Add a wrapper if needed. if (WrapperKind != ISD::DELETED_NODE) Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee); // Add extra indirection if needed. if (ExtraLoad) Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, MachinePointerInfo::getGOT(), false, false, false, 0); } } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { unsigned char OpFlags = 0; // On ELF targets, in either X86-64 or X86-32 mode, direct calls to // external symbols should go through the PLT. if (Subtarget->isTargetELF() && DAG.getTarget().getRelocationModel() == Reloc::PIC_) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), OpFlags); } else if (Subtarget->isTarget64BitILP32() && Callee->getValueType(0) == MVT::i32) { // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; if (!IsSibcall && isTailCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytesToPop, true), DAG.getIntPtrConstant(0, true), InFlag, dl); InFlag = Chain.getValue(1); } Ops.push_back(Chain); Ops.push_back(Callee); if (isTailCall) Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); if (isTailCall) { // We used to do: //// If this is the first return lowered for this function, add the regs //// to the liveout set for the function. // This isn't right, although it's probably harmless on x86; liveouts // should be computed from returns not tail calls. Consider a void // function making a tail call to a function returning int. return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops); } Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. unsigned NumBytesForCalleeToPop; if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, DAG.getTarget().Options.GuaranteedTailCallOpt)) NumBytesForCalleeToPop = NumBytes; // Callee pops everything else if (!Is64Bit && !IsTailCallConvention(CallConv) && !Subtarget->getTargetTriple().isOSMSVCRT() && SR == StackStructReturn) // If this is a call to a struct-return function, the callee // pops the hidden struct pointer, so we have to push it back. // This is common for Darwin/X86, Linux & Mingw32 targets. // For MSVC Win32 targets, the caller pops the hidden struct pointer. NumBytesForCalleeToPop = 4; else NumBytesForCalleeToPop = 0; // Callee pops nothing. // Returns a flag for retval copy to use. if (!IsSibcall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytesToPop, true), DAG.getIntPtrConstant(NumBytesForCalleeToPop, true), InFlag, dl); InFlag = Chain.getValue(1); } // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } //===----------------------------------------------------------------------===// // Fast Calling Convention (tail call) implementation //===----------------------------------------------------------------------===// // Like std call, callee cleans arguments, convention except that ECX is // reserved for storing the tail called function address. Only 2 registers are // free for argument passing (inreg). Tail call optimization is performed // provided: // * tailcallopt is enabled // * caller/callee are fastcc // On X86_64 architecture with GOT-style position independent code only local // (within module) calls are supported at the moment. // To keep the stack aligned according to platform abi the function // GetAlignedArgumentStackSize ensures that argument delta is always multiples // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) // If a tail called function callee has more arguments than the caller the // caller needs to make sure that there is room to move the RETADDR to. This is // achieved by reserving an area the size of the argument delta right after the // original RETADDR, but before the saved framepointer or the spilled registers // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) // stack layout: // arg1 // arg2 // RETADDR // [ new RETADDR // move area ] // (possible EBP) // ESI // EDI // local1 .. /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned /// for a 16 byte align requirement. unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const TargetMachine &TM = MF.getTarget(); const X86RegisterInfo *RegInfo = static_cast( TM.getSubtargetImpl()->getRegisterInfo()); const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering(); unsigned StackAlignment = TFI.getStackAlignment(); uint64_t AlignMask = StackAlignment - 1; int64_t Offset = StackSize; unsigned SlotSize = RegInfo->getSlotSize(); if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { // Number smaller than 12 so just add the difference. Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); } else { // Mask out lower bits, add stackalignment once plus the 12 bytes. Offset = ((~AlignMask) & Offset) + StackAlignment + (StackAlignment-SlotSize); } return Offset; } /// MatchingStackOffset - Return true if the given stack call argument is /// already available in the same position (relatively) of the caller's /// incoming argument stack. static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, const X86InstrInfo *TII) { unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; int FI = INT_MAX; if (Arg.getOpcode() == ISD::CopyFromReg) { unsigned VR = cast(Arg.getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(VR)) return false; MachineInstr *Def = MRI->getVRegDef(VR); if (!Def) return false; if (!Flags.isByVal()) { if (!TII->isLoadFromStackSlot(Def, FI)) return false; } else { unsigned Opcode = Def->getOpcode(); if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && Def->getOperand(1).isFI()) { FI = Def->getOperand(1).getIndex(); Bytes = Flags.getByValSize(); } else return false; } } else if (LoadSDNode *Ld = dyn_cast(Arg)) { if (Flags.isByVal()) // ByVal argument is passed in as a pointer but it's now being // dereferenced. e.g. // define @foo(%struct.X* %A) { // tail call @bar(%struct.X* byval %A) // } return false; SDValue Ptr = Ld->getBasePtr(); FrameIndexSDNode *FINode = dyn_cast(Ptr); if (!FINode) return false; FI = FINode->getIndex(); } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { FrameIndexSDNode *FINode = cast(Arg); FI = FINode->getIndex(); Bytes = Flags.getByValSize(); } else return false; assert(FI != INT_MAX); if (!MFI->isFixedObjectIndex(FI)) return false; return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG) const { if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC)) return false; // If -tailcallopt is specified, make fastcc functions tail-callable. const MachineFunction &MF = DAG.getMachineFunction(); const Function *CallerF = MF.getFunction(); // If the function return type is x86_fp80 and the callee return type is not, // then the FP_EXTEND of the call result is not a nop. It's not safe to // perform a tailcall optimization here. if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) return false; CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC); if (DAG.getTarget().Options.GuaranteedTailCallOpt) { if (IsTailCallConvention(CalleeCC) && CCMatch) return true; return false; } // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. This is what gcc calls sibcall. // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to // emit a special epilogue. const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); if (RegInfo->needsStackRealignment(MF)) return false; // Also avoid sibcall optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // An stdcall/thiscall caller is expected to clean up its arguments; the // callee isn't going to do that. // FIXME: this is more restrictive than needed. We could produce a tailcall // when the stack adjustment matches. For example, with a thiscall that takes // only one argument. if (!CCMatch && (CallerCC == CallingConv::X86_StdCall || CallerCC == CallingConv::X86_ThisCall)) return false; // Do not sibcall optimize vararg calls unless all arguments are passed via // registers. if (isVarArg && !Outs.empty()) { // Optimizing for varargs on Win64 is unlikely to be safe without // additional testing. if (IsCalleeWin64 || IsCallerWin64) return false; SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_X86); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) if (!ArgLocs[i].isRegLoc()) return false; } // If the call result is in ST0 / ST1, it needs to be popped off the x87 // stack. Therefore, if it's not used by the call it is not safe to optimize // this into a sibcall. bool Unused = false; for (unsigned i = 0, e = Ins.size(); i != e; ++i) { if (!Ins[i].Used) { Unused = true; break; } } if (Unused) { SmallVector RVLocs; CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) return false; } } // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector RVLocs1; CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, *DAG.getContext()); CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); SmallVector RVLocs2; CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, *DAG.getContext()); CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } // If the callee takes no arguments then go on to check the results of the // call. if (!Outs.empty()) { // Check if stack adjustment is needed. For now, do not do this if any // argument is passed on the stack. SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsCalleeWin64) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeCallOperands(Outs, CC_X86); if (CCInfo.getNextStackOffset()) { MachineFunction &MF = DAG.getMachineFunction(); if (MF.getInfo()->getBytesToPopOnReturn()) return false; // Check if the arguments are already laid out in the right way as // the caller's fixed stack objects. MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineRegisterInfo *MRI = &MF.getRegInfo(); const X86InstrInfo *TII = static_cast(DAG.getSubtarget().getInstrInfo()); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (!VA.isRegLoc()) { if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, TII)) return false; } } } // If the tailcall address may be in a register, then make sure it's // possible to register allocate for it. In 32-bit, the call address can // only target EAX, EDX, or ECX since the tail call must be scheduled after // callee-saved registers are restored. These happen to be the same // registers used to pass 'inreg' arguments so watch out for those. if (!Subtarget->is64Bit() && ((!isa(Callee) && !isa(Callee)) || DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { unsigned NumInRegs = 0; // In PIC we need an extra register to formulate the address computation // for the callee. unsigned MaxInRegs = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (!VA.isRegLoc()) continue; unsigned Reg = VA.getLocReg(); switch (Reg) { default: break; case X86::EAX: case X86::EDX: case X86::ECX: if (++NumInRegs == MaxInRegs) return false; break; } } } } return true; } FastISel * X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return X86::createFastISel(funcInfo, libInfo); } //===----------------------------------------------------------------------===// // Other Lowering Hooks //===----------------------------------------------------------------------===// static bool MayFoldLoad(SDValue Op) { return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); } static bool MayFoldIntoStore(SDValue Op) { return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); } static bool isTargetShuffle(unsigned Opcode) { switch(Opcode) { default: return false; case X86ISD::BLENDI: case X86ISD::PSHUFB: case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::SHUFP: case X86ISD::PALIGNR: case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: case X86ISD::MOVLPS: case X86ISD::MOVLPD: case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: case X86ISD::MOVDDUP: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::UNPCKL: case X86ISD::UNPCKH: case X86ISD::VPERMILPI: case X86ISD::VPERM2X128: case X86ISD::VPERMI: return true; } } static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, SDValue V1, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: case X86ISD::MOVDDUP: return DAG.getNode(Opc, dl, VT, V1); } } static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, SDValue V1, unsigned TargetMask, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::VPERMILPI: case X86ISD::VPERMI: return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); } } static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::PALIGNR: case X86ISD::VALIGN: case X86ISD::SHUFP: case X86ISD::VPERM2X128: return DAG.getNode(Opc, dl, VT, V1, V2, DAG.getConstant(TargetMask, MVT::i8)); } } static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: case X86ISD::MOVLPS: case X86ISD::MOVLPD: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::UNPCKL: case X86ISD::UNPCKH: return DAG.getNode(Opc, dl, VT, V1, V2); } } SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); int ReturnAddrIndex = FuncInfo->getRAIndex(); if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. unsigned SlotSize = RegInfo->getSlotSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -(int64_t)SlotSize, false); FuncInfo->setRAIndex(ReturnAddrIndex); } return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); } bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement) { // Offset should fit into 32 bit immediate field. if (!isInt<32>(Offset)) return false; // If we don't have a symbolic displacement - we don't have any extra // restrictions. if (!hasSymbolicDisplacement) return true; // FIXME: Some tweaks might be needed for medium code model. if (M != CodeModel::Small && M != CodeModel::Kernel) return false; // For small code model we assume that latest object is 16MB before end of 31 // bits boundary. We may also accept pretty large negative constants knowing // that all objects are in the positive half of address space. if (M == CodeModel::Small && Offset < 16*1024*1024) return true; // For kernel code model we know that all object resist in the negative half // of 32bits address space. We may not accept negative offsets, since they may // be just off and we may accept pretty large positive ones. if (M == CodeModel::Kernel && Offset >= 0) return true; return false; } /// isCalleePop - Determines whether the callee is required to pop its /// own arguments. Callee pop is necessary to support tail calls. bool X86::isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool TailCallOpt) { switch (CallingConv) { default: return false; case CallingConv::X86_StdCall: case CallingConv::X86_FastCall: case CallingConv::X86_ThisCall: return !is64Bit; case CallingConv::Fast: case CallingConv::GHC: case CallingConv::HiPE: if (IsVarArg) return false; return TailCallOpt; } } /// \brief Return true if the condition is an unsigned comparison operation. static bool isX86CCUnsigned(unsigned X86CC) { switch (X86CC) { default: llvm_unreachable("Invalid integer condition!"); case X86::COND_E: return true; case X86::COND_G: return false; case X86::COND_GE: return false; case X86::COND_L: return false; case X86::COND_LE: return false; case X86::COND_NE: return true; case X86::COND_B: return true; case X86::COND_A: return true; case X86::COND_BE: return true; case X86::COND_AE: return true; } llvm_unreachable("covered switch fell through?!"); } /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 /// specific condition code, returning the condition code and the LHS/RHS of the /// comparison to make. static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { if (!isFP) { if (ConstantSDNode *RHSC = dyn_cast(RHS)) { if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { // X > -1 -> X == 0, jump !sign. RHS = DAG.getConstant(0, RHS.getValueType()); return X86::COND_NS; } if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { // X < 0 -> X == 0, jump on sign. return X86::COND_S; } if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { // X < 1 -> X <= 0 RHS = DAG.getConstant(0, RHS.getValueType()); return X86::COND_LE; } } switch (SetCCOpcode) { default: llvm_unreachable("Invalid integer condition!"); case ISD::SETEQ: return X86::COND_E; case ISD::SETGT: return X86::COND_G; case ISD::SETGE: return X86::COND_GE; case ISD::SETLT: return X86::COND_L; case ISD::SETLE: return X86::COND_LE; case ISD::SETNE: return X86::COND_NE; case ISD::SETULT: return X86::COND_B; case ISD::SETUGT: return X86::COND_A; case ISD::SETULE: return X86::COND_BE; case ISD::SETUGE: return X86::COND_AE; } } // First determine if it is required or is profitable to flip the operands. // If LHS is a foldable load, but RHS is not, flip the condition. if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) { SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); std::swap(LHS, RHS); } switch (SetCCOpcode) { default: break; case ISD::SETOLT: case ISD::SETOLE: case ISD::SETUGT: case ISD::SETUGE: std::swap(LHS, RHS); break; } // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered switch (SetCCOpcode) { default: llvm_unreachable("Condcode should be pre-legalized away"); case ISD::SETUEQ: case ISD::SETEQ: return X86::COND_E; case ISD::SETOLT: // flipped case ISD::SETOGT: case ISD::SETGT: return X86::COND_A; case ISD::SETOLE: // flipped case ISD::SETOGE: case ISD::SETGE: return X86::COND_AE; case ISD::SETUGT: // flipped case ISD::SETULT: case ISD::SETLT: return X86::COND_B; case ISD::SETUGE: // flipped case ISD::SETULE: case ISD::SETLE: return X86::COND_BE; case ISD::SETONE: case ISD::SETNE: return X86::COND_NE; case ISD::SETUO: return X86::COND_P; case ISD::SETO: return X86::COND_NP; case ISD::SETOEQ: case ISD::SETUNE: return X86::COND_INVALID; } } /// hasFPCMov - is there a floating point cmov for the specific X86 condition /// code. Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86::COND_B: case X86::COND_BE: case X86::COND_E: case X86::COND_P: case X86::COND_A: case X86::COND_AE: case X86::COND_NE: case X86::COND_NP: return true; } } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) return true; } return false; } bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const { // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF // relocation target a movq or addq instruction: don't let the load shrink. SDValue BasePtr = cast(Load)->getBasePtr(); if (BasePtr.getOpcode() == X86ISD::WrapperRIP) if (const auto *GA = dyn_cast(BasePtr.getOperand(0))) return GA->getTargetFlags() != X86II::MO_GOTTPOFF; return true; } /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0 || BitSize > 64) return false; return true; } bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; return (Index == 0 || Index == ResVT.getVectorNumElements()); } bool X86TargetLowering::isCheapToSpeculateCttz() const { // Speculate cttz only if we can directly use TZCNT. return Subtarget->hasBMI(); } bool X86TargetLowering::isCheapToSpeculateCtlz() const { // Speculate ctlz only if we can directly use LZCNT. return Subtarget->hasLZCNT(); } /// isUndefOrInRange - Return true if Val is undef or if its value falls within /// the specified range (L, H]. static bool isUndefOrInRange(int Val, int Low, int Hi) { return (Val < 0) || (Val >= Low && Val < Hi); } /// isUndefOrEqual - Val is either less than zero (undef) or equal to the /// specified value. static bool isUndefOrEqual(int Val, int CmpVal) { return (Val < 0 || Val == CmpVal); } /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning /// from position Pos and ending in Pos+Size, falls within the specified /// sequential range (Low, Low+Size]. or is undef. static bool isSequentialOrUndefInRange(ArrayRef Mask, unsigned Pos, unsigned Size, int Low) { for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) if (!isUndefOrEqual(Mask[i], Low)) return false; return true; } /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFD. That is, it doesn't reference the other /// operand - by default will match for first operand. static bool isPSHUFDMask(ArrayRef Mask, MVT VT, bool TestSecondOperand = false) { if (VT != MVT::v4f32 && VT != MVT::v4i32 && VT != MVT::v2f64 && VT != MVT::v2i64) return false; unsigned NumElems = VT.getVectorNumElements(); unsigned Lo = TestSecondOperand ? NumElems : 0; unsigned Hi = Lo + NumElems; for (unsigned i = 0; i < NumElems; ++i) if (!isUndefOrInRange(Mask[i], (int)Lo, (int)Hi)) return false; return true; } /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFHW. static bool isPSHUFHWMask(ArrayRef Mask, MVT VT, bool HasInt256) { if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) return false; // Lower quadword copied in order or undef. if (!isSequentialOrUndefInRange(Mask, 0, 4, 0)) return false; // Upper quadword shuffled. for (unsigned i = 4; i != 8; ++i) if (!isUndefOrInRange(Mask[i], 4, 8)) return false; if (VT == MVT::v16i16) { // Lower quadword copied in order or undef. if (!isSequentialOrUndefInRange(Mask, 8, 4, 8)) return false; // Upper quadword shuffled. for (unsigned i = 12; i != 16; ++i) if (!isUndefOrInRange(Mask[i], 12, 16)) return false; } return true; } /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFLW. static bool isPSHUFLWMask(ArrayRef Mask, MVT VT, bool HasInt256) { if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) return false; // Upper quadword copied in order. if (!isSequentialOrUndefInRange(Mask, 4, 4, 4)) return false; // Lower quadword shuffled. for (unsigned i = 0; i != 4; ++i) if (!isUndefOrInRange(Mask[i], 0, 4)) return false; if (VT == MVT::v16i16) { // Upper quadword copied in order. if (!isSequentialOrUndefInRange(Mask, 12, 4, 12)) return false; // Lower quadword shuffled. for (unsigned i = 8; i != 12; ++i) if (!isUndefOrInRange(Mask[i], 8, 12)) return false; } return true; } /// \brief Return true if the mask specifies a shuffle of elements that is /// suitable for input to intralane (palignr) or interlane (valign) vector /// right-shift. static bool isAlignrMask(ArrayRef Mask, MVT VT, bool InterLane) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = InterLane ? 1: VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; // Do not handle 64-bit element shuffles with palignr. if (NumLaneElts == 2) return false; for (unsigned l = 0; l != NumElts; l+=NumLaneElts) { unsigned i; for (i = 0; i != NumLaneElts; ++i) { if (Mask[i+l] >= 0) break; } // Lane is all undef, go to next lane if (i == NumLaneElts) continue; int Start = Mask[i+l]; // Make sure its in this lane in one of the sources if (!isUndefOrInRange(Start, l, l+NumLaneElts) && !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts)) return false; // If not lane 0, then we must match lane 0 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l)) return false; // Correct second source to be contiguous with first source if (Start >= (int)NumElts) Start -= NumElts - NumLaneElts; // Make sure we're shifting in the right direction. if (Start <= (int)(i+l)) return false; Start -= i; // Check the rest of the elements to see if they are consecutive. for (++i; i != NumLaneElts; ++i) { int Idx = Mask[i+l]; // Make sure its in this lane if (!isUndefOrInRange(Idx, l, l+NumLaneElts) && !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts)) return false; // If not lane 0, then we must match lane 0 if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l)) return false; if (Idx >= (int)NumElts) Idx -= NumElts - NumLaneElts; if (!isUndefOrEqual(Idx, Start+i)) return false; } } return true; } /// \brief Return true if the node specifies a shuffle of elements that is /// suitable for input to PALIGNR. static bool isPALIGNRMask(ArrayRef Mask, MVT VT, const X86Subtarget *Subtarget) { if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) || (VT.is256BitVector() && !Subtarget->hasInt256()) || VT.is512BitVector()) // FIXME: Add AVX512BW. return false; return isAlignrMask(Mask, VT, false); } /// \brief Return true if the node specifies a shuffle of elements that is /// suitable for input to VALIGN. static bool isVALIGNMask(ArrayRef Mask, MVT VT, const X86Subtarget *Subtarget) { // FIXME: Add AVX512VL. if (!VT.is512BitVector() || !Subtarget->hasAVX512()) return false; return isAlignrMask(Mask, VT, true); } /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming /// the two vector operands have swapped position. static void CommuteVectorShuffleMask(SmallVectorImpl &Mask, unsigned NumElems) { for (unsigned i = 0; i != NumElems; ++i) { int idx = Mask[i]; if (idx < 0) continue; else if (idx < (int)NumElems) Mask[i] = idx + NumElems; else Mask[i] = idx - NumElems; } } /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 128/256-bit /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be /// reverse of what x86 shuffles want. static bool isSHUFPMask(ArrayRef Mask, MVT VT, bool Commuted = false) { unsigned NumElems = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElems = NumElems/NumLanes; if (NumLaneElems != 2 && NumLaneElems != 4) return false; unsigned EltSize = VT.getVectorElementType().getSizeInBits(); bool symetricMaskRequired = (VT.getSizeInBits() >= 256) && (EltSize == 32); // VSHUFPSY divides the resulting vector into 4 chunks. // The sources are also splitted into 4 chunks, and each destination // chunk must come from a different source chunk. // // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9 // // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4, // Y3..Y0, Y3..Y0, X3..X0, X3..X0 // // VSHUFPDY divides the resulting vector into 4 chunks. // The sources are also splitted into 4 chunks, and each destination // chunk must come from a different source chunk. // // SRC1 => X3 X2 X1 X0 // SRC2 => Y3 Y2 Y1 Y0 // // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0 // SmallVector MaskVal(NumLaneElems, -1); unsigned HalfLaneElems = NumLaneElems/2; for (unsigned l = 0; l != NumElems; l += NumLaneElems) { for (unsigned i = 0; i != NumLaneElems; ++i) { int Idx = Mask[i+l]; unsigned RngStart = l + ((Commuted == (i Mask, MVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 4) return false; // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 return isUndefOrEqual(Mask[0], 6) && isUndefOrEqual(Mask[1], 7) && isUndefOrEqual(Mask[2], 2) && isUndefOrEqual(Mask[3], 3); } /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, /// <2, 3, 2, 3> static bool isMOVHLPS_v_undef_Mask(ArrayRef Mask, MVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 4) return false; return isUndefOrEqual(Mask[0], 2) && isUndefOrEqual(Mask[1], 3) && isUndefOrEqual(Mask[2], 2) && isUndefOrEqual(Mask[3], 3); } /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. static bool isMOVLPMask(ArrayRef Mask, MVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i + NumElems)) return false; for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; return true; } /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLHPS. static bool isMOVLHPSMask(ArrayRef Mask, MVT VT) { if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i + e], i + NumElems)) return false; return true; } /// isINSERTPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to INSERTPS. /// i. e: If all but one element come from the same vector. static bool isINSERTPSMask(ArrayRef Mask, MVT VT) { // TODO: Deal with AVX's VINSERTPS if (!VT.is128BitVector() || (VT != MVT::v4f32 && VT != MVT::v4i32)) return false; unsigned CorrectPosV1 = 0; unsigned CorrectPosV2 = 0; for (int i = 0, e = (int)VT.getVectorNumElements(); i != e; ++i) { if (Mask[i] == -1) { ++CorrectPosV1; ++CorrectPosV2; continue; } if (Mask[i] == i) ++CorrectPosV1; else if (Mask[i] == i + 4) ++CorrectPosV2; } if (CorrectPosV1 == 3 || CorrectPosV2 == 3) // We have 3 elements (undefs count as elements from any vector) from one // vector, and one from another. return true; return false; } // // Some special combinations that can be optimized. // static SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { MVT VT = SVOp->getSimpleValueType(0); SDLoc dl(SVOp); if (VT != MVT::v8i32 && VT != MVT::v8f32) return SDValue(); ArrayRef Mask = SVOp->getMask(); // These are the special masks that may be optimized. static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14}; static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15}; bool MatchEvenMask = true; bool MatchOddMask = true; for (int i=0; i<8; ++i) { if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i])) MatchEvenMask = false; if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i])) MatchOddMask = false; } if (!MatchEvenMask && !MatchOddMask) return SDValue(); SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT); SDValue Op0 = SVOp->getOperand(0); SDValue Op1 = SVOp->getOperand(1); if (MatchEvenMask) { // Shift the second operand right to 32 bits. static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 }; Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask); } else { // Shift the first operand left to 32 bits. static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 }; Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask); } static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15}; return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask); } /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. static bool isUNPCKLMask(ArrayRef Mask, MVT VT, bool HasInt256, bool V2IsSplat = false) { assert(VT.getSizeInBits() >= 128 && "Unsupported vector type for unpckl"); unsigned NumElts = VT.getVectorNumElements(); if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) && "Unsupported vector type for unpckh"); // AVX defines UNPCK* to operate independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) { int BitI = Mask[l+i]; int BitI1 = Mask[l+i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (!isUndefOrEqual(BitI1, NumElts)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElts)) return false; } } } return true; } /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. static bool isUNPCKHMask(ArrayRef Mask, MVT VT, bool HasInt256, bool V2IsSplat = false) { assert(VT.getSizeInBits() >= 128 && "Unsupported vector type for unpckh"); unsigned NumElts = VT.getVectorNumElements(); if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) && "Unsupported vector type for unpckh"); // AVX defines UNPCK* to operate independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) { int BitI = Mask[l+i]; int BitI1 = Mask[l+i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElts)) return false; } else { if (!isUndefOrEqual(BitI1, j+NumElts)) return false; } } } return true; } /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> static bool isUNPCKL_v_undef_Mask(ArrayRef Mask, MVT VT, bool HasInt256) { unsigned NumElts = VT.getVectorNumElements(); bool Is256BitVec = VT.is256BitVector(); if (VT.is512BitVector()) return false; assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); if (Is256BitVec && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern // FIXME: Need a better way to get rid of this, there's no latency difference // between UNPCKLPD and MOVDDUP, the later should always be checked first and // the former later. We should also remove the "_undef" special mask. if (NumElts == 4 && Is256BitVec) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) { int BitI = Mask[l+i]; int BitI1 = Mask[l+i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } } return true; } /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, /// <2, 2, 3, 3> static bool isUNPCKH_v_undef_Mask(ArrayRef Mask, MVT VT, bool HasInt256) { unsigned NumElts = VT.getVectorNumElements(); if (VT.is512BitVector()) return false; assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) { int BitI = Mask[l+i]; int BitI1 = Mask[l+i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } } return true; } // Match for INSERTI64x4 INSERTF64x4 instructions (src0[0], src1[0]) or // (src1[0], src0[1]), manipulation with 256-bit sub-vectors static bool isINSERT64x4Mask(ArrayRef Mask, MVT VT, unsigned int *Imm) { if (!VT.is512BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned HalfSize = NumElts/2; if (isSequentialOrUndefInRange(Mask, 0, HalfSize, 0)) { if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, NumElts)) { *Imm = 1; return true; } } if (isSequentialOrUndefInRange(Mask, 0, HalfSize, NumElts)) { if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, HalfSize)) { *Imm = 0; return true; } } return false; } /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. static bool isMOVLMask(ArrayRef Mask, EVT VT) { if (VT.getVectorElementType().getSizeInBits() < 32) return false; if (!VT.is128BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); if (!isUndefOrEqual(Mask[0], NumElts)) return false; for (unsigned i = 1; i != NumElts; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; return true; } /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered /// as permutations between 128-bit chunks or halves. As an example: this /// shuffle bellow: /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15> /// The first half comes from the second half of V1 and the second half from the /// the second half of V2. static bool isVPERM2X128Mask(ArrayRef Mask, MVT VT, bool HasFp256) { if (!HasFp256 || !VT.is256BitVector()) return false; // The shuffle result is divided into half A and half B. In total the two // sources have 4 halves, namely: C, D, E, F. The final values of A and // B must come from C, D, E or F. unsigned HalfSize = VT.getVectorNumElements()/2; bool MatchA = false, MatchB = false; // Check if A comes from one of C, D, E, F. for (unsigned Half = 0; Half != 4; ++Half) { if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) { MatchA = true; break; } } // Check if B comes from one of C, D, E, F. for (unsigned Half = 0; Half != 4; ++Half) { if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) { MatchB = true; break; } } return MatchA && MatchB; } /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions. static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { MVT VT = SVOp->getSimpleValueType(0); unsigned HalfSize = VT.getVectorNumElements()/2; unsigned FstHalf = 0, SndHalf = 0; for (unsigned i = 0; i < HalfSize; ++i) { if (SVOp->getMaskElt(i) > 0) { FstHalf = SVOp->getMaskElt(i)/HalfSize; break; } } for (unsigned i = HalfSize; i < HalfSize*2; ++i) { if (SVOp->getMaskElt(i) > 0) { SndHalf = SVOp->getMaskElt(i)/HalfSize; break; } } return (FstHalf | (SndHalf << 4)); } // Symetric in-lane mask. Each lane has 4 elements (for imm8) static bool isPermImmMask(ArrayRef Mask, MVT VT, unsigned& Imm8) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (EltSize < 32) return false; unsigned NumElts = VT.getVectorNumElements(); Imm8 = 0; if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) { for (unsigned i = 0; i != NumElts; ++i) { if (Mask[i] < 0) continue; Imm8 |= Mask[i] << (i*2); } return true; } unsigned LaneSize = 4; SmallVector MaskVal(LaneSize, -1); for (unsigned l = 0; l != NumElts; l += LaneSize) { for (unsigned i = 0; i != LaneSize; ++i) { if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) return false; if (Mask[i+l] < 0) continue; if (MaskVal[i] < 0) { MaskVal[i] = Mask[i+l] - l; Imm8 |= MaskVal[i] << (i*2); continue; } if (Mask[i+l] != (signed)(MaskVal[i]+l)) return false; } } return true; } /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to VPERMILPD*. /// Note that VPERMIL mask matching is different depending whether theunderlying /// type is 32 or 64. In the VPERMILPS the high half of the mask should point /// to the same elements of the low, but to the higher half of the source. /// In VPERMILPD the two lanes could be shuffled independently of each other /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY. static bool isVPERMILPMask(ArrayRef Mask, MVT VT) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (VT.getSizeInBits() < 256 || EltSize < 32) return false; bool symetricMaskRequired = (EltSize == 32); unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned LaneSize = NumElts/NumLanes; // 2 or 4 elements in one lane SmallVector ExpectedMaskVal(LaneSize, -1); for (unsigned l = 0; l != NumElts; l += LaneSize) { for (unsigned i = 0; i != LaneSize; ++i) { if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) return false; if (symetricMaskRequired) { if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) { ExpectedMaskVal[i] = Mask[i+l] - l; continue; } if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l)) return false; } } } return true; } /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse /// of what x86 movss want. X86 movs requires the lowest element to be lowest /// element of vector 2 and the other elements to come from vector 1 in order. static bool isCommutedMOVLMask(ArrayRef Mask, MVT VT, bool V2IsSplat = false, bool V2IsUndef = false) { if (!VT.is128BitVector()) return false; unsigned NumOps = VT.getVectorNumElements(); if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) return false; if (!isUndefOrEqual(Mask[0], 0)) return false; for (unsigned i = 1; i != NumOps; ++i) if (!(isUndefOrEqual(Mask[i], i+NumOps) || (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) return false; return true; } /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7> static bool isMOVSHDUPMask(ArrayRef Mask, MVT VT, const X86Subtarget *Subtarget) { if (!Subtarget->hasSSE3()) return false; unsigned NumElems = VT.getVectorNumElements(); if ((VT.is128BitVector() && NumElems != 4) || (VT.is256BitVector() && NumElems != 8) || (VT.is512BitVector() && NumElems != 16)) return false; // "i+1" is the value the indexed mask element must have for (unsigned i = 0; i != NumElems; i += 2) if (!isUndefOrEqual(Mask[i], i+1) || !isUndefOrEqual(Mask[i+1], i+1)) return false; return true; } /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6> static bool isMOVSLDUPMask(ArrayRef Mask, MVT VT, const X86Subtarget *Subtarget) { if (!Subtarget->hasSSE3()) return false; unsigned NumElems = VT.getVectorNumElements(); if ((VT.is128BitVector() && NumElems != 4) || (VT.is256BitVector() && NumElems != 8) || (VT.is512BitVector() && NumElems != 16)) return false; // "i" is the value the indexed mask element must have for (unsigned i = 0; i != NumElems; i += 2) if (!isUndefOrEqual(Mask[i], i) || !isUndefOrEqual(Mask[i+1], i)) return false; return true; } /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 256-bit /// version of MOVDDUP. static bool isMOVDDUPYMask(ArrayRef Mask, MVT VT, bool HasFp256) { if (!HasFp256 || !VT.is256BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); if (NumElts != 4) return false; for (unsigned i = 0; i != NumElts/2; ++i) if (!isUndefOrEqual(Mask[i], 0)) return false; for (unsigned i = NumElts/2; i != NumElts; ++i) if (!isUndefOrEqual(Mask[i], NumElts/2)) return false; return true; } /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 128-bit /// version of MOVDDUP. static bool isMOVDDUPMask(ArrayRef Mask, MVT VT) { if (!VT.is128BitVector()) return false; unsigned e = VT.getVectorNumElements() / 2; for (unsigned i = 0; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; for (unsigned i = 0; i != e; ++i) if (!isUndefOrEqual(Mask[e+i], i)) return false; return true; } /// isVEXTRACTIndex - Return true if the specified /// EXTRACT_SUBVECTOR operand specifies a vector extract that is /// suitable for instruction that extract 128 or 256 bit vectors static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); if (!isa(N->getOperand(1).getNode())) return false; // The index should be aligned on a vecWidth-bit boundary. uint64_t Index = cast(N->getOperand(1).getNode())->getZExtValue(); MVT VT = N->getSimpleValueType(0); unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % vecWidth == 0; return Result; } /// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR /// operand specifies a subvector insert that is suitable for input to /// insertion of 128 or 256-bit subvectors static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); if (!isa(N->getOperand(2).getNode())) return false; // The index should be aligned on a vecWidth-bit boundary. uint64_t Index = cast(N->getOperand(2).getNode())->getZExtValue(); MVT VT = N->getSimpleValueType(0); unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % vecWidth == 0; return Result; } bool X86::isVINSERT128Index(SDNode *N) { return isVINSERTIndex(N, 128); } bool X86::isVINSERT256Index(SDNode *N) { return isVINSERTIndex(N, 256); } bool X86::isVEXTRACT128Index(SDNode *N) { return isVEXTRACTIndex(N, 128); } bool X86::isVEXTRACT256Index(SDNode *N) { return isVEXTRACTIndex(N, 256); } /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. /// Handles 128-bit and 256-bit. static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getSimpleValueType(0); assert((VT.getSizeInBits() >= 128) && "Unsupported vector type for PSHUF/SHUFP"); // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate // independently on 128-bit lanes. unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) && "Only supports 2, 4 or 8 elements per lane"); unsigned Shift = (NumLaneElts >= 4) ? 1 : 0; unsigned Mask = 0; for (unsigned i = 0; i != NumElts; ++i) { int Elt = N->getMaskElt(i); if (Elt < 0) continue; Elt &= NumLaneElts - 1; unsigned ShAmt = (i << Shift) % 8; Mask |= Elt << ShAmt; } return Mask; } /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getSimpleValueType(0); assert((VT == MVT::v8i16 || VT == MVT::v16i16) && "Unsupported vector type for PSHUFHW"); unsigned NumElts = VT.getVectorNumElements(); unsigned Mask = 0; for (unsigned l = 0; l != NumElts; l += 8) { // 8 nodes per lane, but we only care about the last 4. for (unsigned i = 0; i < 4; ++i) { int Elt = N->getMaskElt(l+i+4); if (Elt < 0) continue; Elt &= 0x3; // only 2-bits. Mask |= Elt << (i * 2); } } return Mask; } /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { MVT VT = N->getSimpleValueType(0); assert((VT == MVT::v8i16 || VT == MVT::v16i16) && "Unsupported vector type for PSHUFHW"); unsigned NumElts = VT.getVectorNumElements(); unsigned Mask = 0; for (unsigned l = 0; l != NumElts; l += 8) { // 8 nodes per lane, but we only care about the first 4. for (unsigned i = 0; i < 4; ++i) { int Elt = N->getMaskElt(l+i); if (Elt < 0) continue; Elt &= 0x3; // only 2-bits Mask |= Elt << (i * 2); } } return Mask; } /// \brief Return the appropriate immediate to shuffle the specified /// VECTOR_SHUFFLE mask with the PALIGNR (if InterLane is false) or with /// VALIGN (if Interlane is true) instructions. static unsigned getShuffleAlignrImmediate(ShuffleVectorSDNode *SVOp, bool InterLane) { MVT VT = SVOp->getSimpleValueType(0); unsigned EltSize = InterLane ? 1 : VT.getVectorElementType().getSizeInBits() >> 3; unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts/NumLanes; int Val = 0; unsigned i; for (i = 0; i != NumElts; ++i) { Val = SVOp->getMaskElt(i); if (Val >= 0) break; } if (Val >= (int)NumElts) Val -= NumElts - NumLaneElts; assert(Val - i > 0 && "PALIGNR imm should be positive"); return (Val - i) * EltSize; } /// \brief Return the appropriate immediate to shuffle the specified /// VECTOR_SHUFFLE mask with the PALIGNR instruction. static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) { return getShuffleAlignrImmediate(SVOp, false); } /// \brief Return the appropriate immediate to shuffle the specified /// VECTOR_SHUFFLE mask with the VALIGN instruction. static unsigned getShuffleVALIGNImmediate(ShuffleVectorSDNode *SVOp) { return getShuffleAlignrImmediate(SVOp, true); } static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); if (!isa(N->getOperand(1).getNode())) llvm_unreachable("Illegal extract subvector for VEXTRACT"); uint64_t Index = cast(N->getOperand(1).getNode())->getZExtValue(); MVT VecVT = N->getOperand(0).getSimpleValueType(); MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; } static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); if (!isa(N->getOperand(2).getNode())) llvm_unreachable("Illegal insert subvector for VINSERT"); uint64_t Index = cast(N->getOperand(2).getNode())->getZExtValue(); MVT VecVT = N->getSimpleValueType(0); MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; } /// getExtractVEXTRACT128Immediate - Return the appropriate immediate /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128 /// and VINSERTI128 instructions. unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) { return getExtractVEXTRACTImmediate(N, 128); } /// getExtractVEXTRACT256Immediate - Return the appropriate immediate /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4 /// and VINSERTI64x4 instructions. unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) { return getExtractVEXTRACTImmediate(N, 256); } /// getInsertVINSERT128Immediate - Return the appropriate immediate /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128 /// and VINSERTI128 instructions. unsigned X86::getInsertVINSERT128Immediate(SDNode *N) { return getInsertVINSERTImmediate(N, 128); } /// getInsertVINSERT256Immediate - Return the appropriate immediate /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4 /// and VINSERTI64x4 instructions. unsigned X86::getInsertVINSERT256Immediate(SDNode *N) { return getInsertVINSERTImmediate(N, 256); } /// isZero - Returns true if Elt is a constant integer zero static bool isZero(SDValue V) { ConstantSDNode *C = dyn_cast(V); return C && C->isNullValue(); } /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. bool X86::isZeroNode(SDValue Elt) { if (isZero(Elt)) return true; if (ConstantFPSDNode *CFP = dyn_cast(Elt)) return CFP->getValueAPF().isPosZero(); return false; } /// ShouldXformToMOVHLPS - Return true if the node should be transformed to /// match movhlps. The lower half elements should come from upper half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). static bool ShouldXformToMOVHLPS(ArrayRef Mask, MVT VT) { if (!VT.is128BitVector()) return false; if (VT.getVectorNumElements() != 4) return false; for (unsigned i = 0, e = 2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i+2)) return false; for (unsigned i = 2; i != 4; ++i) if (!isUndefOrEqual(Mask[i], i+4)) return false; return true; } /// isScalarLoadToVector - Returns true if the node is a scalar load that /// is promoted to a vector. It also returns the LoadSDNode by reference if /// required. static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = nullptr) { if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) return false; N = N->getOperand(0).getNode(); if (!ISD::isNON_EXTLoad(N)) return false; if (LD) *LD = cast(N); return true; } // Test whether the given value is a vector value which will be legalized // into a load. static bool WillBeConstantPoolLoad(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; // Check for any non-constant elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) switch (N->getOperand(i).getNode()->getOpcode()) { case ISD::UNDEF: case ISD::ConstantFP: case ISD::Constant: break; default: return false; } // Vectors of all-zeros and all-ones are materialized with special // instructions rather than being loaded. return !ISD::isBuildVectorAllZeros(N) && !ISD::isBuildVectorAllOnes(N); } /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to /// match movlp{s|d}. The lower half elements should come from lower half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). And since V1 will become the source of the /// MOVLP, it must be either a vector load or a scalar load to vector. static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, ArrayRef Mask, MVT VT) { if (!VT.is128BitVector()) return false; if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) return false; // Is V2 is a vector load, don't do this transformation. We will try to use // load folding shufps op. if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2)) return false; unsigned NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) if (!isUndefOrEqual(Mask[i], i+NumElems)) return false; return true; } /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved /// to an zero vector. /// FIXME: move to dag combiner / method on ShuffleVectorSDNode static bool isZeroShuffle(ShuffleVectorSDNode *N) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); unsigned NumElems = N->getValueType(0).getVectorNumElements(); for (unsigned i = 0; i != NumElems; ++i) { int Idx = N->getMaskElt(i); if (Idx >= (int)NumElems) { unsigned Opc = V2.getOpcode(); if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) continue; if (Opc != ISD::BUILD_VECTOR || !X86::isZeroNode(V2.getOperand(Idx-NumElems))) return false; } else if (Idx >= 0) { unsigned Opc = V1.getOpcode(); if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) continue; if (Opc != ISD::BUILD_VECTOR || !X86::isZeroNode(V1.getOperand(Idx))) return false; } } return true; } /// getZeroVector - Returns a vector of specified type with all zero elements. /// static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG, SDLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Always build SSE zero vectors as <4 x i32> bitcasted // to their dest type. This ensures they get CSE'd. SDValue Vec; if (VT.is128BitVector()) { // SSE if (Subtarget->hasSSE2()) { // SSE2 SDValue Cst = DAG.getConstant(0, MVT::i32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else { // SSE1 SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); } } else if (VT.is256BitVector()) { // AVX if (Subtarget->hasInt256()) { // AVX2 SDValue Cst = DAG.getConstant(0, MVT::i32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); } else { // 256-bit logic and arithmetic instructions in AVX are all // floating-point, no support for integer ops. Emit fp zeroed vectors. SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops); } } else if (VT.is512BitVector()) { // AVX-512 SDValue Cst = DAG.getConstant(0, MVT::i32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); } else if (VT.getScalarType() == MVT::i1) { assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type"); SDValue Cst = DAG.getConstant(0, MVT::i1); SmallVector Ops(VT.getVectorNumElements(), Cst); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } else llvm_unreachable("Unexpected vector type"); return DAG.getNode(ISD::BITCAST, dl, VT, Vec); } /// getOnesVector - Returns a vector of specified type with all bits set. /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. /// Then bitcast to their original type, ensuring they get CSE'd. static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG, SDLoc dl) { assert(VT.isVector() && "Expected a vector type"); SDValue Cst = DAG.getConstant(~0U, MVT::i32); SDValue Vec; if (VT.is256BitVector()) { if (HasInt256) { // AVX2 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); } else { // AVX Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); } } else if (VT.is128BitVector()) { Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else llvm_unreachable("Unexpected vector type"); return DAG.getNode(ISD::BITCAST, dl, VT, Vec); } /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements /// that point to V2 points to its first element. static void NormalizeMask(SmallVectorImpl &Mask, unsigned NumElems) { for (unsigned i = 0; i != NumElems; ++i) { if (Mask[i] > (int)NumElems) { Mask[i] = NumElems; } } } /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd /// operation of specified width. static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; Mask.push_back(NumElems); for (unsigned i = 1; i != NumElems; ++i) Mask.push_back(i); return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; for (unsigned i = 0, e = NumElems/2; i != e; ++i) { Mask.push_back(i); Mask.push_back(i + NumElems); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// getUnpackh - Returns a vector_shuffle node for an unpackh operation. static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { Mask.push_back(i + Half); Mask.push_back(i + NumElems + Half); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by // a generic shuffle instruction because the target has no such instructions. // Generate shuffles which repeat i16 and i8 several times until they can be // represented by v4f32 and then be manipulated by target suported shuffles. static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) { MVT VT = V.getSimpleValueType(); int NumElems = VT.getVectorNumElements(); SDLoc dl(V); while (NumElems > 4) { if (EltNo < NumElems/2) { V = getUnpackl(DAG, dl, VT, V, V); } else { V = getUnpackh(DAG, dl, VT, V, V); EltNo -= NumElems/2; } NumElems >>= 1; } return V; } /// getLegalSplat - Generate a legal splat with supported x86 shuffles static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) { MVT VT = V.getSimpleValueType(); SDLoc dl(V); if (VT.is128BitVector()) { V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V); int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32), &SplatMask[0]); } else if (VT.is256BitVector()) { // To use VPERMILPS to splat scalars, the second half of indicies must // refer to the higher part, which is a duplication of the lower one, // because VPERMILPS can only handle in-lane permutations. int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo, EltNo+4, EltNo+4, EltNo+4, EltNo+4 }; V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V); V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32), &SplatMask[0]); } else llvm_unreachable("Vector size not supported"); return DAG.getNode(ISD::BITCAST, dl, VT, V); } /// PromoteSplat - Splat is promoted to target supported vector shuffles. static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { MVT SrcVT = SV->getSimpleValueType(0); SDValue V1 = SV->getOperand(0); SDLoc dl(SV); int EltNo = SV->getSplatIndex(); int NumElems = SrcVT.getVectorNumElements(); bool Is256BitVec = SrcVT.is256BitVector(); assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) && "Unknown how to promote splat for type"); // Extract the 128-bit part containing the splat element and update // the splat element index when it refers to the higher register. if (Is256BitVec) { V1 = Extract128BitVector(V1, EltNo, DAG, dl); if (EltNo >= NumElems/2) EltNo -= NumElems/2; } // All i16 and i8 vector types can't be used directly by a generic shuffle // instruction because the target has no such instruction. Generate shuffles // which repeat i16 and i8 several times until they fit in i32, and then can // be manipulated by target suported shuffles. MVT EltVT = SrcVT.getVectorElementType(); if (EltVT == MVT::i8 || EltVT == MVT::i16) V1 = PromoteSplati8i16(V1, DAG, EltNo); // Recreate the 256-bit vector and place the same 128-bit vector // into the low and high part. This is necessary because we want // to use VPERM* to shuffle the vectors if (Is256BitVec) { V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1); } return getLegalSplat(DAG, V1, EltNo); } /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified /// vector of zero or undef vector. This produces a shuffle where the low /// element of V2 is swizzled into the zero/undef vector, landing at element /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, bool IsZero, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = V2.getSimpleValueType(); SDValue V1 = IsZero ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); unsigned NumElems = VT.getVectorNumElements(); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) // If this is the insertion idx, put the low elt of V2 here. MaskVec.push_back(i == Idx ? NumElems : i); return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]); } /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the /// target specific opcode. Returns true if the Mask could be calculated. Sets /// IsUnary to true if only uses one source. Note that this will set IsUnary for /// shuffles which use a single input multiple times, and in those cases it will /// adjust the mask to only have indices within that single input. static bool getTargetShuffleMask(SDNode *N, MVT VT, SmallVectorImpl &Mask, bool &IsUnary) { unsigned NumElems = VT.getVectorNumElements(); SDValue ImmN; IsUnary = false; bool IsFakeUnary = false; switch(N->getOpcode()) { case X86ISD::BLENDI: ImmN = N->getOperand(N->getNumOperands()-1); DecodeBLENDMask(VT, cast(ImmN)->getZExtValue(), Mask); break; case X86ISD::SHUFP: ImmN = N->getOperand(N->getNumOperands()-1); DecodeSHUFPMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::UNPCKH: DecodeUNPCKHMask(VT, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::UNPCKL: DecodeUNPCKLMask(VT, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::MOVHLPS: DecodeMOVHLPSMask(NumElems, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::MOVLHPS: DecodeMOVLHPSMask(NumElems, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::PALIGNR: ImmN = N->getOperand(N->getNumOperands()-1); DecodePALIGNRMask(VT, cast(ImmN)->getZExtValue(), Mask); break; case X86ISD::PSHUFD: case X86ISD::VPERMILPI: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFHW: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFHWMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFLW: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFLWMask(VT, cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFB: { IsUnary = true; SDValue MaskNode = N->getOperand(1); while (MaskNode->getOpcode() == ISD::BITCAST) MaskNode = MaskNode->getOperand(0); if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { // If we have a build-vector, then things are easy. EVT VT = MaskNode.getValueType(); assert(VT.isVector() && "Can't produce a non-vector with a build_vector!"); if (!VT.isInteger()) return false; int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8; SmallVector RawMask; for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) { SDValue Op = MaskNode->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) { RawMask.push_back((uint64_t)SM_SentinelUndef); continue; } auto *CN = dyn_cast(Op.getNode()); if (!CN) return false; APInt MaskElement = CN->getAPIntValue(); // We now have to decode the element which could be any integer size and // extract each byte of it. for (int j = 0; j < NumBytesPerElement; ++j) { // Note that this is x86 and so always little endian: the low byte is // the first byte of the mask. RawMask.push_back(MaskElement.getLoBits(8).getZExtValue()); MaskElement = MaskElement.lshr(8); } } DecodePSHUFBMask(RawMask, Mask); break; } auto *MaskLoad = dyn_cast(MaskNode); if (!MaskLoad) return false; SDValue Ptr = MaskLoad->getBasePtr(); if (Ptr->getOpcode() == X86ISD::Wrapper) Ptr = Ptr->getOperand(0); auto *MaskCP = dyn_cast(Ptr); if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) return false; if (auto *C = dyn_cast(MaskCP->getConstVal())) { DecodePSHUFBMask(C, Mask); break; } return false; } case X86ISD::VPERMI: ImmN = N->getOperand(N->getNumOperands()-1); DecodeVPERMMask(cast(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::MOVSS: case X86ISD::MOVSD: { // The index 0 always comes from the first element of the second source, // this is why MOVSS and MOVSD are used in the first place. The other // elements come from the other positions of the first source vector Mask.push_back(NumElems); for (unsigned i = 1; i != NumElems; ++i) { Mask.push_back(i); } break; } case X86ISD::VPERM2X128: ImmN = N->getOperand(N->getNumOperands()-1); DecodeVPERM2X128Mask(VT, cast(ImmN)->getZExtValue(), Mask); if (Mask.empty()) return false; break; case X86ISD::MOVSLDUP: DecodeMOVSLDUPMask(VT, Mask); IsUnary = true; break; case X86ISD::MOVSHDUP: DecodeMOVSHDUPMask(VT, Mask); IsUnary = true; break; case X86ISD::MOVDDUP: DecodeMOVDDUPMask(VT, Mask); IsUnary = true; break; case X86ISD::MOVLHPD: case X86ISD::MOVLPD: case X86ISD::MOVLPS: // Not yet implemented return false; default: llvm_unreachable("unknown target shuffle node"); } // If we have a fake unary shuffle, the shuffle mask is spread across two // inputs that are actually the same node. Re-map the mask to always point // into the first input. if (IsFakeUnary) for (int &M : Mask) if (M >= (int)Mask.size()) M -= Mask.size(); return true; } /// getShuffleScalarElt - Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, unsigned Depth) { if (Depth == 6) return SDValue(); // Limit search depth. SDValue V = SDValue(N, 0); EVT VT = V.getValueType(); unsigned Opcode = V.getOpcode(); // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. if (const ShuffleVectorSDNode *SV = dyn_cast(N)) { int Elt = SV->getMaskElt(Index); if (Elt < 0) return DAG.getUNDEF(VT.getVectorElementType()); unsigned NumElems = VT.getVectorNumElements(); SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) : SV->getOperand(1); return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); } // Recurse into target specific vector shuffles to find scalars. if (isTargetShuffle(Opcode)) { MVT ShufVT = V.getSimpleValueType(); unsigned NumElems = ShufVT.getVectorNumElements(); SmallVector ShuffleMask; bool IsUnary; if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) return SDValue(); int Elt = ShuffleMask[Index]; if (Elt < 0) return DAG.getUNDEF(ShufVT.getVectorElementType()); SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) : N->getOperand(1); return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); } // Actual nodes that may contain scalar elements if (Opcode == ISD::BITCAST) { V = V.getOperand(0); EVT SrcVT = V.getValueType(); unsigned NumElems = VT.getVectorNumElements(); if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) return SDValue(); } if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) return (Index == 0) ? V.getOperand(0) : DAG.getUNDEF(VT.getVectorElementType()); if (V.getOpcode() == ISD::BUILD_VECTOR) return V.getOperand(Index); return SDValue(); } /// getNumOfConsecutiveZeros - Return the number of elements of a vector /// shuffle operation which come from a consecutively from a zero. The /// search can start in two different directions, from left or right. /// We count undefs as zeros until PreferredNum is reached. static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems, bool ZerosFromLeft, SelectionDAG &DAG, unsigned PreferredNum = -1U) { unsigned NumZeros = 0; for (unsigned i = 0; i != NumElems; ++i) { unsigned Index = ZerosFromLeft ? i : NumElems - i - 1; SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0); if (!Elt.getNode()) break; if (X86::isZeroNode(Elt)) ++NumZeros; else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum. NumZeros = std::min(NumZeros + 1, PreferredNum); else break; } return NumZeros; } /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE) /// correspond consecutively to elements from one of the vector operands, /// starting from its index OpIdx. Also tell OpNum which source vector operand. static bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, unsigned MaskI, unsigned MaskE, unsigned OpIdx, unsigned NumElems, unsigned &OpNum) { bool SeenV1 = false; bool SeenV2 = false; for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) { int Idx = SVOp->getMaskElt(i); // Ignore undef indicies if (Idx < 0) continue; if (Idx < (int)NumElems) SeenV1 = true; else SeenV2 = true; // Only accept consecutive elements from the same vector if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) return false; } OpNum = SeenV1 ? 0 : 1; return true; } /// isVectorShiftRight - Returns true if the shuffle can be implemented as a /// logical left shift of a vector. static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { unsigned NumElems = SVOp->getSimpleValueType(0).getVectorNumElements(); unsigned NumZeros = getNumOfConsecutiveZeros( SVOp, NumElems, false /* check zeros from right */, DAG, SVOp->getMaskElt(0)); unsigned OpSrc; if (!NumZeros) return false; // Considering the elements in the mask that are not consecutive zeros, // check if they consecutively come from only one of the source vectors. // // V1 = {X, A, B, C} 0 // \ \ \ / // vector_shuffle V1, V2 <1, 2, 3, X> // if (!isShuffleMaskConsecutive(SVOp, 0, // Mask Start Index NumElems-NumZeros, // Mask End Index(exclusive) NumZeros, // Where to start looking in the src vector NumElems, // Number of elements in vector OpSrc)) // Which source operand ? return false; isLeft = false; ShAmt = NumZeros; ShVal = SVOp->getOperand(OpSrc); return true; } /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a /// logical left shift of a vector. static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { unsigned NumElems = SVOp->getSimpleValueType(0).getVectorNumElements(); unsigned NumZeros = getNumOfConsecutiveZeros( SVOp, NumElems, true /* check zeros from left */, DAG, NumElems - SVOp->getMaskElt(NumElems - 1) - 1); unsigned OpSrc; if (!NumZeros) return false; // Considering the elements in the mask that are not consecutive zeros, // check if they consecutively come from only one of the source vectors. // // 0 { A, B, X, X } = V2 // / \ / / // vector_shuffle V1, V2 // if (!isShuffleMaskConsecutive(SVOp, NumZeros, // Mask Start Index NumElems, // Mask End Index(exclusive) 0, // Where to start looking in the src vector NumElems, // Number of elements in vector OpSrc)) // Which source operand ? return false; isLeft = true; ShAmt = NumZeros; ShVal = SVOp->getOperand(OpSrc); return true; } /// isVectorShift - Returns true if the shuffle can be implemented as a /// logical left or right shift of a vector. static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { // Although the logic below support any bitwidth size, there are no // shift instructions which handle more than 128-bit vectors. if (!SVOp->getSimpleValueType(0).is128BitVector()) return false; if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) return true; return false; } /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. /// static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, const X86Subtarget* Subtarget, const TargetLowering &TLI) { if (NumNonZero > 8) return SDValue(); SDLoc dl(Op); SDValue V; bool First = true; for (unsigned i = 0; i < 16; ++i) { bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; if (ThisIsNonZero && First) { if (NumZero) V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } if ((i & 1) != 0) { SDValue ThisElt, LastElt; bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; if (LastIsNonZero) { LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i-1)); } if (ThisIsNonZero) { ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt, DAG.getConstant(8, MVT::i8)); if (LastIsNonZero) ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); } else ThisElt = LastElt; if (ThisElt.getNode()) V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, DAG.getIntPtrConstant(i/2)); } } return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); } /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. /// static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, const X86Subtarget* Subtarget, const TargetLowering &TLI) { if (NumNonZero > 4) return SDValue(); SDLoc dl(Op); SDValue V; bool First = true; for (unsigned i = 0; i < 8; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, Op.getOperand(i), DAG.getIntPtrConstant(i)); } } return V; } /// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32. static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget, const TargetLowering &TLI) { // Find all zeroable elements. bool Zeroable[4]; for (int i=0; i < 4; ++i) { SDValue Elt = Op->getOperand(i); Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)); } assert(std::count_if(&Zeroable[0], &Zeroable[4], [](bool M) { return !M; }) > 1 && "We expect at least two non-zero elements!"); // We only know how to deal with build_vector nodes where elements are either // zeroable or extract_vector_elt with constant index. SDValue FirstNonZero; unsigned FirstNonZeroIdx; for (unsigned i=0; i < 4; ++i) { if (Zeroable[i]) continue; SDValue Elt = Op->getOperand(i); if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa(Elt.getOperand(1))) return SDValue(); // Make sure that this node is extracting from a 128-bit vector. MVT VT = Elt.getOperand(0).getSimpleValueType(); if (!VT.is128BitVector()) return SDValue(); if (!FirstNonZero.getNode()) { FirstNonZero = Elt; FirstNonZeroIdx = i; } } assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!"); SDValue V1 = FirstNonZero.getOperand(0); MVT VT = V1.getSimpleValueType(); // See if this build_vector can be lowered as a blend with zero. SDValue Elt; unsigned EltMaskIdx, EltIdx; int Mask[4]; for (EltIdx = 0; EltIdx < 4; ++EltIdx) { if (Zeroable[EltIdx]) { // The zero vector will be on the right hand side. Mask[EltIdx] = EltIdx+4; continue; } Elt = Op->getOperand(EltIdx); // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index. EltMaskIdx = cast(Elt.getOperand(1))->getZExtValue(); if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx) break; Mask[EltIdx] = EltIdx; } if (EltIdx == 4) { // Let the shuffle legalizer deal with blend operations. SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op)); if (V1.getSimpleValueType() != VT) V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1); return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]); } // See if we can lower this build_vector to a INSERTPS. if (!Subtarget->hasSSE41()) return SDValue(); SDValue V2 = Elt.getOperand(0); if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx) V1 = SDValue(); bool CanFold = true; for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) { if (Zeroable[i]) continue; SDValue Current = Op->getOperand(i); SDValue SrcVector = Current->getOperand(0); if (!V1.getNode()) V1 = SrcVector; CanFold = SrcVector == V1 && cast(Current.getOperand(1))->getZExtValue() == i; } if (!CanFold) return SDValue(); assert(V1.getNode() && "Expected at least two non-zero elements!"); if (V1.getSimpleValueType() != MVT::v4f32) V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1); if (V2.getSimpleValueType() != MVT::v4f32) V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2); // Ok, we can emit an INSERTPS instruction. unsigned ZMask = 0; for (int i = 0; i < 4; ++i) if (Zeroable[i]) ZMask |= 1 << i; unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask; assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); SDValue Result = DAG.getNode(X86ISD::INSERTPS, SDLoc(Op), MVT::v4f32, V1, V2, DAG.getIntPtrConstant(InsertPSMask)); return DAG.getNode(ISD::BITCAST, SDLoc(Op), VT, Result); } /// getVShift - Return a vector logical shift node. /// static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, SelectionDAG &DAG, const TargetLowering &TLI, SDLoc dl) { assert(VT.is128BitVector() && "Unknown type for VShift"); EVT ShVT = MVT::v2i64; unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(Opc, dl, ShVT, SrcOp, DAG.getConstant(NumBits, TLI.getScalarShiftAmountTy(SrcOp.getValueType())))); } static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) { // Check if the scalar load can be widened into a vector load. And if // the address is "base + cst" see if the cst can be "absorbed" into // the shuffle mask. if (LoadSDNode *LD = dyn_cast(SrcOp)) { SDValue Ptr = LD->getBasePtr(); if (!ISD::isNormalLoad(LD) || LD->isVolatile()) return SDValue(); EVT PVT = LD->getValueType(0); if (PVT != MVT::i32 && PVT != MVT::f32) return SDValue(); int FI = -1; int64_t Offset = 0; if (FrameIndexSDNode *FINode = dyn_cast(Ptr)) { FI = FINode->getIndex(); Offset = 0; } else if (DAG.isBaseWithConstantOffset(Ptr) && isa(Ptr.getOperand(0))) { FI = cast(Ptr.getOperand(0))->getIndex(); Offset = Ptr.getConstantOperandVal(1); Ptr = Ptr.getOperand(0); } else { return SDValue(); } // FIXME: 256-bit vector instructions don't require a strict alignment, // improve this code to support it better. unsigned RequiredAlign = VT.getSizeInBits()/8; SDValue Chain = LD->getChain(); // Make sure the stack object alignment is at least 16 or 32. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { if (MFI->isFixedObjectIndex(FI)) { // Can't change the alignment. FIXME: It's possible to compute // the exact stack offset and reference FI + adjust offset instead. // If someone *really* cares about this. That's the way to implement it. return SDValue(); } else { MFI->setObjectAlignment(FI, RequiredAlign); } } // (Offset % 16 or 32) must be multiple of 4. Then address is then // Ptr + (Offset & ~15). if (Offset < 0) return SDValue(); if ((Offset % RequiredAlign) & 3) return SDValue(); int64_t StartOffset = Offset & ~(RequiredAlign-1); if (StartOffset) Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(), Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); int EltNo = (Offset - StartOffset) >> 2; unsigned NumElems = VT.getVectorNumElements(); EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(StartOffset), false, false, false, 0); SmallVector Mask; for (unsigned i = 0; i != NumElems; ++i) Mask.push_back(EltNo); return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); } return SDValue(); } /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a /// vector of type 'VT', see if the elements can be replaced by a single large /// load which has the same value as a build_vector whose operands are 'elts'. /// /// Example: -> zextload a /// /// FIXME: we'd also like to handle the case where the last elements are zero /// rather than undef via VZEXT_LOAD, but we do not detect that case today. /// There's even a handy isZeroNode for that purpose. static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl &Elts, SDLoc &DL, SelectionDAG &DAG, bool isAfterLegalize) { EVT EltVT = VT.getVectorElementType(); unsigned NumElems = Elts.size(); LoadSDNode *LDBase = nullptr; unsigned LastLoadedElt = -1U; // For each element in the initializer, see if we've found a load or an undef. // If we don't find an initial load element, or later load elements are // non-consecutive, bail out. for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Elts[i]; if (!Elt.getNode() || (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) return SDValue(); if (!LDBase) { if (Elt.getNode()->getOpcode() == ISD::UNDEF) return SDValue(); LDBase = cast(Elt.getNode()); LastLoadedElt = i; continue; } if (Elt.getOpcode() == ISD::UNDEF) continue; LoadSDNode *LD = cast(Elt); if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) return SDValue(); LastLoadedElt = i; } // If we have found an entire vector of loads and undefs, then return a large // load of the entire vector width starting at the base pointer. If we found // consecutive loads for the low half, generate a vzext_load node. if (LastLoadedElt == NumElems - 1) { if (isAfterLegalize && !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT)) return SDValue(); SDValue NewLd = SDValue(); NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), LDBase->getPointerInfo(), LDBase->isVolatile(), LDBase->isNonTemporal(), LDBase->isInvariant(), LDBase->getAlignment()); if (LDBase->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1), SDValue(NewLd.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), SDValue(NewLd.getNode(), 1)); } return NewLd; } //TODO: The code below fires only for for loading the low v2i32 / v2f32 //of a v4i32 / v4f32. It's probably worth generalizing. if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) && DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64, LDBase->getPointerInfo(), LDBase->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); // Make sure the newly-created LOAD is in the same position as LDBase in // terms of dependency. We create a TokenFactor for LDBase and ResNode, and // update uses of LDBase's output chain to use the TokenFactor. if (LDBase->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); } return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); } return SDValue(); } /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction /// to generate a splat value for the following cases: /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. /// 2. A splat shuffle which uses a scalar_to_vector node which comes from /// a scalar load, or a constant. /// The VBROADCAST node is returned when a pattern is found, /// or SDValue() otherwise. static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget, SelectionDAG &DAG) { // VBROADCAST requires AVX. // TODO: Splats could be generated for non-AVX CPUs using SSE // instructions, but there's less potential gain for only 128-bit vectors. if (!Subtarget->hasAVX()) return SDValue(); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && "Unsupported vector type for broadcast."); SDValue Ld; bool ConstSplatVal; switch (Op.getOpcode()) { default: // Unknown pattern found. return SDValue(); case ISD::BUILD_VECTOR: { auto *BVOp = cast(Op.getNode()); BitVector UndefElements; SDValue Splat = BVOp->getSplatValue(&UndefElements); // We need a splat of a single value to use broadcast, and it doesn't // make any sense if the value is only in one element of the vector. if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1) return SDValue(); Ld = Splat; ConstSplatVal = (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); // Make sure that all of the users of a non-constant load are from the // BUILD_VECTOR node. if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode())) return SDValue(); break; } case ISD::VECTOR_SHUFFLE: { ShuffleVectorSDNode *SVOp = cast(Op); // Shuffles must have a splat mask where the first element is // broadcasted. if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) return SDValue(); SDValue Sc = Op.getOperand(0); if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && Sc.getOpcode() != ISD::BUILD_VECTOR) { if (!Subtarget->hasInt256()) return SDValue(); // Use the register form of the broadcast instruction available on AVX2. if (VT.getSizeInBits() >= 256) Sc = Extract128BitVector(Sc, 0, DAG, dl); return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); } Ld = Sc.getOperand(0); ConstSplatVal = (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); // The scalar_to_vector node and the suspected // load node must have exactly one user. // Constants may have multiple users. // AVX-512 has register version of the broadcast bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() && Ld.getValueType().getSizeInBits() >= 32; if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) && !hasRegVer)) return SDValue(); break; } } unsigned ScalarSize = Ld.getValueType().getSizeInBits(); bool IsGE256 = (VT.getSizeInBits() >= 256); // When optimizing for size, generate up to 5 extra bytes for a broadcast // instruction to save 8 or more bytes of constant pool data. // TODO: If multiple splats are generated to load the same constant, // it may be detrimental to overall size. There needs to be a way to detect // that condition to know if this is truly a size win. const Function *F = DAG.getMachineFunction().getFunction(); bool OptForSize = F->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); // Handle broadcasting a single constant scalar from the constant pool // into a vector. // On Sandybridge (no AVX2), it is still better to load a constant vector // from the constant pool and not to broadcast it from a scalar. // But override that restriction when optimizing for size. // TODO: Check if splatting is recommended for other AVX-capable CPUs. if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) { EVT CVT = Ld.getValueType(); assert(!CVT.isVector() && "Must not broadcast a vector type"); // Splat f32, i32, v4f64, v4i64 in all cases with AVX2. // For size optimization, also splat v2f64 and v2i64, and for size opt // with AVX2, also splat i8 and i16. // With pattern matching, the VBROADCAST node may become a VMOVDDUP. if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) { const Constant *C = nullptr; if (ConstantSDNode *CI = dyn_cast(Ld)) C = CI->getConstantIntValue(); else if (ConstantFPSDNode *CF = dyn_cast(Ld)) C = CF->getConstantFPValue(); assert(C && "Invalid constant type"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy()); unsigned Alignment = cast(CP)->getAlignment(); Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } } bool IsLoad = ISD::isNormalLoad(Ld.getNode()); // Handle AVX2 in-register broadcasts. if (!IsLoad && Subtarget->hasInt256() && (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); // The scalar source must be a normal load. if (!IsLoad) return SDValue(); if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || (Subtarget->hasVLX() && ScalarSize == 64)) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); // The integer check is needed for the 64-bit into 128-bit so it doesn't match // double since there is no vbroadcastsd xmm if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } // Unsupported broadcast. return SDValue(); } /// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real /// underlying vector and index. /// /// Modifies \p ExtractedFromVec to the real vector and returns the real /// index. static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec, SDValue ExtIdx) { int Idx = cast(ExtIdx)->getZExtValue(); if (!isa(ExtractedFromVec)) return Idx; // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already // lowered this: // (extract_vector_elt (v8f32 %vreg1), Constant<6>) // to: // (extract_vector_elt (vector_shuffle<2,u,u,u> // (extract_subvector (v8f32 %vreg0), Constant<4>), // undef) // Constant<0>) // In this case the vector is the extract_subvector expression and the index // is 2, as specified by the shuffle. ShuffleVectorSDNode *SVOp = cast(ExtractedFromVec); SDValue ShuffleVec = SVOp->getOperand(0); MVT ShuffleVecVT = ShuffleVec.getSimpleValueType(); assert(ShuffleVecVT.getVectorElementType() == ExtractedFromVec.getSimpleValueType().getVectorElementType()); int ShuffleIdx = SVOp->getMaskElt(Idx); if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) { ExtractedFromVec = ShuffleVec; return ShuffleIdx; } return Idx; } static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); // Skip if insert_vec_elt is not supported. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) return SDValue(); SDLoc DL(Op); unsigned NumElems = Op.getNumOperands(); SDValue VecIn1; SDValue VecIn2; SmallVector InsertIndices; SmallVector Mask(NumElems, -1); for (unsigned i = 0; i != NumElems; ++i) { unsigned Opc = Op.getOperand(i).getOpcode(); if (Opc == ISD::UNDEF) continue; if (Opc != ISD::EXTRACT_VECTOR_ELT) { // Quit if more than 1 elements need inserting. if (InsertIndices.size() > 1) return SDValue(); InsertIndices.push_back(i); continue; } SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); SDValue ExtIdx = Op.getOperand(i).getOperand(1); // Quit if non-constant index. if (!isa(ExtIdx)) return SDValue(); int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx); // Quit if extracted from vector of different type. if (ExtractedFromVec.getValueType() != VT) return SDValue(); if (!VecIn1.getNode()) VecIn1 = ExtractedFromVec; else if (VecIn1 != ExtractedFromVec) { if (!VecIn2.getNode()) VecIn2 = ExtractedFromVec; else if (VecIn2 != ExtractedFromVec) // Quit if more than 2 vectors to shuffle return SDValue(); } if (ExtractedFromVec == VecIn1) Mask[i] = Idx; else if (ExtractedFromVec == VecIn2) Mask[i] = Idx + NumElems; } if (!VecIn1.getNode()) return SDValue(); VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { unsigned Idx = InsertIndices[i]; NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), DAG.getIntPtrConstant(Idx)); } return NV; } // Lower BUILD_VECTOR operation for v8i1 and v16i1 types. SDValue X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) && "Unexpected type in LowerBUILD_VECTORvXi1!"); SDLoc dl(Op); if (ISD::isBuildVectorAllZeros(Op.getNode())) { SDValue Cst = DAG.getTargetConstant(0, MVT::i1); SmallVector Ops(VT.getVectorNumElements(), Cst); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } if (ISD::isBuildVectorAllOnes(Op.getNode())) { SDValue Cst = DAG.getTargetConstant(1, MVT::i1); SmallVector Ops(VT.getVectorNumElements(), Cst); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } bool AllContants = true; uint64_t Immediate = 0; int NonConstIdx = -1; bool IsSplat = true; unsigned NumNonConsts = 0; unsigned NumConsts = 0; for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { SDValue In = Op.getOperand(idx); if (In.getOpcode() == ISD::UNDEF) continue; if (!isa(In)) { AllContants = false; NonConstIdx = idx; NumNonConsts++; } else { NumConsts++; if (cast(In)->getZExtValue()) Immediate |= (1ULL << idx); } if (In != Op.getOperand(0)) IsSplat = false; } if (AllContants) { SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, DAG.getConstant(Immediate, MVT::i16)); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask, DAG.getIntPtrConstant(0)); } if (NumNonConsts == 1 && NonConstIdx != 0) { SDValue DstVec; if (NumConsts) { SDValue VecAsImm = DAG.getConstant(Immediate, MVT::getIntegerVT(VT.getSizeInBits())); DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm); } else DstVec = DAG.getUNDEF(VT); return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, Op.getOperand(NonConstIdx), DAG.getIntPtrConstant(NonConstIdx)); } if (!IsSplat && (NonConstIdx != 0)) llvm_unreachable("Unsupported BUILD_VECTOR operation"); MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8; SDValue Select; if (IsSplat) Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0), DAG.getConstant(-1, SelectVT), DAG.getConstant(0, SelectVT)); else Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0), DAG.getConstant((Immediate | 1), SelectVT), DAG.getConstant(Immediate, SelectVT)); return DAG.getNode(ISD::BITCAST, dl, VT, Select); } /// \brief Return true if \p N implements a horizontal binop and return the /// operands for the horizontal binop into V0 and V1. /// /// This is a helper function of PerformBUILD_VECTORCombine. /// This function checks that the build_vector \p N in input implements a /// horizontal operation. Parameter \p Opcode defines the kind of horizontal /// operation to match. /// For example, if \p Opcode is equal to ISD::ADD, then this function /// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode /// is equal to ISD::SUB, then this function checks if this is a horizontal /// arithmetic sub. /// /// This function only analyzes elements of \p N whose indices are /// in range [BaseIdx, LastIdx). static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode, SelectionDAG &DAG, unsigned BaseIdx, unsigned LastIdx, SDValue &V0, SDValue &V1) { EVT VT = N->getValueType(0); assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!"); assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx && "Invalid Vector in input!"); bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD); bool CanFold = true; unsigned ExpectedVExtractIdx = BaseIdx; unsigned NumElts = LastIdx - BaseIdx; V0 = DAG.getUNDEF(VT); V1 = DAG.getUNDEF(VT); // Check if N implements a horizontal binop. for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) { SDValue Op = N->getOperand(i + BaseIdx); // Skip UNDEFs. if (Op->getOpcode() == ISD::UNDEF) { // Update the expected vector extract index. if (i * 2 == NumElts) ExpectedVExtractIdx = BaseIdx; ExpectedVExtractIdx += 2; continue; } CanFold = Op->getOpcode() == Opcode && Op->hasOneUse(); if (!CanFold) break; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); // Try to match the following pattern: // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1)) CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op0.getOperand(0) == Op1.getOperand(0) && isa(Op0.getOperand(1)) && isa(Op1.getOperand(1))); if (!CanFold) break; unsigned I0 = cast(Op0.getOperand(1))->getZExtValue(); unsigned I1 = cast(Op1.getOperand(1))->getZExtValue(); if (i * 2 < NumElts) { if (V0.getOpcode() == ISD::UNDEF) V0 = Op0.getOperand(0); } else { if (V1.getOpcode() == ISD::UNDEF) V1 = Op0.getOperand(0); if (i * 2 == NumElts) ExpectedVExtractIdx = BaseIdx; } SDValue Expected = (i * 2 < NumElts) ? V0 : V1; if (I0 == ExpectedVExtractIdx) CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected; else if (IsCommutable && I1 == ExpectedVExtractIdx) { // Try to match the following dag sequence: // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I)) CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected; } else CanFold = false; ExpectedVExtractIdx += 2; } return CanFold; } /// \brief Emit a sequence of two 128-bit horizontal add/sub followed by /// a concat_vector. /// /// This is a helper function of PerformBUILD_VECTORCombine. /// This function expects two 256-bit vectors called V0 and V1. /// At first, each vector is split into two separate 128-bit vectors. /// Then, the resulting 128-bit vectors are used to implement two /// horizontal binary operations. /// /// The kind of horizontal binary operation is defined by \p X86Opcode. /// /// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to /// the two new horizontal binop. /// When Mode is set, the first horizontal binop dag node would take as input /// the lower 128-bit of V0 and the upper 128-bit of V0. The second /// horizontal binop dag node would take as input the lower 128-bit of V1 /// and the upper 128-bit of V1. /// Example: /// HADD V0_LO, V0_HI /// HADD V1_LO, V1_HI /// /// Otherwise, the first horizontal binop dag node takes as input the lower /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop /// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1. /// Example: /// HADD V0_LO, V1_LO /// HADD V0_HI, V1_HI /// /// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower /// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to /// the upper 128-bits of the result. static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1, SDLoc DL, SelectionDAG &DAG, unsigned X86Opcode, bool Mode, bool isUndefLO, bool isUndefHI) { EVT VT = V0.getValueType(); assert(VT.is256BitVector() && VT == V1.getValueType() && "Invalid nodes in input!"); unsigned NumElts = VT.getVectorNumElements(); SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL); SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL); SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL); SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL); EVT NewVT = V0_LO.getValueType(); SDValue LO = DAG.getUNDEF(NewVT); SDValue HI = DAG.getUNDEF(NewVT); if (Mode) { // Don't emit a horizontal binop if the result is expected to be UNDEF. if (!isUndefLO && V0->getOpcode() != ISD::UNDEF) LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI); if (!isUndefHI && V1->getOpcode() != ISD::UNDEF) HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI); } else { // Don't emit a horizontal binop if the result is expected to be UNDEF. if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF || V1_LO->getOpcode() != ISD::UNDEF)) LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO); if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF || V1_HI->getOpcode() != ISD::UNDEF)) HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI); } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI); } /// \brief Try to fold a build_vector that performs an 'addsub' into the /// sequence of 'vadd + vsub + blendi'. static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDLoc DL(BV); EVT VT = BV->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); SDValue InVec0 = DAG.getUNDEF(VT); SDValue InVec1 = DAG.getUNDEF(VT); assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 || VT == MVT::v2f64) && "build_vector with an invalid type found!"); // Odd-numbered elements in the input build vector are obtained from // adding two integer/float elements. // Even-numbered elements in the input build vector are obtained from // subtracting two integer/float elements. unsigned ExpectedOpcode = ISD::FSUB; unsigned NextExpectedOpcode = ISD::FADD; bool AddFound = false; bool SubFound = false; for (unsigned i = 0, e = NumElts; i != e; i++) { SDValue Op = BV->getOperand(i); // Skip 'undef' values. unsigned Opcode = Op.getOpcode(); if (Opcode == ISD::UNDEF) { std::swap(ExpectedOpcode, NextExpectedOpcode); continue; } // Early exit if we found an unexpected opcode. if (Opcode != ExpectedOpcode) return SDValue(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); // Try to match the following pattern: // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i)) // Early exit if we cannot match that sequence. if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa(Op0.getOperand(1)) || !isa(Op1.getOperand(1)) || Op0.getOperand(1) != Op1.getOperand(1)) return SDValue(); unsigned I0 = cast(Op0.getOperand(1))->getZExtValue(); if (I0 != i) return SDValue(); // We found a valid add/sub node. Update the information accordingly. if (i & 1) AddFound = true; else SubFound = true; // Update InVec0 and InVec1. if (InVec0.getOpcode() == ISD::UNDEF) InVec0 = Op0.getOperand(0); if (InVec1.getOpcode() == ISD::UNDEF) InVec1 = Op1.getOperand(0); // Make sure that operands in input to each add/sub node always // come from a same pair of vectors. if (InVec0 != Op0.getOperand(0)) { if (ExpectedOpcode == ISD::FSUB) return SDValue(); // FADD is commutable. Try to commute the operands // and then test again. std::swap(Op0, Op1); if (InVec0 != Op0.getOperand(0)) return SDValue(); } if (InVec1 != Op1.getOperand(0)) return SDValue(); // Update the pair of expected opcodes. std::swap(ExpectedOpcode, NextExpectedOpcode); } // Don't try to fold this build_vector into an ADDSUB if the inputs are undef. if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF && InVec1.getOpcode() != ISD::UNDEF) return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1); return SDValue(); } static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDLoc DL(N); EVT VT = N->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); BuildVectorSDNode *BV = cast(N); SDValue InVec0, InVec1; // Try to match an ADDSUB. if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) { SDValue Value = matchAddSub(BV, DAG, Subtarget); if (Value.getNode()) return Value; } // Try to match horizontal ADD/SUB. unsigned NumUndefsLO = 0; unsigned NumUndefsHI = 0; unsigned Half = NumElts/2; // Count the number of UNDEF operands in the build_vector in input. for (unsigned i = 0, e = Half; i != e; ++i) if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) NumUndefsLO++; for (unsigned i = Half, e = NumElts; i != e; ++i) if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) NumUndefsHI++; // Early exit if this is either a build_vector of all UNDEFs or all the // operands but one are UNDEF. if (NumUndefsLO + NumUndefsHI + 1 >= NumElts) return SDValue(); if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) { // Try to match an SSE3 float HADD/HSUB. if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) { // Try to match an SSSE3 integer HADD/HSUB. if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1); if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1); } if (!Subtarget->hasAVX()) return SDValue(); if ((VT == MVT::v8f32 || VT == MVT::v4f64)) { // Try to match an AVX horizontal add/sub of packed single/double // precision floating point values from 256-bit vectors. SDValue InVec2, InVec3; if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); } else if (VT == MVT::v8i32 || VT == MVT::v16i16) { // Try to match an AVX2 horizontal add/sub of signed integers. SDValue InVec2, InVec3; unsigned X86Opcode; bool CanFold = true; if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) X86Opcode = X86ISD::HADD; else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) X86Opcode = X86ISD::HSUB; else CanFold = false; if (CanFold) { // Fold this build_vector into a single horizontal add/sub. // Do this only if the target has AVX2. if (Subtarget->hasAVX2()) return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1); // Do not try to expand this build_vector into a pair of horizontal // add/sub if we can emit a pair of scalar add/sub. if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) return SDValue(); // Convert this build_vector into a pair of horizontal binop followed by // a concat vector. bool isUndefLO = NumUndefsLO == Half; bool isUndefHI = NumUndefsHI == Half; return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false, isUndefLO, isUndefHI); } } if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 || VT == MVT::v16i16) && Subtarget->hasAVX()) { unsigned X86Opcode; if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::HADD; else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::HSUB; else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::FHADD; else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::FHSUB; else return SDValue(); // Don't try to expand this build_vector into a pair of horizontal add/sub // if we can simply emit a pair of scalar add/sub. if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) return SDValue(); // Convert this build_vector into two horizontal add/sub followed by // a concat vector. bool isUndefLO = NumUndefsLO == Half; bool isUndefHI = NumUndefsHI == Half; return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true, isUndefLO, isUndefHI); } return SDValue(); } SDValue X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); MVT ExtVT = VT.getVectorElementType(); unsigned NumElems = Op.getNumOperands(); // Generate vectors for predicate vectors. if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512()) return LowerBUILD_VECTORvXi1(Op, DAG); // Vectors containing all zeros can be matched by pxor and xorps later if (ISD::isBuildVectorAllZeros(Op.getNode())) { // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) return Op; return getZeroVector(VT, Subtarget, DAG, dl); } // Vectors containing all ones can be matched by pcmpeqd on 128-bit width // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use // vpcmpeqd on 256-bit vectors. if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) return Op; if (!VT.is512BitVector()) return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl); } SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG); if (Broadcast.getNode()) return Broadcast; unsigned EVTBits = ExtVT.getSizeInBits(); unsigned NumZero = 0; unsigned NumNonZero = 0; unsigned NonZeros = 0; bool IsAllConstants = true; SmallSet Values; for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Op.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) continue; Values.insert(Elt); if (Elt.getOpcode() != ISD::Constant && Elt.getOpcode() != ISD::ConstantFP) IsAllConstants = false; if (X86::isZeroNode(Elt)) NumZero++; else { NonZeros |= (1 << i); NumNonZero++; } } // All undef vector. Return an UNDEF. All zero vectors were handled above. if (NumNonZero == 0) return DAG.getUNDEF(VT); // Special case for single non-zero, non-undef, element. if (NumNonZero == 1) { unsigned Idx = countTrailingZeros(NonZeros); SDValue Item = Op.getOperand(Idx); // If this is an insertion of an i64 value on x86-32, and if the top bits of // the value are obviously zero, truncate the value to i32 and do the // insertion that way. Only do this if the value is non-constant or if the // value is a constant being inserted into element 0. It is cheaper to do // a constant pool load than it is to do a movd + shuffle. if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && (!IsAllConstants || Idx == 0)) { if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { // Handle SSE only. assert(VT == MVT::v2i64 && "Expected an SSE value type!"); EVT VecVT = MVT::v4i32; unsigned VecElts = 4; // Truncate the value (which may itself be a constant) to i32, and // convert it to a vector with movd (S2V+shuffle to zero extend). Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); // If using the new shuffle lowering, just directly insert this. if (ExperimentalVectorShuffleLowering) return DAG.getNode( ISD::BITCAST, dl, VT, getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG)); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); // Now we have our 32-bit value zero extended in the low element of // a vector. If Idx != 0, swizzle it into place. if (Idx != 0) { SmallVector Mask; Mask.push_back(Idx); for (unsigned i = 1; i != VecElts; ++i) Mask.push_back(i); Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT), &Mask[0]); } return DAG.getNode(ISD::BITCAST, dl, VT, Item); } } // If we have a constant or non-constant insertion into the low element of // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into // the rest of the elements. This will be matched as movd/movq/movss/movsd // depending on what the source datatype is. if (Idx == 0) { if (NumZero == 0) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || (ExtVT == MVT::i64 && Subtarget->is64Bit())) { if (VT.is256BitVector() || VT.is512BitVector()) { SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, Item, DAG.getIntPtrConstant(0)); } assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); if (VT.is256BitVector()) { SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); } else { assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } return DAG.getNode(ISD::BITCAST, dl, VT, Item); } } // Is it a vector logical left shift? if (NumElems == 2 && Idx == 1 && X86::isZeroNode(Op.getOperand(0)) && !X86::isZeroNode(Op.getOperand(1))) { unsigned NumBits = VT.getSizeInBits(); return getVShift(true, VT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(1)), NumBits/2, DAG, *this, dl); } if (IsAllConstants) // Otherwise, it's better to do a constpool load. return SDValue(); // Otherwise, if this is a vector with i32 or f32 elements, and the element // is a non-constant being inserted into an element other than the low one, // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka // movd/movss) to move this into the low element, then shuffle it into // place. if (EVTBits == 32) { Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // If using the new shuffle lowering, just directly insert this. if (ExperimentalVectorShuffleLowering) return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG); // Turn it into a shuffle of zero and zero-extended scalar to vector. Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) MaskVec.push_back(i == Idx ? 0 : 1); return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); } } // Splat is obviously ok. Let legalizer expand it to a shuffle. if (Values.size() == 1) { if (EVTBits == 32) { // Instead of a shuffle like this: // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> // Check if it's possible to issue this instead. // shuffle (vload ptr)), undef, <1, 1, 1, 1> unsigned Idx = countTrailingZeros(NonZeros); SDValue Item = Op.getOperand(Idx); if (Op.getNode()->isOnlyUserOf(Item.getNode())) return LowerAsSplatVectorLoad(Item, VT, dl, DAG); } return SDValue(); } // A vector full of immediates; various special cases are already // handled, so this is best done with a single constant-pool load. if (IsAllConstants) return SDValue(); // For AVX-length vectors, see if we can use a vector load to get all of the // elements, otherwise build the individual 128-bit pieces and use // shuffles to put them in place. if (VT.is256BitVector() || VT.is512BitVector()) { SmallVector V; for (unsigned i = 0; i != NumElems; ++i) V.push_back(Op.getOperand(i)); // Check for a build vector of consecutive loads. if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) return LD; EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); // Build both the lower and upper subvector. SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, makeArrayRef(&V[0], NumElems/2)); SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, makeArrayRef(&V[NumElems / 2], NumElems/2)); // Recreate the wider vector with the lower and upper part. if (VT.is256BitVector()) return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl); } // Let legalizer expand 2-wide build_vectors. if (EVTBits == 64) { if (NumNonZero == 1) { // One half is zero or undef. unsigned Idx = countTrailingZeros(NonZeros); SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(Idx)); return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); } return SDValue(); } // If element VT is < 32 bits, convert it to inserts into a zero vector. if (EVTBits == 8 && NumElems == 16) { SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, Subtarget, *this); if (V.getNode()) return V; } if (EVTBits == 16 && NumElems == 8) { SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, Subtarget, *this); if (V.getNode()) return V; } // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS if (EVTBits == 32 && NumElems == 4) { SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this); if (V.getNode()) return V; } // If element VT is == 32 bits, turn it into a number of shuffles. SmallVector V(NumElems); if (NumElems == 4 && NumZero > 0) { for (unsigned i = 0; i < 4; ++i) { bool isZero = !(NonZeros & (1 << i)); if (isZero) V[i] = getZeroVector(VT, Subtarget, DAG, dl); else V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); } for (unsigned i = 0; i < 2; ++i) { switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { default: break; case 0: V[i] = V[i*2]; // Must be a zero vector. break; case 1: V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); break; case 2: V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); break; case 3: V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); break; } } bool Reverse1 = (NonZeros & 0x3) == 2; bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; int MaskVec[] = { Reverse1 ? 1 : 0, Reverse1 ? 0 : 1, static_cast(Reverse2 ? NumElems+1 : NumElems), static_cast(Reverse2 ? NumElems : NumElems+1) }; return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); } if (Values.size() > 1 && VT.is128BitVector()) { // Check for a build vector of consecutive loads. for (unsigned i = 0; i < NumElems; ++i) V[i] = Op.getOperand(i); // Check for elements which are consecutive loads. SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false); if (LD.getNode()) return LD; // Check for a build vector from mostly shuffle plus few inserting. SDValue Sh = buildFromShuffleMostly(Op, DAG); if (Sh.getNode()) return Sh; // For SSE 4.1, use insertps to put the high elements into the low element. if (getSubtarget()->hasSSE41()) { SDValue Result; if (Op.getOperand(0).getOpcode() != ISD::UNDEF) Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); else Result = DAG.getUNDEF(VT); for (unsigned i = 1; i < NumElems; ++i) { if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, Op.getOperand(i), DAG.getIntPtrConstant(i)); } return Result; } // Otherwise, expand into a number of unpckl*, start by extending each of // our (non-undef) elements to the full vector width with the element in the // bottom slot of the vector (which generates no code for SSE). for (unsigned i = 0; i < NumElems; ++i) { if (Op.getOperand(i).getOpcode() != ISD::UNDEF) V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); else V[i] = DAG.getUNDEF(VT); } // Next, we iteratively mix elements, e.g. for v4f32: // Step 1: unpcklps 0, 2 ==> X: // : unpcklps 1, 3 ==> Y: // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> unsigned EltStride = NumElems >> 1; while (EltStride != 0) { for (unsigned i = 0; i < EltStride; ++i) { // If V[i+EltStride] is undef and this is the first round of mixing, // then it is safe to just drop this shuffle: V[i] is already in the // right place, the one element (since it's the first round) being // inserted as undef can be dropped. This isn't safe for successive // rounds because they will permute elements within both vectors. if (V[i+EltStride].getOpcode() == ISD::UNDEF && EltStride == NumElems/2) continue; V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); } EltStride >>= 1; } return V[0]; } return SDValue(); } // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction // to create 256-bit vectors from two other 128-bit ones. static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); MVT ResVT = Op.getSimpleValueType(); assert((ResVT.is256BitVector() || ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); unsigned NumElems = ResVT.getVectorNumElements(); if(ResVT.is256BitVector()) return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); if (Op.getNumOperands() == 4) { MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(), ResVT.getVectorNumElements()/2); SDValue V3 = Op.getOperand(2); SDValue V4 = Op.getOperand(3); return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl), Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl); } return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl); } static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType(); assert((VT.is256BitVector() && Op.getNumOperands() == 2) || (VT.is512BitVector() && (Op.getNumOperands() == 2 || Op.getNumOperands() == 4))); // AVX can use the vinsertf128 instruction to create 256-bit vectors // from two other 128-bit ones. // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors return LowerAVXCONCAT_VECTORS(Op, DAG); } //===----------------------------------------------------------------------===// // Vector shuffle lowering // // This is an experimental code path for lowering vector shuffles on x86. It is // designed to handle arbitrary vector shuffles and blends, gracefully // degrading performance as necessary. It works hard to recognize idiomatic // shuffles and lower them to optimal instruction patterns without leaving // a framework that allows reasonably efficient handling of all vector shuffle // patterns. //===----------------------------------------------------------------------===// /// \brief Tiny helper function to identify a no-op mask. /// /// This is a somewhat boring predicate function. It checks whether the mask /// array input, which is assumed to be a single-input shuffle mask of the kind /// used by the X86 shuffle instructions (not a fully general /// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an /// in-place shuffle are 'no-op's. static bool isNoopShuffleMask(ArrayRef Mask) { for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] != -1 && Mask[i] != i) return false; return true; } /// \brief Helper function to classify a mask as a single-input mask. /// /// This isn't a generic single-input test because in the vector shuffle /// lowering we canonicalize single inputs to be the first input operand. This /// means we can more quickly test for a single input by only checking whether /// an input from the second operand exists. We also assume that the size of /// mask corresponds to the size of the input vectors which isn't true in the /// fully general case. static bool isSingleInputShuffleMask(ArrayRef Mask) { for (int M : Mask) if (M >= (int)Mask.size()) return false; return true; } /// \brief Test whether there are elements crossing 128-bit lanes in this /// shuffle mask. /// /// X86 divides up its shuffles into in-lane and cross-lane shuffle operations /// and we routinely test for these. static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef Mask) { int LaneSize = 128 / VT.getScalarSizeInBits(); int Size = Mask.size(); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) return true; return false; } /// \brief Test whether a shuffle mask is equivalent within each 128-bit lane. /// /// This checks a shuffle mask to see if it is performing the same /// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies /// that it is also not lane-crossing. It may however involve a blend from the /// same lane of a second vector. /// /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is /// non-trivial to compute in the face of undef lanes. The representation is /// *not* suitable for use with existing 128-bit shuffles as it will contain /// entries from both V1 and V2 inputs to the wider mask. static bool is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef Mask, SmallVectorImpl &RepeatedMask) { int LaneSize = 128 / VT.getScalarSizeInBits(); RepeatedMask.resize(LaneSize, -1); int Size = Mask.size(); for (int i = 0; i < Size; ++i) { if (Mask[i] < 0) continue; if ((Mask[i] % Size) / LaneSize != i / LaneSize) // This entry crosses lanes, so there is no way to model this shuffle. return false; // Ok, handle the in-lane shuffles by detecting if and when they repeat. if (RepeatedMask[i % LaneSize] == -1) // This is the first non-undef entry in this slot of a 128-bit lane. RepeatedMask[i % LaneSize] = Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size; else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i]) // Found a mismatch with the repeated mask. return false; } return true; } // Hide this symbol with an anonymous namespace instead of 'static' so that MSVC // 2013 will allow us to use it as a non-type template parameter. namespace { /// \brief Implementation of the \c isShuffleEquivalent variadic functor. /// /// See its documentation for details. bool isShuffleEquivalentImpl(ArrayRef Mask, ArrayRef Args) { if (Mask.size() != Args.size()) return false; for (int i = 0, e = Mask.size(); i < e; ++i) { assert(*Args[i] >= 0 && "Arguments must be positive integers!"); if (Mask[i] != -1 && Mask[i] != *Args[i]) return false; } return true; } } // namespace /// \brief Checks whether a shuffle mask is equivalent to an explicit list of /// arguments. /// /// This is a fast way to test a shuffle mask against a fixed pattern: /// /// if (isShuffleEquivalent(Mask, 3, 2, 1, 0)) { ... } /// /// It returns true if the mask is exactly as wide as the argument list, and /// each element of the mask is either -1 (signifying undef) or the value given /// in the argument. static const VariadicFunction1< bool, ArrayRef, int, isShuffleEquivalentImpl> isShuffleEquivalent = {}; /// \brief Get a 4-lane 8-bit shuffle immediate for a mask. /// /// This helper function produces an 8-bit shuffle immediate corresponding to /// the ubiquitous shuffle encoding scheme used in x86 instructions for /// shuffling 4 lanes. It can be used with most of the PSHUF instructions for /// example. /// /// NB: We rely heavily on "undef" masks preserving the input lane. static SDValue getV4X86ShuffleImm8ForMask(ArrayRef Mask, SelectionDAG &DAG) { assert(Mask.size() == 4 && "Only 4-lane shuffle masks"); assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!"); assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!"); assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!"); assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!"); unsigned Imm = 0; Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0; Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2; Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4; Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6; return DAG.getConstant(Imm, MVT::i8); } /// \brief Try to emit a blend instruction for a shuffle. /// /// This doesn't do any checks for the availability of instructions for blending /// these values. It relies on the availability of the X86ISD::BLENDI pattern to /// be matched in the backend with the type given. What it does check for is /// that the shuffle mask is in fact a blend. static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { unsigned BlendMask = 0; for (int i = 0, Size = Mask.size(); i < Size; ++i) { if (Mask[i] >= Size) { if (Mask[i] != i + Size) return SDValue(); // Shuffled V2 input! BlendMask |= 1u << i; continue; } if (Mask[i] >= 0 && Mask[i] != i) return SDValue(); // Shuffled V1 input! } switch (VT.SimpleTy) { case MVT::v2f64: case MVT::v4f32: case MVT::v4f64: case MVT::v8f32: return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2, DAG.getConstant(BlendMask, MVT::i8)); case MVT::v4i64: case MVT::v8i32: assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); // FALLTHROUGH case MVT::v2i64: case MVT::v4i32: // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into // that instruction. if (Subtarget->hasAVX2()) { // Scale the blend by the number of 32-bit dwords per element. int Scale = VT.getScalarSizeInBits() / 32; BlendMask = 0; for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] >= Size) for (int j = 0; j < Scale; ++j) BlendMask |= 1u << (i * Scale + j); MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32; V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1); V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2, DAG.getConstant(BlendMask, MVT::i8))); } // FALLTHROUGH case MVT::v8i16: { // For integer shuffles we need to expand the mask and cast the inputs to // v8i16s prior to blending. int Scale = 8 / VT.getVectorNumElements(); BlendMask = 0; for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] >= Size) for (int j = 0; j < Scale; ++j) BlendMask |= 1u << (i * Scale + j); V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1); V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2, DAG.getConstant(BlendMask, MVT::i8))); } case MVT::v16i16: { assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); SmallVector RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { // We can lower these with PBLENDW which is mirrored across 128-bit lanes. assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!"); BlendMask = 0; for (int i = 0; i < 8; ++i) if (RepeatedMask[i] >= 16) BlendMask |= 1u << i; return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2, DAG.getConstant(BlendMask, MVT::i8)); } } // FALLTHROUGH case MVT::v32i8: { assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); // Scale the blend by the number of bytes per element. int Scale = VT.getScalarSizeInBits() / 8; assert(Mask.size() * Scale == 32 && "Not a 256-bit vector!"); // Compute the VSELECT mask. Note that VSELECT is really confusing in the // mix of LLVM's code generator and the x86 backend. We tell the code // generator that boolean values in the elements of an x86 vector register // are -1 for true and 0 for false. We then use the LLVM semantics of 'true' // mapping a select to operand #1, and 'false' mapping to operand #2. The // reality in x86 is that vector masks (pre-AVX-512) use only the high bit // of the element (the remaining are ignored) and 0 in that high bit would // mean operand #1 while 1 in the high bit would mean operand #2. So while // the LLVM model for boolean values in vector elements gets the relevant // bit set, it is set backwards and over constrained relative to x86's // actual model. SDValue VSELECTMask[32]; for (int i = 0, Size = Mask.size(); i < Size; ++i) for (int j = 0; j < Scale; ++j) VSELECTMask[Scale * i + j] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) : DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8); V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1); V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V2); return DAG.getNode( ISD::BITCAST, DL, VT, DAG.getNode(ISD::VSELECT, DL, MVT::v32i8, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, VSELECTMask), V1, V2)); } default: llvm_unreachable("Not a supported integer vector type!"); } } /// \brief Generic routine to lower a shuffle and blend as a decomposed set of /// unblended shuffles followed by an unshuffled blend. /// /// This matches the extremely common pattern for handling combined /// shuffle+blend operations on newer X86 ISAs where we have very fast blend /// operations. static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, SelectionDAG &DAG) { // Shuffle the input elements into the desired positions in V1 and V2 and // blend them together. SmallVector V1Mask(Mask.size(), -1); SmallVector V2Mask(Mask.size(), -1); SmallVector BlendMask(Mask.size(), -1); for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] >= 0 && Mask[i] < Size) { V1Mask[i] = Mask[i]; BlendMask[i] = i; } else if (Mask[i] >= Size) { V2Mask[i] = Mask[i] - Size; BlendMask[i] = i + Size; } V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); } /// \brief Try to lower a vector shuffle as a byte rotation. /// /// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary /// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use /// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will /// try to generically lower a vector shuffle through such an pattern. It /// does not check for the profitability of lowering either as PALIGNR or /// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form. /// This matches shuffle vectors that look like: /// /// v8i16 [11, 12, 13, 14, 15, 0, 1, 2] /// /// Essentially it concatenates V1 and V2, shifts right by some number of /// elements, and takes the low elements as the result. Note that while this is /// specified as a *right shift* because x86 is little-endian, it is a *left /// rotate* of the vector lanes. /// /// Note that this only handles 128-bit vector widths currently. static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); // We need to detect various ways of spelling a rotation: // [11, 12, 13, 14, 15, 0, 1, 2] // [-1, 12, 13, 14, -1, -1, 1, -1] // [-1, -1, -1, -1, -1, -1, 1, 2] // [ 3, 4, 5, 6, 7, 8, 9, 10] // [-1, 4, 5, 6, -1, -1, 9, -1] // [-1, 4, 5, 6, -1, -1, -1, -1] int Rotation = 0; SDValue Lo, Hi; for (int i = 0, Size = Mask.size(); i < Size; ++i) { if (Mask[i] == -1) continue; assert(Mask[i] >= 0 && "Only -1 is a valid negative mask element!"); // Based on the mod-Size value of this mask element determine where // a rotated vector would have started. int StartIdx = i - (Mask[i] % Size); if (StartIdx == 0) // The identity rotation isn't interesting, stop. return SDValue(); // If we found the tail of a vector the rotation must be the missing // front. If we found the head of a vector, it must be how much of the head. int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; if (Rotation == 0) Rotation = CandidateRotation; else if (Rotation != CandidateRotation) // The rotations don't match, so we can't match this mask. return SDValue(); // Compute which value this mask is pointing at. SDValue MaskV = Mask[i] < Size ? V1 : V2; // Compute which of the two target values this index should be assigned to. // This reflects whether the high elements are remaining or the low elements // are remaining. SDValue &TargetV = StartIdx < 0 ? Hi : Lo; // Either set up this value if we've not encountered it before, or check // that it remains consistent. if (!TargetV) TargetV = MaskV; else if (TargetV != MaskV) // This may be a rotation, but it pulls from the inputs in some // unsupported interleaving. return SDValue(); } // Check that we successfully analyzed the mask, and normalize the results. assert(Rotation != 0 && "Failed to locate a viable rotation!"); assert((Lo || Hi) && "Failed to find a rotated input vector!"); if (!Lo) Lo = Hi; else if (!Hi) Hi = Lo; assert(VT.getSizeInBits() == 128 && "Rotate-based lowering only supports 128-bit lowering!"); assert(Mask.size() <= 16 && "Can shuffle at most 16 bytes in a 128-bit vector!"); // The actual rotate instruction rotates bytes, so we need to scale the // rotation based on how many bytes are in the vector. int Scale = 16 / Mask.size(); // SSSE3 targets can use the palignr instruction if (Subtarget->hasSSSE3()) { // Cast the inputs to v16i8 to match PALIGNR. Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Lo); Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Hi); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::PALIGNR, DL, MVT::v16i8, Hi, Lo, DAG.getConstant(Rotation * Scale, MVT::i8))); } // Default SSE2 implementation int LoByteShift = 16 - Rotation * Scale; int HiByteShift = Rotation * Scale; // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ. Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo); Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi); SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo, DAG.getConstant(8 * LoByteShift, MVT::i8)); SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi, DAG.getConstant(8 * HiByteShift, MVT::i8)); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift)); } /// \brief Compute whether each element of a shuffle is zeroable. /// /// A "zeroable" vector shuffle element is one which can be lowered to zero. /// Either it is an undef element in the shuffle mask, the element of the input /// referenced is undef, or the element of the input referenced is known to be /// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle /// as many lanes with this technique as possible to simplify the remaining /// shuffle. static SmallBitVector computeZeroableShuffleElements(ArrayRef Mask, SDValue V1, SDValue V2) { SmallBitVector Zeroable(Mask.size(), false); bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); for (int i = 0, Size = Mask.size(); i < Size; ++i) { int M = Mask[i]; // Handle the easy cases. if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { Zeroable[i] = true; continue; } // If this is an index into a build_vector node, dig out the input value and // use it. SDValue V = M < Size ? V1 : V2; if (V.getOpcode() != ISD::BUILD_VECTOR) continue; SDValue Input = V.getOperand(M % Size); // The UNDEF opcode check really should be dead code here, but not quite // worth asserting on (it isn't invalid, just unexpected). if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input)) Zeroable[i] = true; } return Zeroable; } /// \brief Try to lower a vector shuffle as a byte shift (shifts in zeros). /// /// Attempts to match a shuffle mask against the PSRLDQ and PSLLDQ SSE2 /// byte-shift instructions. The mask must consist of a shifted sequential /// shuffle from one of the input vectors and zeroable elements for the /// remaining 'shifted in' elements. /// /// Note that this only handles 128-bit vector widths currently. static SDValue lowerVectorShuffleAsByteShift(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, SelectionDAG &DAG) { assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); int Size = Mask.size(); int Scale = 16 / Size; for (int Shift = 1; Shift < Size; Shift++) { int ByteShift = Shift * Scale; // PSRLDQ : (little-endian) right byte shift // [ 5, 6, 7, zz, zz, zz, zz, zz] // [ -1, 5, 6, 7, zz, zz, zz, zz] // [ 1, 2, -1, -1, -1, -1, zz, zz] bool ZeroableRight = true; for (int i = Size - Shift; i < Size; i++) { ZeroableRight &= Zeroable[i]; } if (ZeroableRight) { bool ValidShiftRight1 = isSequentialOrUndefInRange(Mask, 0, Size - Shift, Shift); bool ValidShiftRight2 = isSequentialOrUndefInRange(Mask, 0, Size - Shift, Size + Shift); if (ValidShiftRight1 || ValidShiftRight2) { // Cast the inputs to v2i64 to match PSRLDQ. SDValue &TargetV = ValidShiftRight1 ? V1 : V2; SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TargetV); SDValue Shifted = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, V, DAG.getConstant(ByteShift * 8, MVT::i8)); return DAG.getNode(ISD::BITCAST, DL, VT, Shifted); } } // PSLLDQ : (little-endian) left byte shift // [ zz, 0, 1, 2, 3, 4, 5, 6] // [ zz, zz, -1, -1, 2, 3, 4, -1] // [ zz, zz, zz, zz, zz, zz, -1, 1] bool ZeroableLeft = true; for (int i = 0; i < Shift; i++) { ZeroableLeft &= Zeroable[i]; } if (ZeroableLeft) { bool ValidShiftLeft1 = isSequentialOrUndefInRange(Mask, Shift, Size - Shift, 0); bool ValidShiftLeft2 = isSequentialOrUndefInRange(Mask, Shift, Size - Shift, Size); if (ValidShiftLeft1 || ValidShiftLeft2) { // Cast the inputs to v2i64 to match PSLLDQ. SDValue &TargetV = ValidShiftLeft1 ? V1 : V2; SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TargetV); SDValue Shifted = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, V, DAG.getConstant(ByteShift * 8, MVT::i8)); return DAG.getNode(ISD::BITCAST, DL, VT, Shifted); } } } return SDValue(); } /// \brief Lower a vector shuffle as a zero or any extension. /// /// Given a specific number of elements, element bit width, and extension /// stride, produce either a zero or any extension based on the available /// features of the subtarget. static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend( SDLoc DL, MVT VT, int NumElements, int Scale, bool AnyExt, SDValue InputV, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Scale > 1 && "Need a scale to extend."); int EltBits = VT.getSizeInBits() / NumElements; assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && "Only 8, 16, and 32 bit elements can be extended."); assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits."); // Found a valid zext mask! Try various lowering strategies based on the // input type and available ISA extensions. if (Subtarget->hasSSE41()) { MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale), NumElements / Scale); InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV)); } // For any extends we can cheat for larger element sizes and use shuffle // instructions that can fold with a load and/or copy. if (AnyExt && EltBits == 32) { int PSHUFDMask[4] = {0, -1, 1, -1}; return DAG.getNode( ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV), getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG))); } if (AnyExt && EltBits == 16 && Scale > 2) { int PSHUFDMask[4] = {0, -1, 0, -1}; InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV), getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)); int PSHUFHWMask[4] = {1, -1, -1, -1}; return DAG.getNode( ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV), getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG))); } // If this would require more than 2 unpack instructions to expand, use // pshufb when available. We can only use more than 2 unpack instructions // when zero extending i8 elements which also makes it easier to use pshufb. if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) { assert(NumElements == 16 && "Unexpected byte vector width!"); SDValue PSHUFBMask[16]; for (int i = 0; i < 16; ++i) PSHUFBMask[i] = DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8); InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask))); } // Otherwise emit a sequence of unpacks. do { MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT) : getZeroVector(InputVT, Subtarget, DAG, DL); InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV); InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext); Scale /= 2; EltBits *= 2; NumElements /= 2; } while (Scale > 1); return DAG.getNode(ISD::BITCAST, DL, VT, InputV); } /// \brief Try to lower a vector shuffle as a zero extension on any micrarch. /// /// This routine will try to do everything in its power to cleverly lower /// a shuffle which happens to match the pattern of a zero extend. It doesn't /// check for the profitability of this lowering, it tries to aggressively /// match this pattern. It will use all of the micro-architectural details it /// can to emit an efficient lowering. It handles both blends with all-zero /// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to /// masking out later). /// /// The reason we have dedicated lowering for zext-style shuffles is that they /// are both incredibly common and often quite performance sensitive. static SDValue lowerVectorShuffleAsZeroOrAnyExtend( SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); int Bits = VT.getSizeInBits(); int NumElements = Mask.size(); // Define a helper function to check a particular ext-scale and lower to it if // valid. auto Lower = [&](int Scale) -> SDValue { SDValue InputV; bool AnyExt = true; for (int i = 0; i < NumElements; ++i) { if (Mask[i] == -1) continue; // Valid anywhere but doesn't tell us anything. if (i % Scale != 0) { // Each of the extend elements needs to be zeroable. if (!Zeroable[i]) return SDValue(); // We no lorger are in the anyext case. AnyExt = false; continue; } // Each of the base elements needs to be consecutive indices into the // same input vector. SDValue V = Mask[i] < NumElements ? V1 : V2; if (!InputV) InputV = V; else if (InputV != V) return SDValue(); // Flip-flopping inputs. if (Mask[i] % NumElements != i / Scale) return SDValue(); // Non-consecutive strided elemenst. } // If we fail to find an input, we have a zero-shuffle which should always // have already been handled. // FIXME: Maybe handle this here in case during blending we end up with one? if (!InputV) return SDValue(); return lowerVectorShuffleAsSpecificZeroOrAnyExtend( DL, VT, NumElements, Scale, AnyExt, InputV, Subtarget, DAG); }; // The widest scale possible for extending is to a 64-bit integer. assert(Bits % 64 == 0 && "The number of bits in a vector must be divisible by 64 on x86!"); int NumExtElements = Bits / 64; // Each iteration, try extending the elements half as much, but into twice as // many elements. for (; NumExtElements < NumElements; NumExtElements *= 2) { assert(NumElements % NumExtElements == 0 && "The input vector size must be divisble by the extended size."); if (SDValue V = Lower(NumElements / NumExtElements)) return V; } // No viable ext lowering found. return SDValue(); } /// \brief Try to get a scalar value for a specific element of a vector. /// /// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar. static SDValue getScalarValueForVectorElement(SDValue V, int Idx, SelectionDAG &DAG) { MVT VT = V.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); // If the bitcasts shift the element size, we can't extract an equivalent // element from it. MVT NewVT = V.getSimpleValueType(); if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) return SDValue(); if (V.getOpcode() == ISD::BUILD_VECTOR || (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, V.getOperand(Idx)); return SDValue(); } /// \brief Helper to test for a load that can be folded with x86 shuffles. /// /// This is particularly important because the set of instructions varies /// significantly based on whether the operand is a load or not. static bool isShuffleFoldableLoad(SDValue V) { while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); return ISD::isNON_EXTLoad(V.getNode()); } /// \brief Try to lower insertion of a single element into a zero vector. /// /// This is a common pattern that we have especially efficient patterns to lower /// across all subtarget feature sets. static SDValue lowerVectorShuffleAsElementInsertion( MVT VT, SDLoc DL, SDValue V1, SDValue V2, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); MVT ExtVT = VT; MVT EltVT = VT.getVectorElementType(); int V2Index = std::find_if(Mask.begin(), Mask.end(), [&Mask](int M) { return M >= (int)Mask.size(); }) - Mask.begin(); bool IsV1Zeroable = true; for (int i = 0, Size = Mask.size(); i < Size; ++i) if (i != V2Index && !Zeroable[i]) { IsV1Zeroable = false; break; } // Check for a single input from a SCALAR_TO_VECTOR node. // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and // all the smarts here sunk into that routine. However, the current // lowering of BUILD_VECTOR makes that nearly impossible until the old // vector shuffle lowering is dead. if (SDValue V2S = getScalarValueForVectorElement( V2, Mask[V2Index] - Mask.size(), DAG)) { // We need to zext the scalar if it is smaller than an i32. V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S); if (EltVT == MVT::i8 || EltVT == MVT::i16) { // Using zext to expand a narrow element won't work for non-zero // insertions. if (!IsV1Zeroable) return SDValue(); // Zero-extend directly to i32. ExtVT = MVT::v4i32; V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S); } V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S); } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 || EltVT == MVT::i16) { // Either not inserting from the low element of the input or the input // element size is too small to use VZEXT_MOVL to clear the high bits. return SDValue(); } if (!IsV1Zeroable) { // If V1 can't be treated as a zero vector we have fewer options to lower // this. We can't support integer vectors or non-zero targets cheaply, and // the V1 elements can't be permuted in any way. assert(VT == ExtVT && "Cannot change extended type when non-zeroable!"); if (!VT.isFloatingPoint() || V2Index != 0) return SDValue(); SmallVector V1Mask(Mask.begin(), Mask.end()); V1Mask[V2Index] = -1; if (!isNoopShuffleMask(V1Mask)) return SDValue(); // This is essentially a special case blend operation, but if we have // general purpose blend operations, they are always faster. Bail and let // the rest of the lowering handle these as blends. if (Subtarget->hasSSE41()) return SDValue(); // Otherwise, use MOVSD or MOVSS. assert((EltVT == MVT::f32 || EltVT == MVT::f64) && "Only two types of floating point element types to handle!"); return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL, ExtVT, V1, V2); } V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2); if (ExtVT != VT) V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2); if (V2Index != 0) { // If we have 4 or fewer lanes we can cheaply shuffle the element into // the desired position. Otherwise it is more efficient to do a vector // shift left. We know that we can do a vector shift left because all // the inputs are zero. if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) { SmallVector V2Shuffle(Mask.size(), 1); V2Shuffle[V2Index] = 0; V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle); } else { V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2); V2 = DAG.getNode( X86ISD::VSHLDQ, DL, MVT::v2i64, V2, DAG.getConstant( V2Index * EltVT.getSizeInBits(), DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64))); V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2); } } return V2; } /// \brief Try to lower broadcast of a single element. /// /// For convenience, this code also bundles all of the subtarget feature set /// filtering. While a little annoying to re-dispatch on type here, there isn't /// a convenient way to factor it out. static SDValue lowerVectorShuffleAsBroadcast(MVT VT, SDLoc DL, SDValue V, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (!Subtarget->hasAVX()) return SDValue(); if (VT.isInteger() && !Subtarget->hasAVX2()) return SDValue(); // Check that the mask is a broadcast. int BroadcastIdx = -1; for (int M : Mask) if (M >= 0 && BroadcastIdx == -1) BroadcastIdx = M; else if (M >= 0 && M != BroadcastIdx) return SDValue(); assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with " "a sorted mask where the broadcast " "comes from V1."); // Go up the chain of (vector) values to try and find a scalar load that // we can combine with the broadcast. for (;;) { switch (V.getOpcode()) { case ISD::CONCAT_VECTORS: { int OperandSize = Mask.size() / V.getNumOperands(); V = V.getOperand(BroadcastIdx / OperandSize); BroadcastIdx %= OperandSize; continue; } case ISD::INSERT_SUBVECTOR: { SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1); auto ConstantIdx = dyn_cast(V.getOperand(2)); if (!ConstantIdx) break; int BeginIdx = (int)ConstantIdx->getZExtValue(); int EndIdx = BeginIdx + (int)VInner.getValueType().getVectorNumElements(); if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) { BroadcastIdx -= BeginIdx; V = VInner; } else { V = VOuter; } continue; } } break; } // Check if this is a broadcast of a scalar. We special case lowering // for scalars so that we can more effectively fold with loads. if (V.getOpcode() == ISD::BUILD_VECTOR || (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) { V = V.getOperand(BroadcastIdx); // If the scalar isn't a load we can't broadcast from it in AVX1, only with // AVX2. if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V)) return SDValue(); } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) { // We can't broadcast from a vector register w/o AVX2, and we can only // broadcast from the zero-element of a vector register. return SDValue(); } return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V); } // Check for whether we can use INSERTPS to perform the shuffle. We only use // INSERTPS when the V1 elements are already in the correct locations // because otherwise we can just always use two SHUFPS instructions which // are much smaller to encode than a SHUFPS and an INSERTPS. We can also // perform INSERTPS if a single V1 element is out of place and all V2 // elements are zeroable. static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2, ArrayRef Mask, SelectionDAG &DAG) { assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); unsigned ZMask = 0; int V1DstIndex = -1; int V2DstIndex = -1; bool V1UsedInPlace = false; for (int i = 0; i < 4; i++) { // Synthesize a zero mask from the zeroable elements (includes undefs). if (Zeroable[i]) { ZMask |= 1 << i; continue; } // Flag if we use any V1 inputs in place. if (i == Mask[i]) { V1UsedInPlace = true; continue; } // We can only insert a single non-zeroable element. if (V1DstIndex != -1 || V2DstIndex != -1) return SDValue(); if (Mask[i] < 4) { // V1 input out of place for insertion. V1DstIndex = i; } else { // V2 input for insertion. V2DstIndex = i; } } // Don't bother if we have no (non-zeroable) element for insertion. if (V1DstIndex == -1 && V2DstIndex == -1) return SDValue(); // Determine element insertion src/dst indices. The src index is from the // start of the inserted vector, not the start of the concatenated vector. unsigned V2SrcIndex = 0; if (V1DstIndex != -1) { // If we have a V1 input out of place, we use V1 as the V2 element insertion // and don't use the original V2 at all. V2SrcIndex = Mask[V1DstIndex]; V2DstIndex = V1DstIndex; V2 = V1; } else { V2SrcIndex = Mask[V2DstIndex] - 4; } // If no V1 inputs are used in place, then the result is created only from // the zero mask and the V2 insertion - so remove V1 dependency. if (!V1UsedInPlace) V1 = DAG.getUNDEF(MVT::v4f32); unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask; assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); // Insert the V2 element into the desired position. SDLoc DL(Op); return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, DAG.getConstant(InsertPSMask, MVT::i8)); } /// \brief Handle lowering of 2-lane 64-bit floating point shuffles. /// /// This is the basis function for the 2-lane 64-bit shuffles as we have full /// support for floating point shuffles but not integer shuffles. These /// instructions will incur a domain crossing penalty on some chips though so /// it is better to avoid lowering through this for integer vectors where /// possible. static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); if (isSingleInputShuffleMask(Mask)) { // Use low duplicate instructions for masks that match their pattern. if (Subtarget->hasSSE3()) if (isShuffleEquivalent(Mask, 0, 0)) return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1); // Straight shuffle of a single input vector. Simulate this by using the // single input as both of the "inputs" to this instruction.. unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1); if (Subtarget->hasAVX()) { // If we have AVX, we can use VPERMILPS which will allow folding a load // into the shuffle. return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1, DAG.getConstant(SHUFPDMask, MVT::i8)); } return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1, DAG.getConstant(SHUFPDMask, MVT::i8)); } assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!"); assert(Mask[1] >= 2 && "Non-canonicalized blend!"); // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 2)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2); if (isShuffleEquivalent(Mask, 1, 3)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2); // If we have a single input, insert that into V1 if we can do so cheaply. if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) { if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( MVT::v2f64, DL, V1, V2, Mask, Subtarget, DAG)) return Insertion; // Try inverting the insertion since for v2 masks it is easy to do and we // can't reliably sort the mask one way or the other. int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( MVT::v2f64, DL, V2, V1, InverseMask, Subtarget, DAG)) return Insertion; } // Try to use one of the special instruction patterns to handle two common // blend patterns if a zero-blend above didn't work. if (isShuffleEquivalent(Mask, 0, 3) || isShuffleEquivalent(Mask, 1, 3)) if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG)) // We can either use a special instruction to load over the low double or // to move just the low double. return DAG.getNode( isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD, DL, MVT::v2f64, V2, DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S)); if (Subtarget->hasSSE41()) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) return Blend; unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1); return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2, DAG.getConstant(SHUFPDMask, MVT::i8)); } /// \brief Handle lowering of 2-lane 64-bit integer shuffles. /// /// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by /// the integer unit to minimize domain crossing penalties. However, for blends /// it falls back to the floating point shuffle operation with appropriate bit /// casting. static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); if (isSingleInputShuffleMask(Mask)) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v2i64, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // Straight shuffle of a single input vector. For everything from SSE2 // onward this has a single fast instruction with no scary immediates. // We have to map the mask as it is actually a v4i32 shuffle instruction. V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1); int WidenedMask[4] = { std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1, std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1}; return DAG.getNode( ISD::BITCAST, DL, MVT::v2i64, DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1, getV4X86ShuffleImm8ForMask(WidenedMask, DAG))); } // Try to use byte shift instructions. if (SDValue Shift = lowerVectorShuffleAsByteShift( DL, MVT::v2i64, V1, V2, Mask, DAG)) return Shift; // If we have a single input from V2 insert that into V1 if we can do so // cheaply. if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) { if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( MVT::v2i64, DL, V1, V2, Mask, Subtarget, DAG)) return Insertion; // Try inverting the insertion since for v2 masks it is easy to do and we // can't reliably sort the mask one way or the other. int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( MVT::v2i64, DL, V2, V1, InverseMask, Subtarget, DAG)) return Insertion; } // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 2)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2); if (isShuffleEquivalent(Mask, 1, 3)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2); if (Subtarget->hasSSE41()) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Try to use byte rotation instructions. // Its more profitable for pre-SSSE3 to use shuffles/unpacks. if (Subtarget->hasSSSE3()) if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) return Rotate; // We implement this with SHUFPD which is pretty lame because it will likely // incur 2 cycles of stall for integer vectors on Nehalem and older chips. // However, all the alternatives are still more cycles and newer chips don't // have this problem. It would be really nice if x86 had better shuffles here. V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1); V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2); return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask)); } /// \brief Lower a vector shuffle using the SHUFPS instruction. /// /// This is a helper routine dedicated to lowering vector shuffles using SHUFPS. /// It makes no assumptions about whether this is the *best* lowering, it simply /// uses it. static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT, ArrayRef Mask, SDValue V1, SDValue V2, SelectionDAG &DAG) { SDValue LowV = V1, HighV = V2; int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]}; int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 1) { int V2Index = std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) - Mask.begin(); // Compute the index adjacent to V2Index and in the same half by toggling // the low bit. int V2AdjIndex = V2Index ^ 1; if (Mask[V2AdjIndex] == -1) { // Handles all the cases where we have a single V2 element and an undef. // This will only ever happen in the high lanes because we commute the // vector otherwise. if (V2Index < 2) std::swap(LowV, HighV); NewMask[V2Index] -= 4; } else { // Handle the case where the V2 element ends up adjacent to a V1 element. // To make this work, blend them together as the first step. int V1Index = V2AdjIndex; int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0}; V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, getV4X86ShuffleImm8ForMask(BlendMask, DAG)); // Now proceed to reconstruct the final blend as we have the necessary // high or low half formed. if (V2Index < 2) { LowV = V2; HighV = V1; } else { HighV = V2; } NewMask[V1Index] = 2; // We put the V1 element in V2[2]. NewMask[V2Index] = 0; // We shifted the V2 element into V2[0]. } } else if (NumV2Elements == 2) { if (Mask[0] < 4 && Mask[1] < 4) { // Handle the easy case where we have V1 in the low lanes and V2 in the // high lanes. NewMask[2] -= 4; NewMask[3] -= 4; } else if (Mask[2] < 4 && Mask[3] < 4) { // We also handle the reversed case because this utility may get called // when we detect a SHUFPS pattern but can't easily commute the shuffle to // arrange things in the right direction. NewMask[0] -= 4; NewMask[1] -= 4; HighV = V1; LowV = V2; } else { // We have a mixture of V1 and V2 in both low and high lanes. Rather than // trying to place elements directly, just blend them and set up the final // shuffle to place them. // The first two blend mask elements are for V1, the second two are for // V2. int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1], Mask[2] < 4 ? Mask[2] : Mask[3], (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4, (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4}; V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, getV4X86ShuffleImm8ForMask(BlendMask, DAG)); // Now we do a normal shuffle of V1 by giving V1 as both operands to // a blend. LowV = HighV = V1; NewMask[0] = Mask[0] < 4 ? 0 : 2; NewMask[1] = Mask[0] < 4 ? 2 : 0; NewMask[2] = Mask[2] < 4 ? 1 : 3; NewMask[3] = Mask[2] < 4 ? 3 : 1; } } return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV, getV4X86ShuffleImm8ForMask(NewMask, DAG)); } /// \brief Lower 4-lane 32-bit floating point shuffles. /// /// Uses instructions exclusively from the floating point unit to minimize /// domain crossing penalties, as these are sufficient to implement all v4f32 /// shuffles. static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f32, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // Use even/odd duplicate instructions for masks that match their pattern. if (Subtarget->hasSSE3()) { if (isShuffleEquivalent(Mask, 0, 0, 2, 2)) return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1); if (isShuffleEquivalent(Mask, 1, 1, 3, 3)) return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1); } if (Subtarget->hasAVX()) { // If we have AVX, we can use VPERMILPS which will allow folding a load // into the shuffle. return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1, getV4X86ShuffleImm8ForMask(Mask, DAG)); } // Otherwise, use a straight shuffle of a single input vector. We pass the // input vector to both operands to simulate this with a SHUFPS. return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1, getV4X86ShuffleImm8ForMask(Mask, DAG)); } // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 4, 1, 5)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2); if (isShuffleEquivalent(Mask, 2, 6, 3, 7)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2); // There are special ways we can lower some single-element blends. However, we // have custom ways we can lower more complex single-element blends below that // we defer to if both this and BLENDPS fail to match, so restrict this to // when the V2 input is targeting element 0 of the mask -- that is the fast // case here. if (NumV2Elements == 1 && Mask[0] >= 4) if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4f32, DL, V1, V2, Mask, Subtarget, DAG)) return V; if (Subtarget->hasSSE41()) { if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use INSERTPS if we can complete the shuffle efficiently. if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG)) return V; } // Otherwise fall back to a SHUFPS lowering strategy. return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG); } /// \brief Lower 4-lane i32 vector shuffles. /// /// We try to handle these with integer-domain shuffles where we can, but for /// blends we use the floating point domain blend instructions. static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. It also allows us to fold memory operands into the // shuffle in many cases. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return ZExt; int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i32, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // Straight shuffle of a single input vector. For everything from SSE2 // onward this has a single fast instruction with no scary immediates. // We coerce the shuffle pattern to be compatible with UNPCK instructions // but we aren't actually going to use the UNPCK instruction because doing // so prevents folding a load into this instruction or making a copy. const int UnpackLoMask[] = {0, 0, 1, 1}; const int UnpackHiMask[] = {2, 2, 3, 3}; if (isShuffleEquivalent(Mask, 0, 0, 1, 1)) Mask = UnpackLoMask; else if (isShuffleEquivalent(Mask, 2, 2, 3, 3)) Mask = UnpackHiMask; return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, getV4X86ShuffleImm8ForMask(Mask, DAG)); } // Try to use byte shift instructions. if (SDValue Shift = lowerVectorShuffleAsByteShift( DL, MVT::v4i32, V1, V2, Mask, DAG)) return Shift; // There are special ways we can lower some single-element blends. if (NumV2Elements == 1) if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4i32, DL, V1, V2, Mask, Subtarget, DAG)) return V; // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 4, 1, 5)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2); if (isShuffleEquivalent(Mask, 2, 6, 3, 7)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2); if (Subtarget->hasSSE41()) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Try to use byte rotation instructions. // Its more profitable for pre-SSSE3 to use shuffles/unpacks. if (Subtarget->hasSSSE3()) if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return Rotate; // We implement this with SHUFPS because it can blend from two vectors. // Because we're going to eventually use SHUFPS, we use SHUFPS even to build // up the inputs, bypassing domain shift penalties that we would encur if we // directly used PSHUFD on Nehalem and older. For newer chips, this isn't // relevant. return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, DAG.getVectorShuffle( MVT::v4f32, DL, DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1), DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask)); } /// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2 /// shuffle lowering, and the most complex part. /// /// The lowering strategy is to try to form pairs of input lanes which are /// targeted at the same half of the final vector, and then use a dword shuffle /// to place them onto the right half, and finally unpack the paired lanes into /// their final position. /// /// The exact breakdown of how to form these dword pairs and align them on the /// correct sides is really tricky. See the comments within the function for /// more of the details. static SDValue lowerV8I16SingleInputVectorShuffle( SDLoc DL, SDValue V, MutableArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(V.getSimpleValueType() == MVT::v8i16 && "Bad input type!"); MutableArrayRef LoMask = Mask.slice(0, 4); MutableArrayRef HiMask = Mask.slice(4, 4); SmallVector LoInputs; std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs), [](int M) { return M >= 0; }); std::sort(LoInputs.begin(), LoInputs.end()); LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); SmallVector HiInputs; std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs), [](int M) { return M >= 0; }); std::sort(HiInputs.begin(), HiInputs.end()); HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); int NumLToL = std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin(); int NumHToL = LoInputs.size() - NumLToL; int NumLToH = std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin(); int NumHToH = HiInputs.size() - NumLToH; MutableArrayRef LToLInputs(LoInputs.data(), NumLToL); MutableArrayRef LToHInputs(HiInputs.data(), NumLToH); MutableArrayRef HToLInputs(LoInputs.data() + NumLToL, NumHToL); MutableArrayRef HToHInputs(HiInputs.data() + NumLToH, NumHToH); // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i16, DL, V, Mask, Subtarget, DAG)) return Broadcast; // Try to use byte shift instructions. if (SDValue Shift = lowerVectorShuffleAsByteShift( DL, MVT::v8i16, V, V, Mask, DAG)) return Shift; // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 0, 1, 1, 2, 2, 3, 3)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V, V); if (isShuffleEquivalent(Mask, 4, 4, 5, 5, 6, 6, 7, 7)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V, V); // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v8i16, V, V, Mask, Subtarget, DAG)) return Rotate; // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all // such inputs we can swap two of the dwords across the half mark and end up // with <=2 inputs to each half in each half. Once there, we can fall through // to the generic code below. For example: // // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5] // // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half // and an existing 2-into-2 on the other half. In this case we may have to // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or // 1-into-3 which could cause us to cycle endlessly fixing each side in turn. // Fortunately, we don't have to handle anything but a 2-into-2 pattern // because any other situation (including a 3-into-1 or 1-into-3 in the other // half than the one we target for fixing) will be fixed when we re-enter this // path. We will also combine away any sequence of PSHUFD instructions that // result into a single instruction. Here is an example of the tricky case: // // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3] // // This now has a 1-into-3 in the high half! Instead, we do two shuffles: // // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h] // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6] // // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h] // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6] // // The result is fine to be handled by the generic logic. auto balanceSides = [&](ArrayRef AToAInputs, ArrayRef BToAInputs, ArrayRef BToBInputs, ArrayRef AToBInputs, int AOffset, int BOffset) { assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) && "Must call this with A having 3 or 1 inputs from the A half."); assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) && "Must call this with B having 1 or 3 inputs from the B half."); assert(AToAInputs.size() + BToAInputs.size() == 4 && "Must call this with either 3:1 or 1:3 inputs (summing to 4)."); // Compute the index of dword with only one word among the three inputs in // a half by taking the sum of the half with three inputs and subtracting // the sum of the actual three inputs. The difference is the remaining // slot. int ADWord, BDWord; int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord; int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord; int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset; ArrayRef TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs; int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0]; int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset); int TripleNonInputIdx = TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0); TripleDWord = TripleNonInputIdx / 2; // We use xor with one to compute the adjacent DWord to whichever one the // OneInput is in. OneInputDWord = (OneInput / 2) ^ 1; // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA // and BToA inputs. If there is also such a problem with the BToB and AToB // inputs, we don't try to fix it necessarily -- we'll recurse and see it in // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it // is essential that we don't *create* a 3<-1 as then we might oscillate. if (BToBInputs.size() == 2 && AToBInputs.size() == 2) { // Compute how many inputs will be flipped by swapping these DWords. We // need // to balance this to ensure we don't form a 3-1 shuffle in the other // half. int NumFlippedAToBInputs = std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) + std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1); int NumFlippedBToBInputs = std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) + std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1); if ((NumFlippedAToBInputs == 1 && (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) || (NumFlippedBToBInputs == 1 && (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) { // We choose whether to fix the A half or B half based on whether that // half has zero flipped inputs. At zero, we may not be able to fix it // with that half. We also bias towards fixing the B half because that // will more commonly be the high half, and we have to bias one way. auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord, ArrayRef Inputs) { int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot. bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(), PinnedIdx ^ 1) != Inputs.end(); // Determine whether the free index is in the flipped dword or the // unflipped dword based on where the pinned index is. We use this bit // in an xor to conditionally select the adjacent dword. int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord)); bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), FixFreeIdx) != Inputs.end(); if (IsFixIdxInput == IsFixFreeIdxInput) FixFreeIdx += 1; IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), FixFreeIdx) != Inputs.end(); assert(IsFixIdxInput != IsFixFreeIdxInput && "We need to be changing the number of flipped inputs!"); int PSHUFHalfMask[] = {0, 1, 2, 3}; std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]); V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL, MVT::v8i16, V, getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG)); for (int &M : Mask) if (M != -1 && M == FixIdx) M = FixFreeIdx; else if (M != -1 && M == FixFreeIdx) M = FixIdx; }; if (NumFlippedBToBInputs != 0) { int BPinnedIdx = BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs); } else { assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!"); int APinnedIdx = AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; FixFlippedInputs(APinnedIdx, ADWord, AToBInputs); } } } int PSHUFDMask[] = {0, 1, 2, 3}; PSHUFDMask[ADWord] = BDWord; PSHUFDMask[BDWord] = ADWord; V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V), getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG))); // Adjust the mask to match the new locations of A and B. for (int &M : Mask) if (M != -1 && M/2 == ADWord) M = 2 * BDWord + M % 2; else if (M != -1 && M/2 == BDWord) M = 2 * ADWord + M % 2; // Recurse back into this routine to re-compute state now that this isn't // a 3 and 1 problem. return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16), Mask); }; if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3)) return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4); else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3)) return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0); // At this point there are at most two inputs to the low and high halves from // each half. That means the inputs can always be grouped into dwords and // those dwords can then be moved to the correct half with a dword shuffle. // We use at most one low and one high word shuffle to collect these paired // inputs into dwords, and finally a dword shuffle to place them. int PSHUFLMask[4] = {-1, -1, -1, -1}; int PSHUFHMask[4] = {-1, -1, -1, -1}; int PSHUFDMask[4] = {-1, -1, -1, -1}; // First fix the masks for all the inputs that are staying in their // original halves. This will then dictate the targets of the cross-half // shuffles. auto fixInPlaceInputs = [&PSHUFDMask](ArrayRef InPlaceInputs, ArrayRef IncomingInputs, MutableArrayRef SourceHalfMask, MutableArrayRef HalfMask, int HalfOffset) { if (InPlaceInputs.empty()) return; if (InPlaceInputs.size() == 1) { SourceHalfMask[InPlaceInputs[0] - HalfOffset] = InPlaceInputs[0] - HalfOffset; PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2; return; } if (IncomingInputs.empty()) { // Just fix all of the in place inputs. for (int Input : InPlaceInputs) { SourceHalfMask[Input - HalfOffset] = Input - HalfOffset; PSHUFDMask[Input / 2] = Input / 2; } return; } assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!"); SourceHalfMask[InPlaceInputs[0] - HalfOffset] = InPlaceInputs[0] - HalfOffset; // Put the second input next to the first so that they are packed into // a dword. We find the adjacent index by toggling the low bit. int AdjIndex = InPlaceInputs[0] ^ 1; SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset; std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex); PSHUFDMask[AdjIndex / 2] = AdjIndex / 2; }; fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0); fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4); // Now gather the cross-half inputs and place them into a free dword of // their target half. // FIXME: This operation could almost certainly be simplified dramatically to // look more like the 3-1 fixing operation. auto moveInputsToRightHalf = [&PSHUFDMask]( MutableArrayRef IncomingInputs, ArrayRef ExistingInputs, MutableArrayRef SourceHalfMask, MutableArrayRef HalfMask, MutableArrayRef FinalSourceHalfMask, int SourceOffset, int DestOffset) { auto isWordClobbered = [](ArrayRef SourceHalfMask, int Word) { return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word; }; auto isDWordClobbered = [&isWordClobbered](ArrayRef SourceHalfMask, int Word) { int LowWord = Word & ~1; int HighWord = Word | 1; return isWordClobbered(SourceHalfMask, LowWord) || isWordClobbered(SourceHalfMask, HighWord); }; if (IncomingInputs.empty()) return; if (ExistingInputs.empty()) { // Map any dwords with inputs from them into the right half. for (int Input : IncomingInputs) { // If the source half mask maps over the inputs, turn those into // swaps and use the swapped lane. if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) { if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) { SourceHalfMask[SourceHalfMask[Input - SourceOffset]] = Input - SourceOffset; // We have to swap the uses in our half mask in one sweep. for (int &M : HalfMask) if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset) M = Input; else if (M == Input) M = SourceHalfMask[Input - SourceOffset] + SourceOffset; } else { assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == Input - SourceOffset && "Previous placement doesn't match!"); } // Note that this correctly re-maps both when we do a swap and when // we observe the other side of the swap above. We rely on that to // avoid swapping the members of the input list directly. Input = SourceHalfMask[Input - SourceOffset] + SourceOffset; } // Map the input's dword into the correct half. if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1) PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2; else assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == Input / 2 && "Previous placement doesn't match!"); } // And just directly shift any other-half mask elements to be same-half // as we will have mirrored the dword containing the element into the // same position within that half. for (int &M : HalfMask) if (M >= SourceOffset && M < SourceOffset + 4) { M = M - SourceOffset + DestOffset; assert(M >= 0 && "This should never wrap below zero!"); } return; } // Ensure we have the input in a viable dword of its current half. This // is particularly tricky because the original position may be clobbered // by inputs being moved and *staying* in that half. if (IncomingInputs.size() == 1) { if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { int InputFixed = std::find(std::begin(SourceHalfMask), std::end(SourceHalfMask), -1) - std::begin(SourceHalfMask) + SourceOffset; SourceHalfMask[InputFixed - SourceOffset] = IncomingInputs[0] - SourceOffset; std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0], InputFixed); IncomingInputs[0] = InputFixed; } } else if (IncomingInputs.size() == 2) { if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 || isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { // We have two non-adjacent or clobbered inputs we need to extract from // the source half. To do this, we need to map them into some adjacent // dword slot in the source mask. int InputsFixed[2] = {IncomingInputs[0] - SourceOffset, IncomingInputs[1] - SourceOffset}; // If there is a free slot in the source half mask adjacent to one of // the inputs, place the other input in it. We use (Index XOR 1) to // compute an adjacent index. if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) && SourceHalfMask[InputsFixed[0] ^ 1] == -1) { SourceHalfMask[InputsFixed[0]] = InputsFixed[0]; SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; InputsFixed[1] = InputsFixed[0] ^ 1; } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) && SourceHalfMask[InputsFixed[1] ^ 1] == -1) { SourceHalfMask[InputsFixed[1]] = InputsFixed[1]; SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0]; InputsFixed[0] = InputsFixed[1] ^ 1; } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 && SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) { // The two inputs are in the same DWord but it is clobbered and the // adjacent DWord isn't used at all. Move both inputs to the free // slot. SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0]; SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1]; InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1); InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1; } else { // The only way we hit this point is if there is no clobbering // (because there are no off-half inputs to this half) and there is no // free slot adjacent to one of the inputs. In this case, we have to // swap an input with a non-input. for (int i = 0; i < 4; ++i) assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) && "We can't handle any clobbers here!"); assert(InputsFixed[1] != (InputsFixed[0] ^ 1) && "Cannot have adjacent inputs here!"); SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1; // We also have to update the final source mask in this case because // it may need to undo the above swap. for (int &M : FinalSourceHalfMask) if (M == (InputsFixed[0] ^ 1) + SourceOffset) M = InputsFixed[1] + SourceOffset; else if (M == InputsFixed[1] + SourceOffset) M = (InputsFixed[0] ^ 1) + SourceOffset; InputsFixed[1] = InputsFixed[0] ^ 1; } // Point everything at the fixed inputs. for (int &M : HalfMask) if (M == IncomingInputs[0]) M = InputsFixed[0] + SourceOffset; else if (M == IncomingInputs[1]) M = InputsFixed[1] + SourceOffset; IncomingInputs[0] = InputsFixed[0] + SourceOffset; IncomingInputs[1] = InputsFixed[1] + SourceOffset; } } else { llvm_unreachable("Unhandled input size!"); } // Now hoist the DWord down to the right half. int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2; assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free"); PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2; for (int &M : HalfMask) for (int Input : IncomingInputs) if (M == Input) M = FreeDWord * 2 + Input % 2; }; moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask, /*SourceOffset*/ 4, /*DestOffset*/ 0); moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask, /*SourceOffset*/ 0, /*DestOffset*/ 4); // Now enact all the shuffles we've computed to move the inputs into their // target half. if (!isNoopShuffleMask(PSHUFLMask)) V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V, getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG)); if (!isNoopShuffleMask(PSHUFHMask)) V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V, getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG)); if (!isNoopShuffleMask(PSHUFDMask)) V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V), getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG))); // At this point, each half should contain all its inputs, and we can then // just shuffle them into their final position. assert(std::count_if(LoMask.begin(), LoMask.end(), [](int M) { return M >= 4; }) == 0 && "Failed to lift all the high half inputs to the low mask!"); assert(std::count_if(HiMask.begin(), HiMask.end(), [](int M) { return M >= 0 && M < 4; }) == 0 && "Failed to lift all the low half inputs to the high mask!"); // Do a half shuffle for the low mask. if (!isNoopShuffleMask(LoMask)) V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V, getV4X86ShuffleImm8ForMask(LoMask, DAG)); // Do a half shuffle with the high mask after shifting its values down. for (int &M : HiMask) if (M >= 0) M -= 4; if (!isNoopShuffleMask(HiMask)) V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V, getV4X86ShuffleImm8ForMask(HiMask, DAG)); return V; } /// \brief Detect whether the mask pattern should be lowered through /// interleaving. /// /// This essentially tests whether viewing the mask as an interleaving of two /// sub-sequences reduces the cross-input traffic of a blend operation. If so, /// lowering it through interleaving is a significantly better strategy. static bool shouldLowerAsInterleaving(ArrayRef Mask) { int NumEvenInputs[2] = {0, 0}; int NumOddInputs[2] = {0, 0}; int NumLoInputs[2] = {0, 0}; int NumHiInputs[2] = {0, 0}; for (int i = 0, Size = Mask.size(); i < Size; ++i) { if (Mask[i] < 0) continue; int InputIdx = Mask[i] >= Size; if (i < Size / 2) ++NumLoInputs[InputIdx]; else ++NumHiInputs[InputIdx]; if ((i % 2) == 0) ++NumEvenInputs[InputIdx]; else ++NumOddInputs[InputIdx]; } // The minimum number of cross-input results for both the interleaved and // split cases. If interleaving results in fewer cross-input results, return // true. int InterleavedCrosses = std::min(NumEvenInputs[1] + NumOddInputs[0], NumEvenInputs[0] + NumOddInputs[1]); int SplitCrosses = std::min(NumLoInputs[1] + NumHiInputs[0], NumLoInputs[0] + NumHiInputs[1]); return InterleavedCrosses < SplitCrosses; } /// \brief Blend two v8i16 vectors using a naive unpack strategy. /// /// This strategy only works when the inputs from each vector fit into a single /// half of that vector, and generally there are not so many inputs as to leave /// the in-place shuffles required highly constrained (and thus expensive). It /// shifts all the inputs into a single side of both input vectors and then /// uses an unpack to interleave these inputs in a single vector. At that /// point, we will fall back on the generic single input shuffle lowering. static SDValue lowerV8I16BasicBlendVectorShuffle(SDLoc DL, SDValue V1, SDValue V2, MutableArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad input type!"); assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad input type!"); SmallVector LoV1Inputs, HiV1Inputs, LoV2Inputs, HiV2Inputs; for (int i = 0; i < 8; ++i) if (Mask[i] >= 0 && Mask[i] < 4) LoV1Inputs.push_back(i); else if (Mask[i] >= 4 && Mask[i] < 8) HiV1Inputs.push_back(i); else if (Mask[i] >= 8 && Mask[i] < 12) LoV2Inputs.push_back(i); else if (Mask[i] >= 12) HiV2Inputs.push_back(i); int NumV1Inputs = LoV1Inputs.size() + HiV1Inputs.size(); int NumV2Inputs = LoV2Inputs.size() + HiV2Inputs.size(); (void)NumV1Inputs; (void)NumV2Inputs; assert(NumV1Inputs > 0 && NumV1Inputs <= 3 && "At most 3 inputs supported"); assert(NumV2Inputs > 0 && NumV2Inputs <= 3 && "At most 3 inputs supported"); assert(NumV1Inputs + NumV2Inputs <= 4 && "At most 4 combined inputs"); bool MergeFromLo = LoV1Inputs.size() + LoV2Inputs.size() >= HiV1Inputs.size() + HiV2Inputs.size(); auto moveInputsToHalf = [&](SDValue V, ArrayRef LoInputs, ArrayRef HiInputs, bool MoveToLo, int MaskOffset) { ArrayRef GoodInputs = MoveToLo ? LoInputs : HiInputs; ArrayRef BadInputs = MoveToLo ? HiInputs : LoInputs; if (BadInputs.empty()) return V; int MoveMask[] = {-1, -1, -1, -1, -1, -1, -1, -1}; int MoveOffset = MoveToLo ? 0 : 4; if (GoodInputs.empty()) { for (int BadInput : BadInputs) { MoveMask[Mask[BadInput] % 4 + MoveOffset] = Mask[BadInput] - MaskOffset; Mask[BadInput] = Mask[BadInput] % 4 + MoveOffset + MaskOffset; } } else { if (GoodInputs.size() == 2) { // If the low inputs are spread across two dwords, pack them into // a single dword. MoveMask[MoveOffset] = Mask[GoodInputs[0]] - MaskOffset; MoveMask[MoveOffset + 1] = Mask[GoodInputs[1]] - MaskOffset; Mask[GoodInputs[0]] = MoveOffset + MaskOffset; Mask[GoodInputs[1]] = MoveOffset + 1 + MaskOffset; } else { // Otherwise pin the good inputs. for (int GoodInput : GoodInputs) MoveMask[Mask[GoodInput] - MaskOffset] = Mask[GoodInput] - MaskOffset; } if (BadInputs.size() == 2) { // If we have two bad inputs then there may be either one or two good // inputs fixed in place. Find a fixed input, and then find the *other* // two adjacent indices by using modular arithmetic. int GoodMaskIdx = std::find_if(std::begin(MoveMask) + MoveOffset, std::end(MoveMask), [](int M) { return M >= 0; }) - std::begin(MoveMask); int MoveMaskIdx = ((((GoodMaskIdx - MoveOffset) & ~1) + 2) % 4) + MoveOffset; assert(MoveMask[MoveMaskIdx] == -1 && "Expected empty slot"); assert(MoveMask[MoveMaskIdx + 1] == -1 && "Expected empty slot"); MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset; MoveMask[MoveMaskIdx + 1] = Mask[BadInputs[1]] - MaskOffset; Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset; Mask[BadInputs[1]] = MoveMaskIdx + 1 + MaskOffset; } else { assert(BadInputs.size() == 1 && "All sizes handled"); int MoveMaskIdx = std::find(std::begin(MoveMask) + MoveOffset, std::end(MoveMask), -1) - std::begin(MoveMask); MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset; Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset; } } return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16), MoveMask); }; V1 = moveInputsToHalf(V1, LoV1Inputs, HiV1Inputs, MergeFromLo, /*MaskOffset*/ 0); V2 = moveInputsToHalf(V2, LoV2Inputs, HiV2Inputs, MergeFromLo, /*MaskOffset*/ 8); // FIXME: Select an interleaving of the merge of V1 and V2 that minimizes // cross-half traffic in the final shuffle. // Munge the mask to be a single-input mask after the unpack merges the // results. for (int &M : Mask) if (M != -1) M = 2 * (M % 4) + (M / 8); return DAG.getVectorShuffle( MVT::v8i16, DL, DAG.getNode(MergeFromLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2), DAG.getUNDEF(MVT::v8i16), Mask); } /// \brief Generic lowering of 8-lane i16 shuffles. /// /// This handles both single-input shuffles and combined shuffle/blends with /// two inputs. The single input shuffles are immediately delegated to /// a dedicated lowering routine. /// /// The blends are lowered in one of three fundamental ways. If there are few /// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle /// of the input is significantly cheaper when lowered as an interleaving of /// the two inputs, try to interleave them. Otherwise, blend the low and high /// halves of the inputs separately (making them have relatively few inputs) /// and then concatenate them. static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef OrigMask = SVOp->getMask(); int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3], OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]}; MutableArrayRef Mask(MaskStorage); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG)) return ZExt; auto isV1 = [](int M) { return M >= 0 && M < 8; }; auto isV2 = [](int M) { return M >= 8; }; int NumV1Inputs = std::count_if(Mask.begin(), Mask.end(), isV1); int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2); if (NumV2Inputs == 0) return lowerV8I16SingleInputVectorShuffle(DL, V1, Mask, Subtarget, DAG); assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized " "to be V1-input shuffles."); // Try to use byte shift instructions. if (SDValue Shift = lowerVectorShuffleAsByteShift( DL, MVT::v8i16, V1, V2, Mask, DAG)) return Shift; // There are special ways we can lower some single-element blends. if (NumV2Inputs == 1) if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v8i16, DL, V1, V2, Mask, Subtarget, DAG)) return V; // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 2, 10, 3, 11)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2); if (isShuffleEquivalent(Mask, 4, 12, 5, 13, 6, 14, 7, 15)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2); if (Subtarget->hasSSE41()) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) return Blend; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) return Rotate; if (NumV1Inputs + NumV2Inputs <= 4) return lowerV8I16BasicBlendVectorShuffle(DL, V1, V2, Mask, Subtarget, DAG); // Check whether an interleaving lowering is likely to be more efficient. // This isn't perfect but it is a strong heuristic that tends to work well on // the kinds of shuffles that show up in practice. // // FIXME: Handle 1x, 2x, and 4x interleaving. if (shouldLowerAsInterleaving(Mask)) { // FIXME: Figure out whether we should pack these into the low or high // halves. int EMask[8], OMask[8]; for (int i = 0; i < 4; ++i) { EMask[i] = Mask[2*i]; OMask[i] = Mask[2*i + 1]; EMask[i + 4] = -1; OMask[i + 4] = -1; } SDValue Evens = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, EMask); SDValue Odds = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, OMask); return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, Evens, Odds); } int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; for (int i = 0; i < 4; ++i) { LoBlendMask[i] = Mask[i]; HiBlendMask[i] = Mask[i + 4]; } SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask); SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask); LoV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, LoV); HiV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, HiV); return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, LoV, HiV)); } /// \brief Check whether a compaction lowering can be done by dropping even /// elements and compute how many times even elements must be dropped. /// /// This handles shuffles which take every Nth element where N is a power of /// two. Example shuffle masks: /// /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14 /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 /// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12 /// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28 /// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8 /// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24 /// /// Any of these lanes can of course be undef. /// /// This routine only supports N <= 3. /// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here /// for larger N. /// /// \returns N above, or the number of times even elements must be dropped if /// there is such a number. Otherwise returns zero. static int canLowerByDroppingEvenElements(ArrayRef Mask) { // Figure out whether we're looping over two inputs or just one. bool IsSingleInput = isSingleInputShuffleMask(Mask); // The modulus for the shuffle vector entries is based on whether this is // a single input or not. int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2); assert(isPowerOf2_32((uint32_t)ShuffleModulus) && "We should only be called with masks with a power-of-2 size!"); uint64_t ModMask = (uint64_t)ShuffleModulus - 1; // We track whether the input is viable for all power-of-2 strides 2^1, 2^2, // and 2^3 simultaneously. This is because we may have ambiguity with // partially undef inputs. bool ViableForN[3] = {true, true, true}; for (int i = 0, e = Mask.size(); i < e; ++i) { // Ignore undef lanes, we'll optimistically collapse them to the pattern we // want. if (Mask[i] == -1) continue; bool IsAnyViable = false; for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) if (ViableForN[j]) { uint64_t N = j + 1; // The shuffle mask must be equal to (i * 2^N) % M. if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask)) IsAnyViable = true; else ViableForN[j] = false; } // Early exit if we exhaust the possible powers of two. if (!IsAnyViable) break; } for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) if (ViableForN[j]) return j + 1; // Return 0 as there is no viable power of two. return 0; } /// \brief Generic lowering of v16i8 shuffles. /// /// This is a hybrid strategy to lower v16i8 vectors. It first attempts to /// detect any complexity reducing interleaving. If that doesn't help, it uses /// UNPCK to spread the i8 elements across two i16-element vectors, and uses /// the existing lowering for v8i16 blends on each half, finally PACK-ing them /// back together. static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef OrigMask = SVOp->getMask(); assert(OrigMask.size() == 16 && "Unexpected mask size for v16 shuffle!"); // Try to use byte shift instructions. if (SDValue Shift = lowerVectorShuffleAsByteShift( DL, MVT::v16i8, V1, V2, OrigMask, DAG)) return Shift; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG)) return Rotate; // Try to use a zext lowering. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG)) return ZExt; int MaskStorage[16] = { OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3], OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7], OrigMask[8], OrigMask[9], OrigMask[10], OrigMask[11], OrigMask[12], OrigMask[13], OrigMask[14], OrigMask[15]}; MutableArrayRef Mask(MaskStorage); MutableArrayRef LoMask = Mask.slice(0, 8); MutableArrayRef HiMask = Mask.slice(8, 8); int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; }); // For single-input shuffles, there are some nicer lowering tricks we can use. if (NumV2Elements == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i8, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // Check whether we can widen this to an i16 shuffle by duplicating bytes. // Notably, this handles splat and partial-splat shuffles more efficiently. // However, it only makes sense if the pre-duplication shuffle simplifies // things significantly. Currently, this means we need to be able to // express the pre-duplication shuffle as an i16 shuffle. // // FIXME: We should check for other patterns which can be widened into an // i16 shuffle as well. auto canWidenViaDuplication = [](ArrayRef Mask) { for (int i = 0; i < 16; i += 2) if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1]) return false; return true; }; auto tryToWidenViaDuplication = [&]() -> SDValue { if (!canWidenViaDuplication(Mask)) return SDValue(); SmallVector LoInputs; std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs), [](int M) { return M >= 0 && M < 8; }); std::sort(LoInputs.begin(), LoInputs.end()); LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); SmallVector HiInputs; std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs), [](int M) { return M >= 8; }); std::sort(HiInputs.begin(), HiInputs.end()); HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); bool TargetLo = LoInputs.size() >= HiInputs.size(); ArrayRef InPlaceInputs = TargetLo ? LoInputs : HiInputs; ArrayRef MovingInputs = TargetLo ? HiInputs : LoInputs; int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1}; SmallDenseMap LaneMap; for (int I : InPlaceInputs) { PreDupI16Shuffle[I/2] = I/2; LaneMap[I] = I; } int j = TargetLo ? 0 : 4, je = j + 4; for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) { // Check if j is already a shuffle of this input. This happens when // there are two adjacent bytes after we move the low one. if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) { // If we haven't yet mapped the input, search for a slot into which // we can map it. while (j < je && PreDupI16Shuffle[j] != -1) ++j; if (j == je) // We can't place the inputs into a single half with a simple i16 shuffle, so bail. return SDValue(); // Map this input with the i16 shuffle. PreDupI16Shuffle[j] = MovingInputs[i] / 2; } // Update the lane map based on the mapping we ended up with. LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2; } V1 = DAG.getNode( ISD::BITCAST, DL, MVT::v16i8, DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1), DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle)); // Unpack the bytes to form the i16s that will be shuffled into place. V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, MVT::v16i8, V1, V1); int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; for (int i = 0; i < 16; ++i) if (Mask[i] != -1) { int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8); assert(MappedMask < 8 && "Invalid v8 shuffle mask!"); if (PostDupI16Shuffle[i / 2] == -1) PostDupI16Shuffle[i / 2] = MappedMask; else assert(PostDupI16Shuffle[i / 2] == MappedMask && "Conflicting entrties in the original shuffle!"); } return DAG.getNode( ISD::BITCAST, DL, MVT::v16i8, DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1), DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle)); }; if (SDValue V = tryToWidenViaDuplication()) return V; } // Check whether an interleaving lowering is likely to be more efficient. // This isn't perfect but it is a strong heuristic that tends to work well on // the kinds of shuffles that show up in practice. // // FIXME: We need to handle other interleaving widths (i16, i32, ...). if (shouldLowerAsInterleaving(Mask)) { int NumLoHalf = std::count_if(Mask.begin(), Mask.end(), [](int M) { return (M >= 0 && M < 8) || (M >= 16 && M < 24); }); int NumHiHalf = std::count_if(Mask.begin(), Mask.end(), [](int M) { return (M >= 8 && M < 16) || M >= 24; }); int EMask[16] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; int OMask[16] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; bool UnpackLo = NumLoHalf >= NumHiHalf; MutableArrayRef TargetEMask(UnpackLo ? EMask : EMask + 8, 8); MutableArrayRef TargetOMask(UnpackLo ? OMask : OMask + 8, 8); for (int i = 0; i < 8; ++i) { TargetEMask[i] = Mask[2 * i]; TargetOMask[i] = Mask[2 * i + 1]; } SDValue Evens = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, EMask); SDValue Odds = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, OMask); return DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, MVT::v16i8, Evens, Odds); } // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly // with PSHUFB. It is important to do this before we attempt to generate any // blends but after all of the single-input lowerings. If the single input // lowerings can find an instruction sequence that is faster than a PSHUFB, we // want to preserve that and we can DAG combine any longer sequences into // a PSHUFB in the end. But once we start blending from multiple inputs, // the complexity of DAG combining bad patterns back into PSHUFB is too high, // and there are *very* few patterns that would actually be faster than the // PSHUFB approach because of its ability to zero lanes. // // FIXME: The only exceptions to the above are blends which are exact // interleavings with direct instructions supporting them. We currently don't // handle those well here. if (Subtarget->hasSSSE3()) { SDValue V1Mask[16]; SDValue V2Mask[16]; bool V1InUse = false; bool V2InUse = false; SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); for (int i = 0; i < 16; ++i) { if (Mask[i] == -1) { V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8); } else { const int ZeroMask = 0x80; int V1Idx = (Mask[i] < 16 ? Mask[i] : ZeroMask); int V2Idx = (Mask[i] < 16 ? ZeroMask : Mask[i] - 16); if (Zeroable[i]) V1Idx = V2Idx = ZeroMask; V1Mask[i] = DAG.getConstant(V1Idx, MVT::i8); V2Mask[i] = DAG.getConstant(V2Idx, MVT::i8); V1InUse |= (ZeroMask != V1Idx); V2InUse |= (ZeroMask != V2Idx); } } if (V1InUse) V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask)); if (V2InUse) V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V2, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask)); // If we need shuffled inputs from both, blend the two. if (V1InUse && V2InUse) return DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2); if (V1InUse) return V1; // Single inputs are easy. if (V2InUse) return V2; // Single inputs are easy. // Shuffling to a zeroable vector. return getZeroVector(MVT::v16i8, Subtarget, DAG, DL); } // There are special ways we can lower some single-element blends. if (NumV2Elements == 1) if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v16i8, DL, V1, V2, Mask, Subtarget, DAG)) return V; // Check whether a compaction lowering can be done. This handles shuffles // which take every Nth element for some even N. See the helper function for // details. // // We special case these as they can be particularly efficiently handled with // the PACKUSB instruction on x86 and they show up in common patterns of // rearranging bytes to truncate wide elements. if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) { // NumEvenDrops is the power of two stride of the elements. Another way of // thinking about it is that we need to drop the even elements this many // times to get the original input. bool IsSingleInput = isSingleInputShuffleMask(Mask); // First we need to zero all the dropped bytes. assert(NumEvenDrops <= 3 && "No support for dropping even elements more than 3 times."); // We use the mask type to pick which bytes are preserved based on how many // elements are dropped. MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 }; SDValue ByteClearMask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1])); V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask); if (!IsSingleInput) V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask); // Now pack things back together. V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1); V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2); SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2); for (int i = 1; i < NumEvenDrops; ++i) { Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result); Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result); } return Result; } int V1LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; int V1HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; int V2LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; int V2HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; auto buildBlendMasks = [](MutableArrayRef HalfMask, MutableArrayRef V1HalfBlendMask, MutableArrayRef V2HalfBlendMask) { for (int i = 0; i < 8; ++i) if (HalfMask[i] >= 0 && HalfMask[i] < 16) { V1HalfBlendMask[i] = HalfMask[i]; HalfMask[i] = i; } else if (HalfMask[i] >= 16) { V2HalfBlendMask[i] = HalfMask[i] - 16; HalfMask[i] = i + 8; } }; buildBlendMasks(LoMask, V1LoBlendMask, V2LoBlendMask); buildBlendMasks(HiMask, V1HiBlendMask, V2HiBlendMask); SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL); auto buildLoAndHiV8s = [&](SDValue V, MutableArrayRef LoBlendMask, MutableArrayRef HiBlendMask) { SDValue V1, V2; // Check if any of the odd lanes in the v16i8 are used. If not, we can mask // them out and avoid using UNPCK{L,H} to extract the elements of V as // i16s. if (std::none_of(LoBlendMask.begin(), LoBlendMask.end(), [](int M) { return M >= 0 && M % 2 == 1; }) && std::none_of(HiBlendMask.begin(), HiBlendMask.end(), [](int M) { return M >= 0 && M % 2 == 1; })) { // Use a mask to drop the high bytes. V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V); V1 = DAG.getNode(ISD::AND, DL, MVT::v8i16, V1, DAG.getConstant(0x00FF, MVT::v8i16)); // This will be a single vector shuffle instead of a blend so nuke V2. V2 = DAG.getUNDEF(MVT::v8i16); // Squash the masks to point directly into V1. for (int &M : LoBlendMask) if (M >= 0) M /= 2; for (int &M : HiBlendMask) if (M >= 0) M /= 2; } else { // Otherwise just unpack the low half of V into V1 and the high half into // V2 so that we can blend them as i16s. V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero)); V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero)); } SDValue BlendedLo = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask); SDValue BlendedHi = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask); return std::make_pair(BlendedLo, BlendedHi); }; SDValue V1Lo, V1Hi, V2Lo, V2Hi; std::tie(V1Lo, V1Hi) = buildLoAndHiV8s(V1, V1LoBlendMask, V1HiBlendMask); std::tie(V2Lo, V2Hi) = buildLoAndHiV8s(V2, V2LoBlendMask, V2HiBlendMask); SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Lo, V2Lo, LoMask); SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Hi, V2Hi, HiMask); return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV); } /// \brief Dispatching routine to lower various 128-bit x86 vector shuffles. /// /// This routine breaks down the specific type of 128-bit shuffle and /// dispatches to the lowering routines accordingly. static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { switch (VT.SimpleTy) { case MVT::v2i64: return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v2f64: return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v4i32: return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v4f32: return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8i16: return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i8: return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG); default: llvm_unreachable("Unimplemented!"); } } /// \brief Helper function to test whether a shuffle mask could be /// simplified by widening the elements being shuffled. /// /// Appends the mask for wider elements in WidenedMask if valid. Otherwise /// leaves it in an unspecified state. /// /// NOTE: This must handle normal vector shuffle masks and *target* vector /// shuffle masks. The latter have the special property of a '-2' representing /// a zero-ed lane of a vector. static bool canWidenShuffleElements(ArrayRef Mask, SmallVectorImpl &WidenedMask) { for (int i = 0, Size = Mask.size(); i < Size; i += 2) { // If both elements are undef, its trivial. if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) { WidenedMask.push_back(SM_SentinelUndef); continue; } // Check for an undef mask and a mask value properly aligned to fit with // a pair of values. If we find such a case, use the non-undef mask's value. if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) { WidenedMask.push_back(Mask[i + 1] / 2); continue; } if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) { WidenedMask.push_back(Mask[i] / 2); continue; } // When zeroing, we need to spread the zeroing across both lanes to widen. if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) { if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) && (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) { WidenedMask.push_back(SM_SentinelZero); continue; } return false; } // Finally check if the two mask values are adjacent and aligned with // a pair. if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) { WidenedMask.push_back(Mask[i] / 2); continue; } // Otherwise we can't safely widen the elements used in this shuffle. return false; } assert(WidenedMask.size() == Mask.size() / 2 && "Incorrect size of mask after widening the elements!"); return true; } /// \brief Generic routine to split ector shuffle into half-sized shuffles. /// /// This routine just extracts two subvectors, shuffles them independently, and /// then concatenates them back together. This should work effectively with all /// AVX vector shuffle types. static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, SelectionDAG &DAG) { assert(VT.getSizeInBits() >= 256 && "Only for 256-bit or wider vector shuffles!"); assert(V1.getSimpleValueType() == VT && "Bad operand type!"); assert(V2.getSimpleValueType() == VT && "Bad operand type!"); ArrayRef LoMask = Mask.slice(0, Mask.size() / 2); ArrayRef HiMask = Mask.slice(Mask.size() / 2); int NumElements = VT.getVectorNumElements(); int SplitNumElements = NumElements / 2; MVT ScalarVT = VT.getScalarType(); MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2); SDValue LoV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1, DAG.getIntPtrConstant(0)); SDValue HiV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1, DAG.getIntPtrConstant(SplitNumElements)); SDValue LoV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2, DAG.getIntPtrConstant(0)); SDValue HiV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2, DAG.getIntPtrConstant(SplitNumElements)); // Now create two 4-way blends of these half-width vectors. auto HalfBlend = [&](ArrayRef HalfMask) { bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false; SmallVector V1BlendMask, V2BlendMask, BlendMask; for (int i = 0; i < SplitNumElements; ++i) { int M = HalfMask[i]; if (M >= NumElements) { if (M >= NumElements + SplitNumElements) UseHiV2 = true; else UseLoV2 = true; V2BlendMask.push_back(M - NumElements); V1BlendMask.push_back(-1); BlendMask.push_back(SplitNumElements + i); } else if (M >= 0) { if (M >= SplitNumElements) UseHiV1 = true; else UseLoV1 = true; V2BlendMask.push_back(-1); V1BlendMask.push_back(M); BlendMask.push_back(i); } else { V2BlendMask.push_back(-1); V1BlendMask.push_back(-1); BlendMask.push_back(-1); } } // Because the lowering happens after all combining takes place, we need to // manually combine these blend masks as much as possible so that we create // a minimal number of high-level vector shuffle nodes. // First try just blending the halves of V1 or V2. if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2) return DAG.getUNDEF(SplitVT); if (!UseLoV2 && !UseHiV2) return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); if (!UseLoV1 && !UseHiV1) return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); SDValue V1Blend, V2Blend; if (UseLoV1 && UseHiV1) { V1Blend = DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); } else { // We only use half of V1 so map the usage down into the final blend mask. V1Blend = UseLoV1 ? LoV1 : HiV1; for (int i = 0; i < SplitNumElements; ++i) if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements) BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements); } if (UseLoV2 && UseHiV2) { V2Blend = DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); } else { // We only use half of V2 so map the usage down into the final blend mask. V2Blend = UseLoV2 ? LoV2 : HiV2; for (int i = 0; i < SplitNumElements; ++i) if (BlendMask[i] >= SplitNumElements) BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0); } return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask); }; SDValue Lo = HalfBlend(LoMask); SDValue Hi = HalfBlend(HiMask); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); } /// \brief Either split a vector in halves or decompose the shuffles and the /// blend. /// /// This is provided as a good fallback for many lowerings of non-single-input /// shuffles with more than one 128-bit lane. In those cases, we want to select /// between splitting the shuffle into 128-bit components and stitching those /// back together vs. extracting the single-input shuffles and blending those /// results. static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, SelectionDAG &DAG) { assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to " "lower single-input shuffles as it " "could then recurse on itself."); int Size = Mask.size(); // If this can be modeled as a broadcast of two elements followed by a blend, // prefer that lowering. This is especially important because broadcasts can // often fold with memory operands. auto DoBothBroadcast = [&] { int V1BroadcastIdx = -1, V2BroadcastIdx = -1; for (int M : Mask) if (M >= Size) { if (V2BroadcastIdx == -1) V2BroadcastIdx = M - Size; else if (M - Size != V2BroadcastIdx) return false; } else if (M >= 0) { if (V1BroadcastIdx == -1) V1BroadcastIdx = M; else if (M != V1BroadcastIdx) return false; } return true; }; if (DoBothBroadcast()) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); // If the inputs all stem from a single 128-bit lane of each input, then we // split them rather than blending because the split will decompose to // unusually few instructions. int LaneCount = VT.getSizeInBits() / 128; int LaneSize = Size / LaneCount; SmallBitVector LaneInputs[2]; LaneInputs[0].resize(LaneCount, false); LaneInputs[1].resize(LaneCount, false); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0) LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true; if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1) return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); // Otherwise, just fall back to decomposed shuffles and a blend. This requires // that the decomposed single-input shuffles don't end up here. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); } /// \brief Lower a vector shuffle crossing multiple 128-bit lanes as /// a permutation and blend of those lanes. /// /// This essentially blends the out-of-lane inputs to each lane into the lane /// from a permuted copy of the vector. This lowering strategy results in four /// instructions in the worst case for a single-input cross lane shuffle which /// is lower than any other fully general cross-lane shuffle strategy I'm aware /// of. Special cases for each particular shuffle pattern should be handled /// prior to trying this lowering. static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, SelectionDAG &DAG) { // FIXME: This should probably be generalized for 512-bit vectors as well. assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!"); int LaneSize = Mask.size() / 2; // If there are only inputs from one 128-bit lane, splitting will in fact be // less expensive. The flags track wether the given lane contains an element // that crosses to another lane. bool LaneCrossing[2] = {false, false}; for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) LaneCrossing[(Mask[i] % Size) / LaneSize] = true; if (!LaneCrossing[0] || !LaneCrossing[1]) return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); if (isSingleInputShuffleMask(Mask)) { SmallVector FlippedBlendMask; for (int i = 0, Size = Mask.size(); i < Size; ++i) FlippedBlendMask.push_back( Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize) ? Mask[i] : Mask[i] % LaneSize + (i / LaneSize) * LaneSize + Size)); // Flip the vector, and blend the results which should now be in-lane. The // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and // 5 for the high source. The value 3 selects the high half of source 2 and // the value 2 selects the low half of source 2. We only use source 2 to // allow folding it into a memory operand. unsigned PERMMask = 3 | 2 << 4; SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT), V1, DAG.getConstant(PERMMask, MVT::i8)); return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask); } // This now reduces to two single-input shuffles of V1 and V2 which at worst // will be handled by the above logic and a blend of the results, much like // other patterns in AVX. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); } /// \brief Handle lowering 2-lane 128-bit shuffles. static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { // Blends are faster and handle all the non-lane-crossing cases. if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask, Subtarget, DAG)) return Blend; MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), VT.getVectorNumElements() / 2); // Check for patterns which can be matched with a single insert of a 128-bit // subvector. if (isShuffleEquivalent(Mask, 0, 1, 0, 1) || isShuffleEquivalent(Mask, 0, 1, 4, 5)) { SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, DAG.getIntPtrConstant(0)); SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Mask[2] < 4 ? V1 : V2, DAG.getIntPtrConstant(0)); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); } if (isShuffleEquivalent(Mask, 0, 1, 6, 7)) { SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, DAG.getIntPtrConstant(0)); SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2, DAG.getIntPtrConstant(2)); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); } // Otherwise form a 128-bit permutation. // FIXME: Detect zero-vector inputs and use the VPERM2X128 to zero that half. unsigned PermMask = Mask[0] / 2 | (Mask[2] / 2) << 4; return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2, DAG.getConstant(PermMask, MVT::i8)); } /// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then /// shuffling each lane. /// /// This will only succeed when the result of fixing the 128-bit lanes results /// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in /// each 128-bit lanes. This handles many cases where we can quickly blend away /// the lane crosses early and then use simpler shuffles within each lane. /// /// FIXME: It might be worthwhile at some point to support this without /// requiring the 128-bit lane-relative shuffles to be repeating, but currently /// in x86 only floating point has interesting non-repeating shuffles, and even /// those are still *marginally* more expensive. static SDValue lowerVectorShuffleByMerging128BitLanes( SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(!isSingleInputShuffleMask(Mask) && "This is only useful with multiple inputs."); int Size = Mask.size(); int LaneSize = 128 / VT.getScalarSizeInBits(); int NumLanes = Size / LaneSize; assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles."); // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also // check whether the in-128-bit lane shuffles share a repeating pattern. SmallVector Lanes; Lanes.resize(NumLanes, -1); SmallVector InLaneMask; InLaneMask.resize(LaneSize, -1); for (int i = 0; i < Size; ++i) { if (Mask[i] < 0) continue; int j = i / LaneSize; if (Lanes[j] < 0) { // First entry we've seen for this lane. Lanes[j] = Mask[i] / LaneSize; } else if (Lanes[j] != Mask[i] / LaneSize) { // This doesn't match the lane selected previously! return SDValue(); } // Check that within each lane we have a consistent shuffle mask. int k = i % LaneSize; if (InLaneMask[k] < 0) { InLaneMask[k] = Mask[i] % LaneSize; } else if (InLaneMask[k] != Mask[i] % LaneSize) { // This doesn't fit a repeating in-lane mask. return SDValue(); } } // First shuffle the lanes into place. MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64, VT.getSizeInBits() / 64); SmallVector LaneMask; LaneMask.resize(NumLanes * 2, -1); for (int i = 0; i < NumLanes; ++i) if (Lanes[i] >= 0) { LaneMask[2 * i + 0] = 2*Lanes[i] + 0; LaneMask[2 * i + 1] = 2*Lanes[i] + 1; } V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1); V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2); SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask); // Cast it back to the type we actually want. LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle); // Now do a simple shuffle that isn't lane crossing. SmallVector NewMask; NewMask.resize(Size, -1); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0) NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize; assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) && "Must not introduce lane crosses at this point!"); return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask); } /// \brief Test whether the specified input (0 or 1) is in-place blended by the /// given mask. /// /// This returns true if the elements from a particular input are already in the /// slot required by the given mask and require no permutation. static bool isShuffleMaskInputInPlace(int Input, ArrayRef Mask) { assert((Input == 0 || Input == 1) && "Only two inputs to shuffles."); int Size = Mask.size(); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i) return false; return true; } /// \brief Handle lowering of 4-lane 64-bit floating point shuffles. /// /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2 /// isn't available. static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); SmallVector WidenedMask; if (canWidenShuffleElements(Mask, WidenedMask)) return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG); if (isSingleInputShuffleMask(Mask)) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f64, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // Use low duplicate instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 0, 2, 2)) return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1); if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) { // Non-half-crossing single input shuffles can be lowerid with an // interleaved permutation. unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3); return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1, DAG.getConstant(VPERMILPMask, MVT::i8)); } // With AVX2 we have direct support for this permutation. if (Subtarget->hasAVX2()) return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1, getV4X86ShuffleImm8ForMask(Mask, DAG)); // Otherwise, fall back. return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); } // X86 has dedicated unpack instructions that can handle specific blend // operations: UNPCKH and UNPCKL. if (isShuffleEquivalent(Mask, 0, 4, 2, 6)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2); if (isShuffleEquivalent(Mask, 1, 5, 3, 7)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2); // If we have a single input to the zero element, insert that into V1 if we // can do so cheaply. int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 1 && Mask[0] >= 4) if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( MVT::v4f64, DL, V1, V2, Mask, Subtarget, DAG)) return Insertion; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check if the blend happens to exactly fit that of SHUFPD. if ((Mask[0] == -1 || Mask[0] < 2) && (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) && (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) && (Mask[3] == -1 || Mask[3] >= 6)) { unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) | ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3); return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2, DAG.getConstant(SHUFPDMask, MVT::i8)); } if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) && (Mask[1] == -1 || Mask[1] < 2) && (Mask[2] == -1 || Mask[2] >= 6) && (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) { unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) | ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3); return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1, DAG.getConstant(SHUFPDMask, MVT::i8)); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. However, if we have AVX2 and either inputs are already in place, // we will be able to shuffle even across lanes the other input in a single // instruction so skip this pattern. if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask)))) if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) return Result; // If we have AVX2 then we always want to lower with a blend because an v4 we // can fully permute the elements. if (Subtarget->hasAVX2()) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 4-lane 64-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v4i64 shuffling.. static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!"); SmallVector WidenedMask; if (canWidenShuffleElements(Mask, WidenedMask)) return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG); if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i64, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // When the shuffle is mirrored between the 128-bit lanes of the unit, we can // use lower latency instructions that will operate on both 128-bit lanes. SmallVector RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) { if (isSingleInputShuffleMask(Mask)) { int PSHUFDMask[] = {-1, -1, -1, -1}; for (int i = 0; i < 2; ++i) if (RepeatedMask[i] >= 0) { PSHUFDMask[2 * i] = 2 * RepeatedMask[i]; PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1; } return DAG.getNode( ISD::BITCAST, DL, MVT::v4i64, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1), getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG))); } // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 4, 2, 6)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2); if (isShuffleEquivalent(Mask, 1, 5, 3, 7)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2); } // AVX2 provides a direct instruction for permuting a single input across // lanes. if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1, getV4X86ShuffleImm8ForMask(Mask, DAG)); // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. However, if we have AVX2 and either inputs are already in place, // we will be able to shuffle even across lanes the other input in a single // instruction so skip this pattern. if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask)))) if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic blend lowering. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 8-lane 32-bit floating point shuffles. /// /// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2 /// isn't available. static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8f32, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // If the shuffle mask is repeated in each 128-bit lane, we have many more // options to efficiently lower the shuffle. SmallVector RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) { assert(RepeatedMask.size() == 4 && "Repeated masks must be half the mask width!"); // Use even/odd duplicate instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 0, 2, 2, 4, 4, 6, 6)) return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1); if (isShuffleEquivalent(Mask, 1, 1, 3, 3, 5, 5, 7, 7)) return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1); if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1, getV4X86ShuffleImm8ForMask(RepeatedMask, DAG)); // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2); if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2); // Otherwise, fall back to a SHUFPS sequence. Here it is important that we // have already handled any direct blends. We also need to squash the // repeated mask into a simulated v4f32 mask. for (int i = 0; i < 4; ++i) if (RepeatedMask[i] >= 8) RepeatedMask[i] -= 4; return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG); } // If we have a single input shuffle with different shuffle patterns in the // two 128-bit lanes use the variable mask to VPERMILPS. if (isSingleInputShuffleMask(Mask)) { SDValue VPermMask[8]; for (int i = 0; i < 8; ++i) VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(Mask[i], MVT::i32); if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask)) return DAG.getNode( X86ISD::VPERMILPV, DL, MVT::v8f32, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask)); if (Subtarget->hasAVX2()) return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, DAG.getNode(ISD::BITCAST, DL, MVT::v8f32, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask)), V1); // Otherwise, fall back. return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) return Result; // If we have AVX2 then we always want to lower with a blend because at v8 we // can fully permute the elements. if (Subtarget->hasAVX2()) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 8-lane 32-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v8i32 shuffling.. static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!"); if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i32, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // If the shuffle mask is repeated in each 128-bit lane we can use more // efficient instructions that mirror the shuffles across the two 128-bit // lanes. SmallVector RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) { assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1, getV4X86ShuffleImm8ForMask(RepeatedMask, DAG)); // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2); if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2); } // If the shuffle patterns aren't repeated but it is a single input, directly // generate a cross-lane VPERMD instruction. if (isSingleInputShuffleMask(Mask)) { SDValue VPermMask[8]; for (int i = 0; i < 8; ++i) VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(Mask[i], MVT::i32); return DAG.getNode( X86ISD::VPERMV, DL, MVT::v8i32, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic blend lowering. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 16-lane 16-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v16i16 shuffling.. static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!"); // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i16, DL, V1, Mask, Subtarget, DAG)) return Broadcast; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, // First 128-bit lane: 0, 16, 1, 17, 2, 18, 3, 19, // Second 128-bit lane: 8, 24, 9, 25, 10, 26, 11, 27)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2); if (isShuffleEquivalent(Mask, // First 128-bit lane: 4, 20, 5, 21, 6, 22, 7, 23, // Second 128-bit lane: 12, 28, 13, 29, 14, 30, 15, 31)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2); if (isSingleInputShuffleMask(Mask)) { // There are no generalized cross-lane shuffle operations available on i16 // element types. if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); SDValue PSHUFBMask[32]; for (int i = 0; i < 16; ++i) { if (Mask[i] == -1) { PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8); continue; } int M = i < 8 ? Mask[i] : Mask[i] - 8; assert(M >= 0 && M < 8 && "Invalid single-input mask!"); PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8); PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8); } return DAG.getNode( ISD::BITCAST, DL, MVT::v16i16, DAG.getNode( X86ISD::PSHUFB, DL, MVT::v32i8, DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1), DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask))); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); } /// \brief Handle lowering of 32-lane 8-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v32i8 shuffling.. static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!"); // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v32i8, DL, V1, Mask, Subtarget, DAG)) return Broadcast; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use dedicated unpack instructions for masks that match their pattern. // Note that these are repeated 128-bit lane unpacks, not unpacks across all // 256-bit lanes. if (isShuffleEquivalent( Mask, // First 128-bit lane: 0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39, // Second 128-bit lane: 16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2); if (isShuffleEquivalent( Mask, // First 128-bit lane: 8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47, // Second 128-bit lane: 24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2); if (isSingleInputShuffleMask(Mask)) { // There are no generalized cross-lane shuffle operations available on i8 // element types. if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); SDValue PSHUFBMask[32]; for (int i = 0; i < 32; ++i) PSHUFBMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8); return DAG.getNode( X86ISD::PSHUFB, DL, MVT::v32i8, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); } /// \brief High-level routine to lower various 256-bit x86 vector shuffles. /// /// This routine either breaks down the specific type of a 256-bit x86 vector /// shuffle or splits it into two 128-bit shuffles and fuses the results back /// together based on the available instructions. static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); // There is a really nice hard cut-over between AVX1 and AVX2 that means we can // check for those subtargets here and avoid much of the subtarget querying in // the per-vector-type lowering routines. With AVX1 we have essentially *zero* // ability to manipulate a 256-bit vector with integer types. Since we'll use // floating point types there eventually, just immediately cast everything to // a float and operate entirely in that domain. if (VT.isInteger() && !Subtarget->hasAVX2()) { int ElementBits = VT.getScalarSizeInBits(); if (ElementBits < 32) // No floating point type available, decompose into 128-bit vectors. return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits), VT.getVectorNumElements()); V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1); V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask)); } switch (VT.SimpleTy) { case MVT::v4f64: return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v4i64: return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8f32: return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8i32: return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i16: return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v32i8: return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG); default: llvm_unreachable("Not a valid 256-bit x86 vector type!"); } } /// \brief Handle lowering of 8-lane 64-bit floating point shuffles. static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); // X86 has dedicated unpack instructions that can handle specific blend // operations: UNPCKH and UNPCKL. if (isShuffleEquivalent(Mask, 0, 8, 2, 10, 4, 12, 6, 14)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2); if (isShuffleEquivalent(Mask, 1, 9, 3, 11, 5, 13, 7, 15)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 16-lane 32-bit floating point shuffles. static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 16, 1, 17, 4, 20, 5, 21, 8, 24, 9, 25, 12, 28, 13, 29)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2); if (isShuffleEquivalent(Mask, 2, 18, 3, 19, 6, 22, 7, 23, 10, 26, 11, 27, 14, 30, 15, 31)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 8-lane 64-bit integer shuffles. static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); // X86 has dedicated unpack instructions that can handle specific blend // operations: UNPCKH and UNPCKL. if (isShuffleEquivalent(Mask, 0, 8, 2, 10, 4, 12, 6, 14)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2); if (isShuffleEquivalent(Mask, 1, 9, 3, 11, 5, 13, 7, 15)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 16-lane 32-bit integer shuffles. static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); // Use dedicated unpack instructions for masks that match their pattern. if (isShuffleEquivalent(Mask, 0, 16, 1, 17, 4, 20, 5, 21, 8, 24, 9, 25, 12, 28, 13, 29)) return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2); if (isShuffleEquivalent(Mask, 2, 18, 3, 19, 6, 22, 7, 23, 10, 26, 11, 27, 14, 30, 15, 31)) return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 32-lane 16-bit integer shuffles. static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!"); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v32i16, V1, V2, Mask, DAG); } /// \brief Handle lowering of 64-lane 8-bit integer shuffles. static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!"); assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!"); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG); } /// \brief High-level routine to lower various 512-bit x86 vector shuffles. /// /// This routine either breaks down the specific type of a 512-bit x86 vector /// shuffle or splits it into two 256-bit shuffles and fuses the results back /// together based on the available instructions. static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); assert(Subtarget->hasAVX512() && "Cannot lower 512-bit vectors w/ basic ISA!"); // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(VT.SimpleTy, DL, V1, Mask, Subtarget, DAG)) return Broadcast; // Dispatch to each element type for lowering. If we don't have supprot for // specific element type shuffles at 512 bits, immediately split them and // lower them. Each lowering routine of a given type is allowed to assume that // the requisite ISA extensions for that element type are available. switch (VT.SimpleTy) { case MVT::v8f64: return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16f32: return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8i64: return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i32: return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v32i16: if (Subtarget->hasBWI()) return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG); break; case MVT::v64i8: if (Subtarget->hasBWI()) return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG); break; default: llvm_unreachable("Not a valid 512-bit x86 vector type!"); } // Otherwise fall back on splitting. return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); } /// \brief Top-level lowering for x86 vector shuffles. /// /// This handles decomposition, canonicalization, and lowering of all x86 /// vector shuffles. Most of the specific lowering strategies are encapsulated /// above in helper routines. The canonicalization attempts to widen shuffles /// to involve fewer lanes of wider elements, consolidate symmetric patterns /// s.t. only one of the two inputs needs to be tested, etc. static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(Op); ArrayRef Mask = SVOp->getMask(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); int NumElements = VT.getVectorNumElements(); SDLoc dl(Op); assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; if (V1IsUndef && V2IsUndef) return DAG.getUNDEF(VT); // When we create a shuffle node we put the UNDEF node to second operand, // but in some cases the first operand may be transformed to UNDEF. // In this case we should just commute the node. if (V1IsUndef) return DAG.getCommutedVectorShuffle(*SVOp); // Check for non-undef masks pointing at an undef vector and make the masks // undef as well. This makes it easier to match the shuffle based solely on // the mask. if (V2IsUndef) for (int M : Mask) if (M >= NumElements) { SmallVector NewMask(Mask.begin(), Mask.end()); for (int &M : NewMask) if (M >= NumElements) M = -1; return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask); } // Try to collapse shuffles into using a vector type with fewer elements but // wider element types. We cap this to not form integers or floating point // elements wider than 64 bits, but it might be interesting to form i128 // integers to handle flipping the low and high halves of AVX 256-bit vectors. SmallVector WidenedMask; if (VT.getScalarSizeInBits() < 64 && canWidenShuffleElements(Mask, WidenedMask)) { MVT NewEltVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2) : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2); MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); // Make sure that the new vector type is legal. For example, v2f64 isn't // legal on SSE1. if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1); V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2); return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask)); } } int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0; for (int M : SVOp->getMask()) if (M < 0) ++NumUndefElements; else if (M < NumElements) ++NumV1Elements; else ++NumV2Elements; // Commute the shuffle as needed such that more elements come from V1 than // V2. This allows us to match the shuffle pattern strictly on how many // elements come from V1 without handling the symmetric cases. if (NumV2Elements > NumV1Elements) return DAG.getCommutedVectorShuffle(*SVOp); // When the number of V1 and V2 elements are the same, try to minimize the // number of uses of V2 in the low half of the vector. When that is tied, // ensure that the sum of indices for V1 is equal to or lower than the sum // indices for V2. When those are equal, try to ensure that the number of odd // indices for V1 is lower than the number of odd indices for V2. if (NumV1Elements == NumV2Elements) { int LowV1Elements = 0, LowV2Elements = 0; for (int M : SVOp->getMask().slice(0, NumElements / 2)) if (M >= NumElements) ++LowV2Elements; else if (M >= 0) ++LowV1Elements; if (LowV2Elements > LowV1Elements) { return DAG.getCommutedVectorShuffle(*SVOp); } else if (LowV2Elements == LowV1Elements) { int SumV1Indices = 0, SumV2Indices = 0; for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) if (SVOp->getMask()[i] >= NumElements) SumV2Indices += i; else if (SVOp->getMask()[i] >= 0) SumV1Indices += i; if (SumV2Indices < SumV1Indices) { return DAG.getCommutedVectorShuffle(*SVOp); } else if (SumV2Indices == SumV1Indices) { int NumV1OddIndices = 0, NumV2OddIndices = 0; for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) if (SVOp->getMask()[i] >= NumElements) NumV2OddIndices += i % 2; else if (SVOp->getMask()[i] >= 0) NumV1OddIndices += i % 2; if (NumV2OddIndices < NumV1OddIndices) return DAG.getCommutedVectorShuffle(*SVOp); } } } // For each vector width, delegate to a specialized lowering routine. if (VT.getSizeInBits() == 128) return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); if (VT.getSizeInBits() == 256) return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); // Force AVX-512 vectors to be scalarized for now. // FIXME: Implement AVX-512 support! if (VT.getSizeInBits() == 512) return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); llvm_unreachable("Unimplemented!"); } //===----------------------------------------------------------------------===// // Legacy vector shuffle lowering // // This code is the legacy code handling vector shuffles until the above // replaces its functionality and performance. //===----------------------------------------------------------------------===// static bool isBlendMask(ArrayRef MaskVals, MVT VT, bool hasSSE41, bool hasInt256, unsigned *MaskOut = nullptr) { MVT EltVT = VT.getVectorElementType(); // There is no blend with immediate in AVX-512. if (VT.is512BitVector()) return false; if (!hasSSE41 || EltVT == MVT::i8) return false; if (!hasInt256 && VT == MVT::v16i16) return false; unsigned MaskValue = 0; unsigned NumElems = VT.getVectorNumElements(); // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. unsigned NumLanes = (NumElems - 1) / 8 + 1; unsigned NumElemsInLane = NumElems / NumLanes; // Blend for v16i16 should be symetric for the both lanes. for (unsigned i = 0; i < NumElemsInLane; ++i) { int SndLaneEltIdx = (NumLanes == 2) ? MaskVals[i + NumElemsInLane] : -1; int EltIdx = MaskVals[i]; if ((EltIdx < 0 || EltIdx == (int)i) && (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane))) continue; if (((unsigned)EltIdx == (i + NumElems)) && (SndLaneEltIdx < 0 || (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane)) MaskValue |= (1 << i); else return false; } if (MaskOut) *MaskOut = MaskValue; return true; } // Try to lower a shuffle node into a simple blend instruction. // This function assumes isBlendMask returns true for this // SuffleVectorSDNode static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp, unsigned MaskValue, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = SVOp->getSimpleValueType(0); MVT EltVT = VT.getVectorElementType(); assert(isBlendMask(SVOp->getMask(), VT, Subtarget->hasSSE41(), Subtarget->hasInt256() && "Trying to lower a " "VECTOR_SHUFFLE to a Blend but " "with the wrong mask")); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); SDLoc dl(SVOp); unsigned NumElems = VT.getVectorNumElements(); // Convert i32 vectors to floating point if it is not AVX2. // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors. MVT BlendVT = VT; if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) { BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()), NumElems); V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1); V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2); } SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2, DAG.getConstant(MaskValue, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Ret); } /// In vector type \p VT, return true if the element at index \p InputIdx /// falls on a different 128-bit lane than \p OutputIdx. static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx, unsigned OutputIdx) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128; } /// Generate a PSHUFB if possible. Selects elements from \p V1 according to /// \p MaskVals. MaskVals[OutputIdx] = InputIdx specifies that we want to /// shuffle the element at InputIdx in V1 to OutputIdx in the result. If \p /// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a /// zero. static SDValue getPSHUFB(ArrayRef MaskVals, SDValue V1, SDLoc &dl, SelectionDAG &DAG) { MVT VT = V1.getSimpleValueType(); assert(VT.is128BitVector() || VT.is256BitVector()); MVT EltVT = VT.getVectorElementType(); unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8; unsigned NumElts = VT.getVectorNumElements(); SmallVector PshufbMask; for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) { int InputIdx = MaskVals[OutputIdx]; unsigned InputByteIdx; if (InputIdx < 0 || NumElts <= (unsigned)InputIdx) InputByteIdx = 0x80; else { // Cross lane is not allowed. if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx)) return SDValue(); InputByteIdx = InputIdx * EltSizeInBytes; // Index is an byte offset within the 128-bit lane. InputByteIdx &= 0xf; } for (unsigned j = 0; j < EltSizeInBytes; ++j) { PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8)); if (InputByteIdx != 0x80) ++InputByteIdx; } } MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size()); if (ShufVT != VT) V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1); return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, PshufbMask)); } // v8i16 shuffles - Prefer shuffles in the following order: // 1. [all] pshuflw, pshufhw, optional move // 2. [ssse3] 1 x pshufb // 3. [ssse3] 2 x pshufb + 1 x por // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) static SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(Op); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); SDLoc dl(SVOp); SmallVector MaskVals; // Determine if more than 1 of the words in each of the low and high quadwords // of the result come from the same quadword of one of the two inputs. Undef // mask values count as coming from any quadword, for better codegen. // // Lo/HiQuad[i] = j indicates how many words from the ith quad of the input // feeds this quad. For i, 0 and 1 refer to V1, 2 and 3 refer to V2. unsigned LoQuad[] = { 0, 0, 0, 0 }; unsigned HiQuad[] = { 0, 0, 0, 0 }; // Indices of quads used. std::bitset<4> InputQuads; for (unsigned i = 0; i < 8; ++i) { unsigned *Quad = i < 4 ? LoQuad : HiQuad; int EltIdx = SVOp->getMaskElt(i); MaskVals.push_back(EltIdx); if (EltIdx < 0) { ++Quad[0]; ++Quad[1]; ++Quad[2]; ++Quad[3]; continue; } ++Quad[EltIdx / 4]; InputQuads.set(EltIdx / 4); } int BestLoQuad = -1; unsigned MaxQuad = 1; for (unsigned i = 0; i < 4; ++i) { if (LoQuad[i] > MaxQuad) { BestLoQuad = i; MaxQuad = LoQuad[i]; } } int BestHiQuad = -1; MaxQuad = 1; for (unsigned i = 0; i < 4; ++i) { if (HiQuad[i] > MaxQuad) { BestHiQuad = i; MaxQuad = HiQuad[i]; } } // For SSSE3, If all 8 words of the result come from only 1 quadword of each // of the two input vectors, shuffle them into one input vector so only a // single pshufb instruction is necessary. If there are more than 2 input // quads, disable the next transformation since it does not help SSSE3. bool V1Used = InputQuads[0] || InputQuads[1]; bool V2Used = InputQuads[2] || InputQuads[3]; if (Subtarget->hasSSSE3()) { if (InputQuads.count() == 2 && V1Used && V2Used) { BestLoQuad = InputQuads[0] ? 0 : 1; BestHiQuad = InputQuads[2] ? 2 : 3; } if (InputQuads.count() > 2) { BestLoQuad = -1; BestHiQuad = -1; } } // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update // the shuffle mask. If a quad is scored as -1, that means that it contains // words from all 4 input quadwords. SDValue NewV; if (BestLoQuad >= 0 || BestHiQuad >= 0) { int MaskV[] = { BestLoQuad < 0 ? 0 : BestLoQuad, BestHiQuad < 0 ? 1 : BestHiQuad }; NewV = DAG.getVectorShuffle(MVT::v2i64, dl, DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the // source words for the shuffle, to aid later transformations. bool AllWordsInNewV = true; bool InOrder[2] = { true, true }; for (unsigned i = 0; i != 8; ++i) { int idx = MaskVals[i]; if (idx != (int)i) InOrder[i/4] = false; if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) continue; AllWordsInNewV = false; break; } bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; if (AllWordsInNewV) { for (int i = 0; i != 8; ++i) { int idx = MaskVals[i]; if (idx < 0) continue; idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; if ((idx != i) && idx < 4) pshufhw = false; if ((idx != i) && idx > 3) pshuflw = false; } V1 = NewV; V2Used = false; BestLoQuad = 0; BestHiQuad = 1; } // If we've eliminated the use of V2, and the new mask is a pshuflw or // pshufhw, that's as cheap as it gets. Return the new shuffle. if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; unsigned TargetMask = 0; NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); ShuffleVectorSDNode *SVOp = cast(NewV.getNode()); TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp): getShufflePSHUFLWImmediate(SVOp); V1 = NewV.getOperand(0); return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); } } // Promote splats to a larger type which usually leads to more efficient code. // FIXME: Is this true if pshufb is available? if (SVOp->isSplat()) return PromoteSplat(SVOp, DAG); // If we have SSSE3, and all words of the result are from 1 input vector, // case 2 is generated, otherwise case 3 is generated. If no SSSE3 // is present, fall back to case 4. if (Subtarget->hasSSSE3()) { SmallVector pshufbMask; // If we have elements from both input vectors, set the high bit of the // shuffle mask element to zero out elements that come from V2 in the V1 // mask, and elements that come from V1 in the V2 mask, so that the two // results can be OR'd together. bool TwoInputs = V1Used && V2Used; V1 = getPSHUFB(MaskVals, V1, dl, DAG); if (!TwoInputs) return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); // Calculate the shuffle mask for the second input, shuffle it, and // OR it with the first shuffled input. CommuteVectorShuffleMask(MaskVals, 8); V2 = getPSHUFB(MaskVals, V2, dl, DAG); V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); } // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, // and update MaskVals with new element order. std::bitset<8> InOrder; if (BestLoQuad >= 0) { int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 }; for (int i = 0; i != 4; ++i) { int idx = MaskVals[i]; if (idx < 0) { InOrder.set(i); } else if ((idx / 4) == BestLoQuad) { MaskV[i] = idx & 3; InOrder.set(i); } } NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskV[0]); if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) { ShuffleVectorSDNode *SVOp = cast(NewV.getNode()); NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, NewV.getOperand(0), getShufflePSHUFLWImmediate(SVOp), DAG); } } // If BestHi >= 0, generate a pshufhw to put the high elements in order, // and update MaskVals with the new element order. if (BestHiQuad >= 0) { int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 }; for (unsigned i = 4; i != 8; ++i) { int idx = MaskVals[i]; if (idx < 0) { InOrder.set(i); } else if ((idx / 4) == BestHiQuad) { MaskV[i] = (idx & 3) + 4; InOrder.set(i); } } NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskV[0]); if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) { ShuffleVectorSDNode *SVOp = cast(NewV.getNode()); NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, NewV.getOperand(0), getShufflePSHUFHWImmediate(SVOp), DAG); } } // In case BestHi & BestLo were both -1, which means each quadword has a word // from each of the four input quadwords, calculate the InOrder bitvector now // before falling through to the insert/extract cleanup. if (BestLoQuad == -1 && BestHiQuad == -1) { NewV = V1; for (int i = 0; i != 8; ++i) if (MaskVals[i] < 0 || MaskVals[i] == i) InOrder.set(i); } // The other elements are put in the right place using pextrw and pinsrw. for (unsigned i = 0; i != 8; ++i) { if (InOrder[i]) continue; int EltIdx = MaskVals[i]; if (EltIdx < 0) continue; SDValue ExtOp = (EltIdx < 8) ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, DAG.getIntPtrConstant(EltIdx)) : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, DAG.getIntPtrConstant(EltIdx - 8)); NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, DAG.getIntPtrConstant(i)); } return NewV; } /// \brief v16i16 shuffles /// /// FIXME: We only support generation of a single pshufb currently. We can /// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as /// well (e.g 2 x pshufb + 1 x por). static SDValue LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(Op); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); SDLoc dl(SVOp); if (V2.getOpcode() != ISD::UNDEF) return SDValue(); SmallVector MaskVals(SVOp->getMask().begin(), SVOp->getMask().end()); return getPSHUFB(MaskVals, V1, dl, DAG); } // v16i8 shuffles - Prefer shuffles in the following order: // 1. [ssse3] 1 x pshufb // 2. [ssse3] 2 x pshufb + 1 x por // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, const X86Subtarget* Subtarget, SelectionDAG &DAG) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); SDLoc dl(SVOp); ArrayRef MaskVals = SVOp->getMask(); // Promote splats to a larger type which usually leads to more efficient code. // FIXME: Is this true if pshufb is available? if (SVOp->isSplat()) return PromoteSplat(SVOp, DAG); // If we have SSSE3, case 1 is generated when all result bytes come from // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is // present, fall back to case 3. // If SSSE3, use 1 pshufb instruction per vector with elements in the result. if (Subtarget->hasSSSE3()) { SmallVector pshufbMask; // If all result elements are from one input vector, then only translate // undef mask values to 0x80 (zero out result) in the pshufb mask. // // Otherwise, we have elements from both input vectors, and must zero out // elements that come from V2 in the first mask, and V1 in the second mask // so that we can OR them together. for (unsigned i = 0; i != 16; ++i) { int EltIdx = MaskVals[i]; if (EltIdx < 0 || EltIdx >= 16) EltIdx = 0x80; pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); } V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, pshufbMask)); // As PSHUFB will zero elements with negative indices, it's safe to ignore // the 2nd operand if it's undefined or zero. if (V2.getOpcode() == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) return V1; // Calculate the shuffle mask for the second input, shuffle it, and // OR it with the first shuffled input. pshufbMask.clear(); for (unsigned i = 0; i != 16; ++i) { int EltIdx = MaskVals[i]; EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16; pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); } V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, pshufbMask)); return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); } // No SSSE3 - Calculate in place words and then fix all out of place words // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from // the 16 different words that comprise the two doublequadword input vectors. V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); SDValue NewV = V1; for (int i = 0; i != 8; ++i) { int Elt0 = MaskVals[i*2]; int Elt1 = MaskVals[i*2+1]; // This word of the result is all undef, skip it. if (Elt0 < 0 && Elt1 < 0) continue; // This word of the result is already in the correct place, skip it. if ((Elt0 == i*2) && (Elt1 == i*2+1)) continue; SDValue Elt0Src = Elt0 < 16 ? V1 : V2; SDValue Elt1Src = Elt1 < 16 ? V1 : V2; SDValue InsElt; // If Elt0 and Elt1 are defined, are consecutive, and can be load // using a single extract together, load it and store it. if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, DAG.getIntPtrConstant(Elt1 / 2)); NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, DAG.getIntPtrConstant(i)); continue; } // If Elt1 is defined, extract it from the appropriate source. If the // source byte is not also odd, shift the extracted word left 8 bits // otherwise clear the bottom 8 bits if we need to do an or. if (Elt1 >= 0) { InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, DAG.getIntPtrConstant(Elt1 / 2)); if ((Elt1 & 1) == 0) InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, DAG.getConstant(8, TLI.getShiftAmountTy(InsElt.getValueType()))); else if (Elt0 >= 0) InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, DAG.getConstant(0xFF00, MVT::i16)); } // If Elt0 is defined, extract it from the appropriate source. If the // source byte is not also even, shift the extracted word right 8 bits. If // Elt1 was also defined, OR the extracted values together before // inserting them in the result. if (Elt0 >= 0) { SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); if ((Elt0 & 1) != 0) InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, DAG.getConstant(8, TLI.getShiftAmountTy(InsElt0.getValueType()))); else if (Elt1 >= 0) InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, DAG.getConstant(0x00FF, MVT::i16)); InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) : InsElt0; } NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, DAG.getIntPtrConstant(i)); } return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); } // v32i8 shuffles - Translate to VPSHUFB if possible. static SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = SVOp->getSimpleValueType(0); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); SDLoc dl(SVOp); SmallVector MaskVals(SVOp->getMask().begin(), SVOp->getMask().end()); bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode()); bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode()); // VPSHUFB may be generated if // (1) one of input vector is undefined or zeroinitializer. // The mask value 0x80 puts 0 in the corresponding slot of the vector. // And (2) the mask indexes don't cross the 128-bit lane. if (VT != MVT::v32i8 || !Subtarget->hasInt256() || (!V2IsUndef && !V2IsAllZero && !V1IsAllZero)) return SDValue(); if (V1IsAllZero && !V2IsAllZero) { CommuteVectorShuffleMask(MaskVals, 32); V1 = V2; } return getPSHUFB(MaskVals, V1, dl, DAG); } /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be /// done when every pair / quad of shuffle mask elements point to elements in /// the right sequence. e.g. /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> static SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { MVT VT = SVOp->getSimpleValueType(0); SDLoc dl(SVOp); unsigned NumElems = VT.getVectorNumElements(); MVT NewVT; unsigned Scale; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected!"); case MVT::v2i64: case MVT::v2f64: return SDValue(SVOp, 0); case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break; case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break; case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break; case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break; case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break; case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break; } SmallVector MaskVec; for (unsigned i = 0; i != NumElems; i += Scale) { int StartIdx = -1; for (unsigned j = 0; j != Scale; ++j) { int EltIdx = SVOp->getMaskElt(i+j); if (EltIdx < 0) continue; if (StartIdx < 0) StartIdx = (EltIdx / Scale); if (EltIdx != (int)(StartIdx*Scale + j)) return SDValue(); } MaskVec.push_back(StartIdx); } SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0)); SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1)); return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); } /// getVZextMovL - Return a zero-extending vector move low node. /// static SDValue getVZextMovL(MVT VT, MVT OpVT, SDValue SrcOp, SelectionDAG &DAG, const X86Subtarget *Subtarget, SDLoc dl) { if (VT == MVT::v2f64 || VT == MVT::v4f32) { LoadSDNode *LD = nullptr; if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) LD = dyn_cast(SrcOp); if (!LD) { // movssrr and movsdrr do not clear top bits. Try to use movd, movq // instead. MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { // PR2108 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, OpVT, SrcOp.getOperand(0) .getOperand(0)))); } } } return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, SrcOp))); } /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles /// which could not be matched by any known target speficic shuffle static SDValue LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG); if (NewOp.getNode()) return NewOp; MVT VT = SVOp->getSimpleValueType(0); unsigned NumElems = VT.getVectorNumElements(); unsigned NumLaneElems = NumElems / 2; SDLoc dl(SVOp); MVT EltVT = VT.getVectorElementType(); MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); SDValue Output[2]; SmallVector Mask; for (unsigned l = 0; l < 2; ++l) { // Build a shuffle mask for the output, discovering on the fly which // input vectors to use as shuffle operands (recorded in InputUsed). // If building a suitable shuffle vector proves too hard, then bail // out with UseBuildVector set. bool UseBuildVector = false; int InputUsed[2] = { -1, -1 }; // Not yet discovered. unsigned LaneStart = l * NumLaneElems; for (unsigned i = 0; i != NumLaneElems; ++i) { // The mask element. This indexes into the input. int Idx = SVOp->getMaskElt(i+LaneStart); if (Idx < 0) { // the mask element does not index into any input vector. Mask.push_back(-1); continue; } // The input vector this mask element indexes into. int Input = Idx / NumLaneElems; // Turn the index into an offset from the start of the input vector. Idx -= Input * NumLaneElems; // Find or create a shuffle vector operand to hold this input. unsigned OpNo; for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { if (InputUsed[OpNo] == Input) // This input vector is already an operand. break; if (InputUsed[OpNo] < 0) { // Create a new operand for this input vector. InputUsed[OpNo] = Input; break; } } if (OpNo >= array_lengthof(InputUsed)) { // More than two input vectors used! Give up on trying to create a // shuffle vector. Insert all elements into a BUILD_VECTOR instead. UseBuildVector = true; break; } // Add the mask index for the new shuffle vector. Mask.push_back(Idx + OpNo * NumLaneElems); } if (UseBuildVector) { SmallVector SVOps; for (unsigned i = 0; i != NumLaneElems; ++i) { // The mask element. This indexes into the input. int Idx = SVOp->getMaskElt(i+LaneStart); if (Idx < 0) { SVOps.push_back(DAG.getUNDEF(EltVT)); continue; } // The input vector this mask element indexes into. int Input = Idx / NumElems; // Turn the index into an offset from the start of the input vector. Idx -= Input * NumElems; // Extract the vector element by hand. SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SVOp->getOperand(Input), DAG.getIntPtrConstant(Idx))); } // Construct the output using a BUILD_VECTOR. Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, SVOps); } else if (InputUsed[0] < 0) { // No input vectors were used! The result is undefined. Output[l] = DAG.getUNDEF(NVT); } else { SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2), (InputUsed[0] % 2) * NumLaneElems, DAG, dl); // If only one input was used, use an undefined vector for the other. SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) : Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2), (InputUsed[1] % 2) * NumLaneElems, DAG, dl); // At least one input vector was used. Create a new shuffle vector. Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]); } Mask.clear(); } // Concatenate the result back return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]); } /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with /// 4 elements, and match them with several different shuffle types. static SDValue LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); SDLoc dl(SVOp); MVT VT = SVOp->getSimpleValueType(0); assert(VT.is128BitVector() && "Unsupported vector size"); std::pair Locs[4]; int Mask1[] = { -1, -1, -1, -1 }; SmallVector PermMask(SVOp->getMask().begin(), SVOp->getMask().end()); unsigned NumHi = 0; unsigned NumLo = 0; for (unsigned i = 0; i != 4; ++i) { int Idx = PermMask[i]; if (Idx < 0) { Locs[i] = std::make_pair(-1, -1); } else { assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); if (Idx < 4) { Locs[i] = std::make_pair(0, NumLo); Mask1[NumLo] = Idx; NumLo++; } else { Locs[i] = std::make_pair(1, NumHi); if (2+NumHi < 4) Mask1[2+NumHi] = Idx; NumHi++; } } } if (NumLo <= 2 && NumHi <= 2) { // If no more than two elements come from either vector. This can be // implemented with two shuffles. First shuffle gather the elements. // The second shuffle, which takes the first shuffle as both of its // vector operands, put the elements into the right order. V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); int Mask2[] = { -1, -1, -1, -1 }; for (unsigned i = 0; i != 4; ++i) if (Locs[i].first != -1) { unsigned Idx = (i < 2) ? 0 : 4; Idx += Locs[i].first * 2 + Locs[i].second; Mask2[i] = Idx; } return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); } if (NumLo == 3 || NumHi == 3) { // Otherwise, we must have three elements from one vector, call it X, and // one element from the other, call it Y. First, use a shufps to build an // intermediate vector with the one element from Y and the element from X // that will be in the same half in the final destination (the indexes don't // matter). Then, use a shufps to build the final vector, taking the half // containing the element from Y from the intermediate, and the other half // from X. if (NumHi == 3) { // Normalize it so the 3 elements come from V1. CommuteVectorShuffleMask(PermMask, 4); std::swap(V1, V2); } // Find the element from V2. unsigned HiIndex; for (HiIndex = 0; HiIndex < 3; ++HiIndex) { int Val = PermMask[HiIndex]; if (Val < 0) continue; if (Val >= 4) break; } Mask1[0] = PermMask[HiIndex]; Mask1[1] = -1; Mask1[2] = PermMask[HiIndex^1]; Mask1[3] = -1; V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); if (HiIndex >= 2) { Mask1[0] = PermMask[0]; Mask1[1] = PermMask[1]; Mask1[2] = HiIndex & 1 ? 6 : 4; Mask1[3] = HiIndex & 1 ? 4 : 6; return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); } Mask1[0] = HiIndex & 1 ? 2 : 0; Mask1[1] = HiIndex & 1 ? 0 : 2; Mask1[2] = PermMask[2]; Mask1[3] = PermMask[3]; if (Mask1[2] >= 0) Mask1[2] += 4; if (Mask1[3] >= 0) Mask1[3] += 4; return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); } // Break it into (shuffle shuffle_hi, shuffle_lo). int LoMask[] = { -1, -1, -1, -1 }; int HiMask[] = { -1, -1, -1, -1 }; int *MaskPtr = LoMask; unsigned MaskIdx = 0; unsigned LoIdx = 0; unsigned HiIdx = 2; for (unsigned i = 0; i != 4; ++i) { if (i == 2) { MaskPtr = HiMask; MaskIdx = 1; LoIdx = 0; HiIdx = 2; } int Idx = PermMask[i]; if (Idx < 0) { Locs[i] = std::make_pair(-1, -1); } else if (Idx < 4) { Locs[i] = std::make_pair(MaskIdx, LoIdx); MaskPtr[LoIdx] = Idx; LoIdx++; } else { Locs[i] = std::make_pair(MaskIdx, HiIdx); MaskPtr[HiIdx] = Idx; HiIdx++; } } SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); int MaskOps[] = { -1, -1, -1, -1 }; for (unsigned i = 0; i != 4; ++i) if (Locs[i].first != -1) MaskOps[i] = Locs[i].first * 4 + Locs[i].second; return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); } static bool MayFoldVectorLoad(SDValue V) { while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) V = V.getOperand(0); if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR && V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF) // BUILD_VECTOR (load), undef V = V.getOperand(0); return MayFoldLoad(V); } static SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); // Canonizalize to v2f64. V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); return DAG.getNode(ISD::BITCAST, dl, VT, getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, V1, DAG)); } static SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); assert(VT != MVT::v2i64 && "unsupported shuffle type"); if (HasSSE2 && VT == MVT::v2f64) return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1) return DAG.getNode(ISD::BITCAST, dl, VT, getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32, DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1), DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG)); } static SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); assert((VT == MVT::v4i32 || VT == MVT::v4f32) && "unsupported shuffle type"); if (V2.getOpcode() == ISD::UNDEF) V2 = V1; // v4i32 or v4f32 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); } static SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); unsigned NumElems = VT.getVectorNumElements(); // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second // operand of these instructions is only memory, so check if there's a // potencial load folding here, otherwise use SHUFPS or MOVSD to match the // same masks. bool CanFoldLoad = false; // Trivial case, when V2 comes from a load. if (MayFoldVectorLoad(V2)) CanFoldLoad = true; // When V1 is a load, it can be folded later into a store in isel, example: // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) // turns into: // (MOVLPSmr addr:$src1, VR128:$src2) // So, recognize this potential and also use MOVLPS or MOVLPD else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) CanFoldLoad = true; ShuffleVectorSDNode *SVOp = cast(Op); if (CanFoldLoad) { if (HasSSE2 && NumElems == 2) return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); if (NumElems == 4) // If we don't care about the second element, proceed to use movss. if (SVOp->getMaskElt(1) != -1) return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); } // movl and movlp will both match v2i64, but v2i64 is never matched by // movl earlier because we make it strict to avoid messing with the movlp load // folding logic (see the code above getMOVLP call). Match it here then, // this is horrible, but will stay like this until we move all shuffle // matching to x86 specific nodes. Note that for the 1st condition all // types are matched with movsd. if (HasSSE2) { // FIXME: isMOVLMask should be checked and matched before getMOVLP, // as to remove this logic from here, as much as possible if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT)) return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); } assert(VT != MVT::v4i32 && "unsupported shuffle type"); // Invert the operand order and use SHUFPS to match it. return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1, getShuffleSHUFImmediate(SVOp), DAG); } static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index, SelectionDAG &DAG) { SDLoc dl(Load); MVT VT = Load->getSimpleValueType(0); MVT EVT = VT.getVectorElementType(); SDValue Addr = Load->getOperand(1); SDValue NewAddr = DAG.getNode( ISD::ADD, dl, Addr.getSimpleValueType(), Addr, DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType())); SDValue NewLoad = DAG.getLoad(EVT, dl, Load->getChain(), NewAddr, DAG.getMachineFunction().getMachineMemOperand( Load->getMemOperand(), 0, EVT.getStoreSize())); return NewLoad; } // It is only safe to call this function if isINSERTPSMask is true for // this shufflevector mask. static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl, SelectionDAG &DAG) { // Generate an insertps instruction when inserting an f32 from memory onto a // v4f32 or when copying a member from one v4f32 to another. // We also use it for transferring i32 from one register to another, // since it simply copies the same bits. // If we're transferring an i32 from memory to a specific element in a // register, we output a generic DAG that will match the PINSRD // instruction. MVT VT = SVOp->getSimpleValueType(0); MVT EVT = VT.getVectorElementType(); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); auto Mask = SVOp->getMask(); assert((VT == MVT::v4f32 || VT == MVT::v4i32) && "unsupported vector type for insertps/pinsrd"); auto FromV1Predicate = [](const int &i) { return i < 4 && i > -1; }; auto FromV2Predicate = [](const int &i) { return i >= 4; }; int FromV1 = std::count_if(Mask.begin(), Mask.end(), FromV1Predicate); SDValue From; SDValue To; unsigned DestIndex; if (FromV1 == 1) { From = V1; To = V2; DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV1Predicate) - Mask.begin(); // If we have 1 element from each vector, we have to check if we're // changing V1's element's place. If so, we're done. Otherwise, we // should assume we're changing V2's element's place and behave // accordingly. int FromV2 = std::count_if(Mask.begin(), Mask.end(), FromV2Predicate); assert(DestIndex <= INT32_MAX && "truncated destination index"); if (FromV1 == FromV2 && static_cast(DestIndex) == Mask[DestIndex] % 4) { From = V2; To = V1; DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin(); } } else { assert(std::count_if(Mask.begin(), Mask.end(), FromV2Predicate) == 1 && "More than one element from V1 and from V2, or no elements from one " "of the vectors. This case should not have returned true from " "isINSERTPSMask"); From = V2; To = V1; DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin(); } // Get an index into the source vector in the range [0,4) (the mask is // in the range [0,8) because it can address V1 and V2) unsigned SrcIndex = Mask[DestIndex] % 4; if (MayFoldLoad(From)) { // Trivial case, when From comes from a load and is only used by the // shuffle. Make it use insertps from the vector that we need from that // load. SDValue NewLoad = NarrowVectorLoadToElement(cast(From), SrcIndex, DAG); if (!NewLoad.getNode()) return SDValue(); if (EVT == MVT::f32) { // Create this as a scalar to vector to match the instruction pattern. SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, NewLoad); SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4); return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, LoadScalarToVector, InsertpsMask); } else { // EVT == MVT::i32 // If we're getting an i32 from memory, use an INSERT_VECTOR_ELT // instruction, to match the PINSRD instruction, which loads an i32 to a // certain vector element. return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, To, NewLoad, DAG.getConstant(DestIndex, MVT::i32)); } } // Vector-element-to-vector SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4 | SrcIndex << 6); return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, From, InsertpsMask); } // Reduce a vector shuffle to zext. static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { // PMOVZX is only available from SSE41. if (!Subtarget->hasSSE41()) return SDValue(); MVT VT = Op.getSimpleValueType(); // Only AVX2 support 256-bit vector integer extending. if (!Subtarget->hasInt256() && VT.is256BitVector()) return SDValue(); ShuffleVectorSDNode *SVOp = cast(Op); SDLoc DL(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); unsigned NumElems = VT.getVectorNumElements(); // Extending is an unary operation and the element type of the source vector // won't be equal to or larger than i64. if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() || VT.getVectorElementType() == MVT::i64) return SDValue(); // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4. unsigned Shift = 1; // Start from 2, i.e. 1 << 1. while ((1U << Shift) < NumElems) { if (SVOp->getMaskElt(1U << Shift) == 1) break; Shift += 1; // The maximal ratio is 8, i.e. from i8 to i64. if (Shift > 3) return SDValue(); } // Check the shuffle mask. unsigned Mask = (1U << Shift) - 1; for (unsigned i = 0; i != NumElems; ++i) { int EltIdx = SVOp->getMaskElt(i); if ((i & Mask) != 0 && EltIdx != -1) return SDValue(); if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift)) return SDValue(); } unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift; MVT NeVT = MVT::getIntegerVT(NBits); MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift); if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT)) return SDValue(); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::VZEXT, DL, NVT, V1)); } static SDValue NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(Op); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); if (isZeroShuffle(SVOp)) return getZeroVector(VT, Subtarget, DAG, dl); // Handle splat operations if (SVOp->isSplat()) { // Use vbroadcast whenever the splat comes from a foldable load SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG); if (Broadcast.getNode()) return Broadcast; } // Check integer expanding shuffles. SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG); if (NewOp.getNode()) return NewOp; // If the shuffle can be profitably rewritten as a narrower shuffle, then // do it! if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 || VT == MVT::v32i8) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); } else if (VT.is128BitVector() && Subtarget->hasSSE2()) { // FIXME: Figure out a cleaner way to do this. if (ISD::isBuildVectorAllZeros(V2.getNode())) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) { MVT NewVT = NewOp.getSimpleValueType(); if (isCommutedMOVLMask(cast(NewOp)->getMask(), NewVT, true, false)) return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget, dl); } } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) { MVT NewVT = NewOp.getSimpleValueType(); if (isMOVLMask(cast(NewOp)->getMask(), NewVT)) return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget, dl); } } } return SDValue(); } SDValue X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *SVOp = cast(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); unsigned NumElems = VT.getVectorNumElements(); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; bool V1IsSplat = false; bool V2IsSplat = false; bool HasSSE2 = Subtarget->hasSSE2(); bool HasFp256 = Subtarget->hasFp256(); bool HasInt256 = Subtarget->hasInt256(); MachineFunction &MF = DAG.getMachineFunction(); bool OptForSize = MF.getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); // Check if we should use the experimental vector shuffle lowering. If so, // delegate completely to that code path. if (ExperimentalVectorShuffleLowering) return lowerVectorShuffle(Op, Subtarget, DAG); assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); if (V1IsUndef && V2IsUndef) return DAG.getUNDEF(VT); // When we create a shuffle node we put the UNDEF node to second operand, // but in some cases the first operand may be transformed to UNDEF. // In this case we should just commute the node. if (V1IsUndef) return DAG.getCommutedVectorShuffle(*SVOp); // Vector shuffle lowering takes 3 steps: // // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable // narrowing and commutation of operands should be handled. // 2) Matching of shuffles with known shuffle masks to x86 target specific // shuffle nodes. // 3) Rewriting of unmatched masks into new generic shuffle operations, // so the shuffle can be broken into other shuffles and the legalizer can // try the lowering again. // // The general idea is that no vector_shuffle operation should be left to // be matched during isel, all of them must be converted to a target specific // node here. // Normalize the input vectors. Here splats, zeroed vectors, profitable // narrowing and commutation of operands should be handled. The actual code // doesn't include all of those, work in progress... SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG); if (NewOp.getNode()) return NewOp; SmallVector M(SVOp->getMask().begin(), SVOp->getMask().end()); // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and // unpckh_undef). Only use pshufd if speed is more important than size. if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() && V2IsUndef && MayFoldVectorLoad(V1)) return getMOVDDup(Op, dl, V1, DAG); if (isMOVHLPS_v_undef_Mask(M, VT)) return getMOVHighToLow(Op, dl, DAG); // Use to match splats if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef && (VT == MVT::v2f64 || VT == MVT::v2i64)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); if (isPSHUFDMask(M, VT)) { // The actual implementation will match the mask in the if above and then // during isel it can match several different instructions, not only pshufd // as its name says, sad but true, emulate the behavior for now... if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); unsigned TargetMask = getShuffleSHUFImmediate(SVOp); if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64)) return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1, TargetMask, DAG); return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1, TargetMask, DAG); } if (isPALIGNRMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2, getShufflePALIGNRImmediate(SVOp), DAG); if (isVALIGNMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::VALIGN, dl, VT, V1, V2, getShuffleVALIGNImmediate(SVOp), DAG); // Check if this can be converted into a logical shift. bool isLeft = false; unsigned ShAmt = 0; SDValue ShVal; bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); if (isShift && ShVal.hasOneUse()) { // If the shifted value has multiple uses, it may be cheaper to use // v_set0 + movlhps or movhlps, etc. MVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } if (isMOVLMask(M, VT)) { if (ISD::isBuildVectorAllZeros(V1.getNode())) return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); if (!isMOVLPMask(M, VT)) { if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); if (VT == MVT::v4i32 || VT == MVT::v4f32) return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); } } // FIXME: fold these into legal mask. if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256)) return getMOVLowToHigh(Op, dl, DAG, HasSSE2); if (isMOVHLPSMask(M, VT)) return getMOVHighToLow(Op, dl, DAG); if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget)) return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); if (isMOVLPMask(M, VT)) return getMOVLP(Op, dl, DAG, HasSSE2); if (ShouldXformToMOVHLPS(M, VT) || ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT)) return DAG.getCommutedVectorShuffle(*SVOp); if (isShift) { // No better options. Use a vshldq / vsrldq. MVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } bool Commuted = false; // FIXME: This should also accept a bitcast of a splat? Be careful, not // 1,1,1,1 -> v8i16 though. BitVector UndefElements; if (auto *BVOp = dyn_cast(V1.getNode())) if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none()) V1IsSplat = true; if (auto *BVOp = dyn_cast(V2.getNode())) if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none()) V2IsSplat = true; // Canonicalize the splat or undef, if present, to be on the RHS. if (!V2IsUndef && V1IsSplat && !V2IsSplat) { CommuteVectorShuffleMask(M, NumElems); std::swap(V1, V2); std::swap(V1IsSplat, V2IsSplat); Commuted = true; } if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) { // Shuffling low element of v1 into undef, just return v1. if (V2IsUndef) return V1; // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which // the instruction selector will not match, so get a canonical MOVL with // swapped operands to undo the commute. return getMOVL(DAG, dl, VT, V2, V1); } if (isUNPCKLMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); if (isUNPCKHMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); if (V2IsSplat) { // Normalize mask so all entries that point to V2 points to its first // element then try to match unpck{h|l} again. If match, return a // new vector_shuffle with the corrected mask.p SmallVector NewMask(M.begin(), M.end()); NormalizeMask(NewMask, NumElems); if (isUNPCKLMask(NewMask, VT, HasInt256, true)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); if (isUNPCKHMask(NewMask, VT, HasInt256, true)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); } if (Commuted) { // Commute is back and try unpck* again. // FIXME: this seems wrong. CommuteVectorShuffleMask(M, NumElems); std::swap(V1, V2); std::swap(V1IsSplat, V2IsSplat); if (isUNPCKLMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); if (isUNPCKHMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); } // Normalize the node to match x86 shuffle ops if needed if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true))) return DAG.getCommutedVectorShuffle(*SVOp); // The checks below are all present in isShuffleMaskLegal, but they are // inlined here right now to enable us to directly emit target specific // nodes, and remove one by one until they don't return Op anymore. if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && SVOp->getSplatIndex() == 0 && V2IsUndef) { if (VT == MVT::v2f64 || VT == MVT::v2i64) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); } if (isPSHUFHWMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, getShufflePSHUFHWImmediate(SVOp), DAG); if (isPSHUFLWMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, getShufflePSHUFLWImmediate(SVOp), DAG); unsigned MaskValue; if (isBlendMask(M, VT, Subtarget->hasSSE41(), Subtarget->hasInt256(), &MaskValue)) return LowerVECTOR_SHUFFLEtoBlend(SVOp, MaskValue, Subtarget, DAG); if (isSHUFPMask(M, VT)) return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2, getShuffleSHUFImmediate(SVOp), DAG); if (isUNPCKL_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); if (isUNPCKH_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); //===--------------------------------------------------------------------===// // Generate target specific nodes for 128 or 256-bit shuffles only // supported in the AVX instruction set. // // Handle VMOVDDUPY permutations if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG); // Handle VPERMILPS/D* permutations if (isVPERMILPMask(M, VT)) { if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32) return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, getShuffleSHUFImmediate(SVOp), DAG); return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1, getShuffleSHUFImmediate(SVOp), DAG); } unsigned Idx; if (VT.is512BitVector() && isINSERT64x4Mask(M, VT, &Idx)) return Insert256BitVector(V1, Extract256BitVector(V2, 0, DAG, dl), Idx*(NumElems/2), DAG, dl); // Handle VPERM2F128/VPERM2I128 permutations if (isVPERM2X128Mask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1, V2, getShuffleVPERM2X128Immediate(SVOp), DAG); if (Subtarget->hasSSE41() && isINSERTPSMask(M, VT)) return getINSERTPS(SVOp, dl, DAG); unsigned Imm8; if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8)) return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG); if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) || VT.is512BitVector()) { MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems); SmallVector permclMask; for (unsigned i = 0; i != NumElems; ++i) { permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT)); } SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, permclMask); if (V2IsUndef) // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32 return DAG.getNode(X86ISD::VPERMV, dl, VT, DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1); return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1, DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2); } //===--------------------------------------------------------------------===// // Since no target specific shuffle was selected for this generic one, // lower it into other known shuffles. FIXME: this isn't true yet, but // this is the plan. // // Handle v8i16 specifically since SSE can do byte extraction and insertion. if (VT == MVT::v8i16) { SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG); if (NewOp.getNode()) return NewOp; } if (VT == MVT::v16i16 && Subtarget->hasInt256()) { SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG); if (NewOp.getNode()) return NewOp; } if (VT == MVT::v16i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG); if (NewOp.getNode()) return NewOp; } if (VT == MVT::v32i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG); if (NewOp.getNode()) return NewOp; } // Handle all 128-bit wide vectors with 4 elements, and match them with // several different shuffle types. if (NumElems == 4 && VT.is128BitVector()) return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG); // Handle general 256-bit shuffles if (VT.is256BitVector()) return LowerVECTOR_SHUFFLE_256(SVOp, DAG); return SDValue(); } // This function assumes its argument is a BUILD_VECTOR of constants or // undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is // true. static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector, unsigned &MaskValue) { MaskValue = 0; unsigned NumElems = BuildVector->getNumOperands(); // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. unsigned NumLanes = (NumElems - 1) / 8 + 1; unsigned NumElemsInLane = NumElems / NumLanes; // Blend for v16i16 should be symetric for the both lanes. for (unsigned i = 0; i < NumElemsInLane; ++i) { SDValue EltCond = BuildVector->getOperand(i); SDValue SndLaneEltCond = (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond; int Lane1Cond = -1, Lane2Cond = -1; if (isa(EltCond)) Lane1Cond = !isZero(EltCond); if (isa(SndLaneEltCond)) Lane2Cond = !isZero(SndLaneEltCond); if (Lane1Cond == Lane2Cond || Lane2Cond < 0) // Lane1Cond != 0, means we want the first argument. // Lane1Cond == 0, means we want the second argument. // The encoding of this argument is 0 for the first argument, 1 // for the second. Therefore, invert the condition. MaskValue |= !Lane1Cond << i; else if (Lane1Cond < 0) MaskValue |= !Lane2Cond << i; else return false; } return true; } /// \brief Try to lower a VSELECT instruction to an immediate-controlled blend /// instruction. static SDValue lowerVSELECTtoBLENDI(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Cond = Op.getOperand(0); SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); unsigned NumElems = VT.getVectorNumElements(); // There is no blend with immediate in AVX-512. if (VT.is512BitVector()) return SDValue(); if (!Subtarget->hasSSE41() || EltVT == MVT::i8) return SDValue(); if (!Subtarget->hasInt256() && VT == MVT::v16i16) return SDValue(); if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) return SDValue(); // Check the mask for BLEND and build the value. unsigned MaskValue = 0; if (!BUILD_VECTORtoBlendMask(cast(Cond), MaskValue)) return SDValue(); // Convert i32 vectors to floating point if it is not AVX2. // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors. MVT BlendVT = VT; if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) { BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()), NumElems); LHS = DAG.getNode(ISD::BITCAST, dl, VT, LHS); RHS = DAG.getNode(ISD::BITCAST, dl, VT, RHS); } SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, LHS, RHS, DAG.getConstant(MaskValue, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Ret); } SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { // A vselect where all conditions and data are constants can be optimized into // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) && ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) && ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode())) return SDValue(); SDValue BlendOp = lowerVSELECTtoBLENDI(Op, Subtarget, DAG); if (BlendOp.getNode()) return BlendOp; // Some types for vselect were previously set to Expand, not Legal or // Custom. Return an empty SDValue so we fall-through to Expand, after // the Custom lowering phase. MVT VT = Op.getSimpleValueType(); switch (VT.SimpleTy) { default: break; case MVT::v8i16: case MVT::v16i16: if (Subtarget->hasBWI() && Subtarget->hasVLX()) break; return SDValue(); } // We couldn't create a "Blend with immediate" node. // This node should still be legal, but we'll have to emit a blendv* // instruction. return Op; } static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) return SDValue(); if (VT.getSizeInBits() == 8) { SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT.getSizeInBits() == 16) { unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); // If Idx is 0, it's cheaper to do a move instead of a pextrw. if (Idx == 0) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), Op.getOperand(1))); SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT == MVT::f32) { // EXTRACTPS outputs to a GPR32 register which will require a movd to copy // the result back to FR32 register. It's only worth matching if the // result has a single use which is a store or a bitcast to i32. And in // the case of a store, it's not worth it if the index is a constant 0, // because a MOVSSmr can be used instead, which is smaller and faster. if (!Op.hasOneUse()) return SDValue(); SDNode *User = *Op.getNode()->use_begin(); if ((User->getOpcode() != ISD::STORE || (isa(Op.getOperand(1)) && cast(Op.getOperand(1))->isNullValue())) && (User->getOpcode() != ISD::BITCAST || User->getValueType(0) != MVT::i32)) return SDValue(); SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), Op.getOperand(1)); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); } if (VT == MVT::i32 || VT == MVT::i64) { // ExtractPS/pextrq works with constant index. if (isa(Op.getOperand(1))) return Op; } return SDValue(); } /// Extract one bit from mask vector, like v16i1 or v8i1. /// AVX-512 feature. SDValue X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDLoc dl(Vec); MVT VecVT = Vec.getSimpleValueType(); SDValue Idx = Op.getOperand(1); MVT EltVT = Op.getSimpleValueType(); assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector"); // variable index can't be handled in mask registers, // extend vector to VR512 if (!isa(Idx)) { MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32); SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtVT.getVectorElementType(), Ext, Idx); return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); } unsigned IdxVal = cast(Idx)->getZExtValue(); const TargetRegisterClass* rc = getRegClassFor(VecVT); unsigned MaxSift = rc->getSize()*8 - 1; Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec, DAG.getConstant(MaxSift - IdxVal, MVT::i8)); Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec, DAG.getConstant(MaxSift, MVT::i8)); return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec, DAG.getIntPtrConstant(0)); } SDValue X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Vec = Op.getOperand(0); MVT VecVT = Vec.getSimpleValueType(); SDValue Idx = Op.getOperand(1); if (Op.getSimpleValueType() == MVT::i1) return ExtractBitFromMaskVector(Op, DAG); if (!isa(Idx)) { if (VecVT.is512BitVector() || (VecVT.is256BitVector() && Subtarget->hasInt256() && VecVT.getVectorElementType().getSizeInBits() == 32)) { MVT MaskEltVT = MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits()); MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() / MaskEltVT.getSizeInBits()); Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT); SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT, getZeroVector(MaskVT, Subtarget, DAG, dl), Idx, DAG.getConstant(0, getPointerTy())); SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm, DAG.getConstant(0, getPointerTy())); } return SDValue(); } // If this is a 256-bit vector result, first extract the 128-bit vector and // then extract the element from the 128-bit vector. if (VecVT.is256BitVector() || VecVT.is512BitVector()) { unsigned IdxVal = cast(Idx)->getZExtValue(); // Get the 128-bit vector. Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); MVT EltVT = VecVT.getVectorElementType(); unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); //if (IdxVal >= NumElems/2) // IdxVal -= NumElems/2; IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk; return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, DAG.getConstant(IdxVal, MVT::i32)); } assert(VecVT.is128BitVector() && "Unexpected vector length"); if (Subtarget->hasSSE41()) { SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); if (Res.getNode()) return Res; } MVT VT = Op.getSimpleValueType(); // TODO: handle v16i8. if (VT.getSizeInBits() == 16) { SDValue Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Vec), Op.getOperand(1))); // Transform it so it match pextrw which produces a 32-bit result. MVT EltVT = MVT::i32; SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT.getSizeInBits() == 32) { unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // SHUFPS the element to the lowest double word, then movss. int Mask[4] = { static_cast(Idx), -1, -1, -1 }; MVT VVT = Op.getOperand(0).getSimpleValueType(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0)); } if (VT.getSizeInBits() == 64) { // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught // to match extract_elt for f64. unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // UNPCKHPD the element to the lowest double word, then movsd. // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. int Mask[2] = { 1, -1 }; MVT VVT = Op.getOperand(0).getSimpleValueType(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0)); } return SDValue(); } /// Insert one bit to mask vector, like v16i1 or v8i1. /// AVX-512 feature. SDValue X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Vec = Op.getOperand(0); SDValue Elt = Op.getOperand(1); SDValue Idx = Op.getOperand(2); MVT VecVT = Vec.getSimpleValueType(); if (!isa(Idx)) { // Non constant index. Extend source and destination, // insert element and then truncate the result. MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32); MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32); SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT, DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec), DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx); return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp); } unsigned IdxVal = cast(Idx)->getZExtValue(); SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt); if (Vec.getOpcode() == ISD::UNDEF) return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec, DAG.getConstant(IdxVal, MVT::i8)); const TargetRegisterClass* rc = getRegClassFor(VecVT); unsigned MaxSift = rc->getSize()*8 - 1; EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec, DAG.getConstant(MaxSift, MVT::i8)); EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec, DAG.getConstant(MaxSift - IdxVal, MVT::i8)); return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec); } SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); if (EltVT == MVT::i1) return InsertBitToMaskVector(Op, DAG); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); if (!isa(N2)) return SDValue(); auto *N2C = cast(N2); unsigned IdxVal = N2C->getZExtValue(); // If the vector is wider than 128 bits, extract the 128-bit subvector, insert // into that, and then insert the subvector back into the result. if (VT.is256BitVector() || VT.is512BitVector()) { // Get the desired 128-bit vector half. SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); // Insert the element into the desired half. unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits(); unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128; V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, DAG.getConstant(IdxIn128, MVT::i32)); // Insert the changed part back to the 256-bit vector return Insert128BitVector(N0, V, IdxVal, DAG, dl); } assert(VT.is128BitVector() && "Only 128-bit vector types should be left!"); if (Subtarget->hasSSE41()) { if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) { unsigned Opc; if (VT == MVT::v8i16) { Opc = X86ISD::PINSRW; } else { assert(VT == MVT::v16i8); Opc = X86ISD::PINSRB; } // Transform it so it match pinsr{b,w} which expects a GR32 as its second // argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(IdxVal); return DAG.getNode(Opc, dl, VT, N0, N1, N2); } if (EltVT == MVT::f32) { // Bits [7:6] of the constant are the source select. This will always be // zero here. The DAG Combiner may combine an extract_elt index into // these // bits. For example (insert (extract, 3), 2) could be matched by // putting // the '3' into bits [7:6] of X86ISD::INSERTPS. // Bits [5:4] of the constant are the destination select. This is the // value of the incoming immediate. // Bits [3:0] of the constant are the zero mask. The DAG Combiner may // combine either bitwise AND or insert of float 0.0 to set these bits. N2 = DAG.getIntPtrConstant(IdxVal << 4); // Create this as a scalar to vector.. N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); } if (EltVT == MVT::i32 || EltVT == MVT::i64) { // PINSR* works with constant index. return Op; } } if (EltVT == MVT::i8) return SDValue(); if (EltVT.getSizeInBits() == 16) { // Transform it so it match pinsrw which expects a 16-bit value in a GR32 // as its second argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(IdxVal); return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); } return SDValue(); } static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); MVT OpVT = Op.getSimpleValueType(); // If this is a 256-bit vector result, first insert into a 128-bit // vector and then insert into the 256-bit vector. if (!OpVT.is128BitVector()) { // Insert into a 128-bit vector. unsigned SizeFactor = OpVT.getSizeInBits()/128; MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), OpVT.getVectorNumElements() / SizeFactor); Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); // Insert the 128-bit vector. return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); } if (OpVT == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); assert(OpVT.is128BitVector() && "Expected an SSE type!"); return DAG.getNode(ISD::BITCAST, dl, OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); } // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in // a simple subregister reference or explicit instructions to grab // upper bits of a vector. static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); SDValue In = Op.getOperand(0); SDValue Idx = Op.getOperand(1); unsigned IdxVal = cast(Idx)->getZExtValue(); MVT ResVT = Op.getSimpleValueType(); MVT InVT = In.getSimpleValueType(); if (Subtarget->hasFp256()) { if (ResVT.is128BitVector() && (InVT.is256BitVector() || InVT.is512BitVector()) && isa(Idx)) { return Extract128BitVector(In, IdxVal, DAG, dl); } if (ResVT.is256BitVector() && InVT.is512BitVector() && isa(Idx)) { return Extract256BitVector(In, IdxVal, DAG, dl); } } return SDValue(); } // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a // simple superregister reference or explicit instructions to insert // the upper bits of a vector. static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (Subtarget->hasFp256()) { SDLoc dl(Op.getNode()); SDValue Vec = Op.getNode()->getOperand(0); SDValue SubVec = Op.getNode()->getOperand(1); SDValue Idx = Op.getNode()->getOperand(2); if ((Op.getNode()->getSimpleValueType(0).is256BitVector() || Op.getNode()->getSimpleValueType(0).is512BitVector()) && SubVec.getNode()->getSimpleValueType(0).is128BitVector() && isa(Idx)) { unsigned IdxVal = cast(Idx)->getZExtValue(); return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); } if (Op.getNode()->getSimpleValueType(0).is512BitVector() && SubVec.getNode()->getSimpleValueType(0).is256BitVector() && isa(Idx)) { unsigned IdxVal = cast(Idx)->getZExtValue(); return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl); } } return SDValue(); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOV32ri. SDValue X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = DAG.getTarget().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), CP->getAlignment(), CP->getOffset(), OpFlag); SDLoc DL(CP); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (OpFlag) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { JumpTableSDNode *JT = cast(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = DAG.getTarget().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), OpFlag); SDLoc DL(JT); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (OpFlag) Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()), Result); return Result; } SDValue X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { const char *Sym = cast(Op)->getSymbol(); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = DAG.getTarget().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) { if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) OpFlag = X86II::MO_GOTPCREL; WrapperKind = X86ISD::WrapperRIP; } else if (Subtarget->isPICStyleGOT()) { OpFlag = X86II::MO_GOT; } else if (Subtarget->isPICStyleStubPIC()) { OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; } else if (Subtarget->isPICStyleStubNoDynamic()) { OpFlag = X86II::MO_DARWIN_NONLAZY; } SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); SDLoc DL(Op); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ && !Subtarget->is64Bit()) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()), Result); } // For symbols that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlag)) Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); return Result; } SDValue X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { // Create the TargetBlockAddressAddress node. unsigned char OpFlags = Subtarget->ClassifyBlockAddressReference(); CodeModel::Model M = DAG.getTarget().getCodeModel(); const BlockAddress *BA = cast(Op)->getBlockAddress(); int64_t Offset = cast(Op)->getOffset(); SDLoc dl(Op); SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset, OpFlags); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl, int64_t Offset, SelectionDAG &DAG) const { // Create the TargetGlobalAddress node, folding in the constant // offset if it is legal. unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()); CodeModel::Model M = DAG.getTarget().getCodeModel(); SDValue Result; if (OpFlags == X86II::MO_NO_FLAG && X86::isOffsetSuitableForCodeModel(Offset, M)) { // A direct static reference to a global. Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); Offset = 0; } else { Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); } if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), Result); } // For globals that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlags)) Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, DAG.getConstant(Offset, getPointerTy())); return Result; } SDValue X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalValue *GV = cast(Op)->getGlobal(); int64_t Offset = cast(Op)->getOffset(); return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); } static SDValue GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, unsigned char OperandFlags, bool LocalDynamic = false) { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDLoc dl(GA); SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR : X86ISD::TLSADDR; if (InFlag) { SDValue Ops[] = { Chain, TGA, *InFlag }; Chain = DAG.getNode(CallType, dl, NodeTys, Ops); } else { SDValue Ops[] = { Chain, TGA }; Chain = DAG.getNode(CallType, dl, NodeTys, Ops); } // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. MFI->setAdjustsStack(true); MFI->setHasCalls(true); SDValue Flag = Chain.getValue(1); return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit static SDValue LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { SDValue InFlag; SDLoc dl(GA); // ? function entry point might be better SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit static SDValue LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, X86II::MO_TLSGD); } static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, bool is64Bit) { SDLoc dl(GA); // Get the start address of the TLS block for this module. X86MachineFunctionInfo* MFI = DAG.getMachineFunction() .getInfo(); MFI->incNumLocalDynamicTLSAccesses(); SDValue Base; if (is64Bit) { Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, X86II::MO_TLSLD, /*LocalDynamic=*/true); } else { SDValue InFlag; SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSLDM, /*LocalDynamic=*/true); } // Note: the CleanupLocalDynamicTLSPass will remove redundant computations // of Base. // Build x@dtpoff. unsigned char OperandFlags = X86II::MO_DTPOFF; unsigned WrapperKind = X86ISD::Wrapper; SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); // Add x@dtpoff with the base. return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); } // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, TLSModel::Model model, bool is64Bit, bool isPIC) { SDLoc dl(GA); // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), is64Bit ? 257 : 256)); SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0), MachinePointerInfo(Ptr), false, false, false, 0); unsigned char OperandFlags = 0; // Most TLS accesses are not RIP relative, even on x86-64. One exception is // initialexec. unsigned WrapperKind = X86ISD::Wrapper; if (model == TLSModel::LocalExec) { OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; } else if (model == TLSModel::InitialExec) { if (is64Bit) { OperandFlags = X86II::MO_GOTTPOFF; WrapperKind = X86ISD::WrapperRIP; } else { OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; } } else { llvm_unreachable("Unexpected model"); } // emit "addl x@ntpoff,%eax" (local exec) // or "addl x@indntpoff,%eax" (initial exec) // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); if (model == TLSModel::InitialExec) { if (isPIC && !is64Bit) { Offset = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Offset); } Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, MachinePointerInfo::getGOT(), false, false, false, 0); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); const GlobalValue *GV = GA->getGlobal(); if (Subtarget->isTargetELF()) { TLSModel::Model model = DAG.getTarget().getTLSModel(GV); switch (model) { case TLSModel::GeneralDynamic: if (Subtarget->is64Bit()) return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); case TLSModel::LocalDynamic: return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(), Subtarget->is64Bit()); case TLSModel::InitialExec: case TLSModel::LocalExec: return LowerToTLSExecModel( GA, DAG, getPointerTy(), model, Subtarget->is64Bit(), DAG.getTarget().getRelocationModel() == Reloc::PIC_); } llvm_unreachable("Unknown TLS model."); } if (Subtarget->isTargetDarwin()) { // Darwin only has one model of TLS. Lower to that. unsigned char OpFlag = 0; unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? X86ISD::WrapperRIP : X86ISD::Wrapper; // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) && !Subtarget->is64Bit(); if (PIC32) OpFlag = X86II::MO_TLVP_PIC_BASE; else OpFlag = X86II::MO_TLVP; SDLoc DL(Op); SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, GA->getValueType(0), GA->getOffset(), OpFlag); SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC32, the address is actually $g + Offset. if (PIC32) Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy()), Offset); // Lowering the machine isd will make sure everything is in the right // location. SDValue Chain = DAG.getEntryNode(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Args[] = { Chain, Offset }; Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args); // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setAdjustsStack(true); // And our return value (tls address) is in the standard call return value // location. unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(), Chain.getValue(1)); } if (Subtarget->isTargetKnownWindowsMSVC() || Subtarget->isTargetWindowsGNU()) { // Just use the implicit TLS architecture // Need to generate someting similar to: // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage // ; from TEB // mov ecx, dword [rel _tls_index]: Load index (from C runtime) // mov rcx, qword [rdx+rcx*8] // mov eax, .tls$:tlsvar // [rax+rcx] contains the address // Windows 64bit: gs:0x58 // Windows 32bit: fs:__tls_array SDLoc dl(GA); SDValue Chain = DAG.getEntryNode(); // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly // use its literal value of 0x2C. Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() ? Type::getInt8PtrTy(*DAG.getContext(), 256) : Type::getInt32PtrTy(*DAG.getContext(), 257)); SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) : (Subtarget->isTargetWindowsGNU() ? DAG.getIntPtrConstant(0x2C) : DAG.getExternalSymbol("_tls_array", getPointerTy())); SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray, MachinePointerInfo(Ptr), false, false, false, 0); // Load the _tls_index variable SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy()); if (Subtarget->is64Bit()) IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain, IDX, MachinePointerInfo(), MVT::i32, false, false, false, 0); else IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(), false, false, false, 0); SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()), getPointerTy()); IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale); SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX); res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(), false, false, false, 0); // Get the offset of start of .tls section SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), X86II::MO_SECREL); SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA); // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset); } llvm_unreachable("TLS not implemented for this target."); } /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values /// and take a 2 x i32 value to shift plus a shift amount. static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); MVT VT = Op.getSimpleValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away // during isel. SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits - 1, MVT::i8)); SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : DAG.getConstant(0, VT); SDValue Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); } // If the shift amount is larger or equal than the width of a part we can't // rely on the results of shld/shrd. Insert a test and select the appropriate // values for large shift amounts. SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits, MVT::i8)); SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, AndNode, DAG.getConstant(0, MVT::i8)); SDValue Hi, Lo; SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; if (Op.getOpcode() == ISD::SHL_PARTS) { Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); } else { Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); } SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { MVT SrcVT = Op.getOperand(0).getSimpleValueType(); SDLoc dl(Op); if (SrcVT.isVector()) { if (SrcVT.getVectorElementType() == MVT::i1) { MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements()); return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Op.getOperand(0))); } return SDValue(); } assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); // These are really Legal; return the operand so the caller accepts it as // Legal. if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) return Op; if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && Subtarget->is64Bit()) { return Op; } unsigned Size = SrcVT.getSizeInBits()/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, 0); return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); } SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, SelectionDAG &DAG) const { // Build the FILD SDLoc DL(Op); SDVTList Tys; bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); if (useSSE) Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); else Tys = DAG.getVTList(Op.getValueType(), MVT::Other); unsigned ByteSize = SrcVT.getSizeInBits()/8; FrameIndexSDNode *FI = dyn_cast(StackSlot); MachineMemOperand *MMO; if (FI) { int SSFI = FI->getIndex(); MMO = DAG.getMachineFunction() .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOLoad, ByteSize, ByteSize); } else { MMO = cast(StackSlot)->getMemOperand(); StackSlot = StackSlot.getOperand(1); } SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, DL, Tys, Ops, SrcVT, MMO); if (useSSE) { Chain = Result.getValue(1); SDValue InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); unsigned SSFISize = Op.getValueType().getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys = DAG.getVTList(MVT::Other); SDValue Ops[] = { Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag }; MachineMemOperand *MMO = DAG.getMachineFunction() .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, SSFISize, SSFISize); Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, Ops, Op.getValueType(), MMO); Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, false, 0); } return Result; } // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const { // This algorithm is not obvious. Here it is what we're trying to output: /* movq %rax, %xmm0 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } #ifdef __SSE3__ haddpd %xmm0, %xmm0 #else pshufd $0x4e, %xmm0, %xmm1 addpd %xmm1, %xmm0 #endif */ SDLoc dl(Op); LLVMContext *Context = DAG.getContext(); // Build some magic constants. static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; Constant *C0 = ConstantDataVector::get(*Context, CV0); SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); SmallVector CV1; CV1.push_back( ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 0x4330000000000000ULL)))); CV1.push_back( ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 0x4530000000000000ULL)))); Constant *C1 = ConstantVector::get(CV1); SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); // Load the 64-bit value into an XMM register. SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Op.getOperand(0)); SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1), CLod0); SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1); SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); SDValue Result; if (Subtarget->hasSSE3()) { // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); } else { SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub); SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, S2F, 0x4E, DAG); Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle), Sub); } return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, DAG.getIntPtrConstant(0)); } // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // FP constant to bias correct the final result. SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), MVT::f64); // Load the 32-bit value into an XMM register. SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Op.getOperand(0)); // Zero out the upper parts of the register. Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), DAG.getIntPtrConstant(0)); // Or the load with the bias. SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), DAG.getIntPtrConstant(0)); // Subtract the bias. SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); // Handle final rounding. EVT DestVT = Op.getValueType(); if (DestVT.bitsLT(MVT::f64)) return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, DAG.getIntPtrConstant(0)); if (DestVT.bitsGT(MVT::f64)) return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); // Handle final rounding. return Sub; } static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG, const X86Subtarget &Subtarget) { // The algorithm is the following: // #ifdef __SSE4_1__ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), // (uint4) 0x53000000, 0xaa); // #else // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; // uint4 hi = (v >> 16) | (uint4) 0x53000000; // #endif // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); // return (float4) lo + fhi; SDLoc DL(Op); SDValue V = Op->getOperand(0); EVT VecIntVT = V.getValueType(); bool Is128 = VecIntVT == MVT::v4i32; EVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32; // If we convert to something else than the supported type, e.g., to v4f64, // abort early. if (VecFloatVT != Op->getValueType(0)) return SDValue(); unsigned NumElts = VecIntVT.getVectorNumElements(); assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) && "Unsupported custom type"); assert(NumElts <= 8 && "The size of the constant array must be fixed"); // In the #idef/#else code, we have in common: // - The vector of constants: // -- 0x4b000000 // -- 0x53000000 // - A shift: // -- v >> 16 // Create the splat vector for 0x4b000000. SDValue CstLow = DAG.getConstant(0x4b000000, MVT::i32); SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow, CstLow, CstLow, CstLow, CstLow}; SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, makeArrayRef(&CstLowArray[0], NumElts)); // Create the splat vector for 0x53000000. SDValue CstHigh = DAG.getConstant(0x53000000, MVT::i32); SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh, CstHigh, CstHigh, CstHigh, CstHigh}; SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, makeArrayRef(&CstHighArray[0], NumElts)); // Create the right shift. SDValue CstShift = DAG.getConstant(16, MVT::i32); SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift, CstShift, CstShift, CstShift, CstShift}; SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, makeArrayRef(&CstShiftArray[0], NumElts)); SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift); SDValue Low, High; if (Subtarget.hasSSE41()) { EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16; // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); SDValue VecCstLowBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow); SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V); // Low will be bitcasted right away, so do not bother bitcasting back to its // original type. Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast, VecCstLowBitcast, DAG.getConstant(0xaa, MVT::i32)); // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), // (uint4) 0x53000000, 0xaa); SDValue VecCstHighBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh); SDValue VecShiftBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift); // High will be bitcasted right away, so do not bother bitcasting back to // its original type. High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast, VecCstHighBitcast, DAG.getConstant(0xaa, MVT::i32)); } else { SDValue CstMask = DAG.getConstant(0xffff, MVT::i32); SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask, CstMask, CstMask, CstMask); // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask); Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow); // uint4 hi = (v >> 16) | (uint4) 0x53000000; High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh); } // Create the vector constant for -(0x1.0p39f + 0x1.0p23f). SDValue CstFAdd = DAG.getConstantFP( APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), MVT::f32); SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd}; SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT, makeArrayRef(&CstFAddArray[0], NumElts)); // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High); SDValue FHigh = DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd); // return (float4) lo + fhi; SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low); return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh); } SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const { SDValue N0 = Op.getOperand(0); MVT SVT = N0.getSimpleValueType(); SDLoc dl(Op); switch (SVT.SimpleTy) { default: llvm_unreachable("Custom UINT_TO_FP is not supported!"); case MVT::v4i8: case MVT::v4i16: case MVT::v8i8: case MVT::v8i16: { MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements()); return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); } case MVT::v4i32: case MVT::v8i32: return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget); } llvm_unreachable(nullptr); } SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { SDValue N0 = Op.getOperand(0); SDLoc dl(Op); if (Op.getValueType().isVector()) return lowerUINT_TO_FP_vec(Op, DAG); // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform // the optimization here. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); MVT SrcVT = N0.getSimpleValueType(); MVT DstVT = Op.getSimpleValueType(); if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) return LowerUINT_TO_FP_i64(Op, DAG); if (SrcVT == MVT::i32 && X86ScalarSSEf64) return LowerUINT_TO_FP_i32(Op, DAG); if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) return SDValue(); // Make a 64-bit buffer, and use it to build an FILD. SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); if (SrcVT == MVT::i32) { SDValue WordOff = DAG.getConstant(4, getPointerTy()); SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackSlot, WordOff); SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo(), false, false, 0); SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), OffsetSlot, MachinePointerInfo(), false, false, 0); SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); return Fild; } assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo(), false, false, 0); // For i64 source, we need to add the appropriate power of 2 if the input // was negative. This is the same as the optimization in // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, // we must be careful to do the computation in x87 extended precision, not // in SSE. (The generic code can't know it's OK to do this, or how to.) int SSFI = cast(StackSlot)->getIndex(); MachineMemOperand *MMO = DAG.getMachineFunction() .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOLoad, 8, 8); SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, MVT::i64, MMO); APInt FF(32, 0x5F800000ULL); // Check whether the sign bit is set. SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), MVT::i64), Op.getOperand(0), DAG.getConstant(0, MVT::i64), ISD::SETLT); // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. SDValue FudgePtr = DAG.getConstantPool( ConstantInt::get(*DAG.getContext(), FF.zext(64)), getPointerTy()); // Get a pointer to FF if the sign bit was set, or to 0 otherwise. SDValue Zero = DAG.getIntPtrConstant(0); SDValue Four = DAG.getIntPtrConstant(4); SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, Zero, Four); FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); // Load the value out, extending it from f32 to f80. // FIXME: Avoid the extend by constructing the right constant pool? SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, MachinePointerInfo::getConstantPool(), MVT::f32, false, false, false, 4); // Extend everything to 80 bits to force it to be done on x87. SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); } std::pair X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const { SDLoc DL(Op); EVT DstTy = Op.getValueType(); if (!IsSigned && !isIntegerTypeFTOL(DstTy)) { assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); DstTy = MVT::i64; } assert(DstTy.getSimpleVT() <= MVT::i64 && DstTy.getSimpleVT() >= MVT::i16 && "Unknown FP_TO_INT to lower!"); // These are really Legal. if (DstTy == MVT::i32 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); if (Subtarget->is64Bit() && DstTy == MVT::i64 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); // We lower FP->int64 either into FISTP64 followed by a load from a temporary // stack slot, or into the FTOL runtime function. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = DstTy.getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); unsigned Opc; if (!IsSigned && isIntegerTypeFTOL(DstTy)) Opc = X86ISD::WIN_FTOL; else switch (DstTy.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDValue Chain = DAG.getEntryNode(); SDValue Value = Op.getOperand(0); EVT TheVT = Op.getOperand(0).getValueType(); // FIXME This causes a redundant load/store if the SSE-class value is already // in memory, such as if it is on the callstack. if (isScalarFPTypeInSSEReg(TheVT)) { assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getStore(Chain, DL, Value, StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, 0); SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(TheVT) }; MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOLoad, MemSize, MemSize); Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); } MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, MemSize, MemSize); if (Opc != X86ISD::WIN_FTOL) { // Build the FP_TO_INT*_IN_MEM SDValue Ops[] = { Chain, Value, StackSlot }; SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), Ops, DstTy, MMO); return std::make_pair(FIST, StackSlot); } else { SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, Value); SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX, MVT::i32, ftol.getValue(1)); SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX, MVT::i32, eax.getValue(2)); SDValue Ops[] = { eax, edx }; SDValue pair = IsReplace ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops) : DAG.getMergeValues(Ops, DL); return std::make_pair(pair, SDValue()); } } static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); SDLoc dl(Op); // Optimize vectors in AVX mode: // // v8i16 -> v8i32 // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. // Concat upper and lower parts. // // v4i32 -> v4i64 // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. // Concat upper and lower parts. // if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) && ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) return SDValue(); if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VZEXT, dl, VT, In); SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); SDValue Undef = DAG.getUNDEF(InVT); bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), VT.getVectorNumElements()/2); OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); } static SDValue LowerZERO_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); SDLoc DL(Op); unsigned int NumElts = VT.getVectorNumElements(); if (NumElts != 8 && NumElts != 16) return SDValue(); if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) return DAG.getNode(X86ISD::VZEXT, DL, VT, In); EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Now we have only mask extension assert(InVT.getVectorElementType() == MVT::i1); SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType()); const Constant *C = (dyn_cast(Cst))->getConstantIntValue(); SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy()); unsigned Alignment = cast(CP)->getAlignment(); SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld); if (VT.is512BitVector()) return Brcst; return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst); } static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (Subtarget->hasFp256()) { SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); if (Res.getNode()) return Res; } return SDValue(); } static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue In = Op.getOperand(0); MVT SVT = In.getSimpleValueType(); if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1) return LowerZERO_EXTEND_AVX512(Op, DAG); if (Subtarget->hasFp256()) { SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); if (Res.getNode()) return Res; } assert(!VT.is256BitVector() || !SVT.is128BitVector() || VT.getVectorNumElements() != SVT.getVectorNumElements()); return SDValue(); } SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue In = Op.getOperand(0); MVT InVT = In.getSimpleValueType(); if (VT == MVT::i1) { assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) && "Invalid scalar TRUNCATE operation"); if (InVT.getSizeInBits() >= 32) return SDValue(); In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In); return DAG.getNode(ISD::TRUNCATE, DL, VT, In); } assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && "Invalid TRUNCATE operation"); if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) { if (VT.getVectorElementType().getSizeInBits() >=8) return DAG.getNode(X86ISD::VTRUNC, DL, VT, In); assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); unsigned NumElts = InVT.getVectorNumElements(); assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type"); if (InVT.getSizeInBits() < 512) { MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64; In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); InVT = ExtVT; } SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType()); const Constant *C = (dyn_cast(Cst))->getConstantIntValue(); SDValue CP = DAG.getConstantPool(C, getPointerTy()); unsigned Alignment = cast(CP)->getAlignment(); SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld); SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In); return DAG.getNode(X86ISD::TESTM, DL, VT, And, And); } if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { // On AVX2, v4i64 -> v4i32 becomes VPERMD. if (Subtarget->hasInt256()) { static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In); In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), ShufMask); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, DAG.getIntPtrConstant(0)); } SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(0)); SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(2)); OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); static const int ShufMask[] = {0, 2, 4, 6}; return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); } if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { // On AVX2, v8i32 -> v8i16 becomed PSHUFB. if (Subtarget->hasInt256()) { In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In); SmallVector pshufbMask; for (unsigned i = 0; i < 2; ++i) { pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); for (unsigned j = 0; j < 8; ++j) pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); } SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask); In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In); static const int ShufMask[] = {0, 2, -1, -1}; In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64), &ShufMask[0]); In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(0)); return DAG.getNode(ISD::BITCAST, DL, VT, In); } SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(0)); SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(4)); OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo); OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi); // The PSHUFB mask: static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1}; SDValue Undef = DAG.getUNDEF(MVT::v16i8); OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); // The MOVLHPS Mask: static const int ShufMask2[] = {0, 1, 4, 5}; SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res); } // Handle truncation of V256 to V128 using shuffles. if (!VT.is128BitVector() || !InVT.is256BitVector()) return SDValue(); assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); unsigned NumElems = VT.getVectorNumElements(); MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); SmallVector MaskVec(NumElems * 2, -1); // Prepare truncation shuffle mask for (unsigned i = 0; i != NumElems; ++i) MaskVec[i] = i * 2; SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getNode(ISD::BITCAST, DL, NVT, In), DAG.getUNDEF(NVT), &MaskVec[0]); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, DAG.getIntPtrConstant(0)); } SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { assert(!Op.getSimpleValueType().isVector()); std::pair Vals = FP_TO_INTHelper(Op, DAG, /*IsSigned=*/ true, /*IsReplace=*/ false); SDValue FIST = Vals.first, StackSlot = Vals.second; // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. if (!FIST.getNode()) return Op; if (StackSlot.getNode()) // Load the result. return DAG.getLoad(Op.getValueType(), SDLoc(Op), FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); // The node is the result. return FIST; } SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { std::pair Vals = FP_TO_INTHelper(Op, DAG, /*IsSigned=*/ false, /*IsReplace=*/ false); SDValue FIST = Vals.first, StackSlot = Vals.second; assert(FIST.getNode() && "Unexpected failure"); if (StackSlot.getNode()) // Load the result. return DAG.getLoad(Op.getValueType(), SDLoc(Op), FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); // The node is the result. return FIST; } static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue In = Op.getOperand(0); MVT SVT = In.getSimpleValueType(); assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); return DAG.getNode(X86ISD::VFPEXT, DL, VT, DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, In, DAG.getUNDEF(SVT))); } /// The only differences between FABS and FNEG are the mask and the logic op. /// FNEG also has a folding opportunity for FNEG(FABS(x)). static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) { assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) && "Wrong opcode for lowering FABS or FNEG."); bool IsFABS = (Op.getOpcode() == ISD::FABS); // If this is a FABS and it has an FNEG user, bail out to fold the combination // into an FNABS. We'll lower the FABS after that if it is still in use. if (IsFABS) for (SDNode *User : Op->uses()) if (User->getOpcode() == ISD::FNEG) return Op; SDValue Op0 = Op.getOperand(0); bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); // Assume scalar op for initialization; update for vector if needed. // Note that there are no scalar bitwise logical SSE/AVX instructions, so we // generate a 16-byte vector constant and logic op even for the scalar case. // Using a 16-byte mask allows folding the load of the mask with // the logic op, so it can save (~4 bytes) on code size. MVT EltVT = VT; unsigned NumElts = VT == MVT::f64 ? 2 : 4; // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to // decide if we should generate a 16-byte constant mask when we only need 4 or // 8 bytes for the scalar case. if (VT.isVector()) { EltVT = VT.getVectorElementType(); NumElts = VT.getVectorNumElements(); } unsigned EltBits = EltVT.getSizeInBits(); LLVMContext *Context = DAG.getContext(); // For FABS, mask is 0x7f...; for FNEG, mask is 0x80... APInt MaskElt = IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits); Constant *C = ConstantInt::get(*Context, MaskElt); C = ConstantVector::getSplat(NumElts, C); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); if (VT.isVector()) { // For a vector, cast operands to a vector type, perform the logic op, // and cast the result back to the original value type. MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask); SDValue Operand = IsFNABS ? DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) : DAG.getNode(ISD::BITCAST, dl, VecVT, Op0); unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted)); } // If not vector, then scalar. unsigned BitOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR; SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0; return DAG.getNode(BitOp, dl, VT, Operand, Mask); } static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); LLVMContext *Context = DAG.getContext(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); MVT SrcVT = Op1.getSimpleValueType(); // If second operand is smaller, extend it first. if (SrcVT.bitsLT(VT)) { Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); SrcVT = VT; } // And if it is bigger, shrink it first. if (SrcVT.bitsGT(VT)) { Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); SrcVT = VT; } // At this point the operands and the result should have the same // type, and that won't be f80 since that is not custom lowered. const fltSemantics &Sem = VT == MVT::f64 ? APFloat::IEEEdouble : APFloat::IEEEsingle; const unsigned SizeInBits = VT.getSizeInBits(); SmallVector CV( VT == MVT::f64 ? 2 : 4, ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0)))); // First, clear all bits but the sign bit from the second operand (sign). CV[0] = ConstantFP::get(*Context, APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1))); Constant *C = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16); SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, 16); SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); // Next, clear the sign bit from the first operand (magnitude). // If it's a constant, we can clear it here. if (ConstantFPSDNode *Op0CN = dyn_cast(Op0)) { APFloat APF = Op0CN->getValueAPF(); // If the magnitude is a positive zero, the sign bit alone is enough. if (APF.isPosZero()) return SignBit; APF.clearSign(); CV[0] = ConstantFP::get(*Context, APF); } else { CV[0] = ConstantFP::get( *Context, APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1))); } C = ConstantVector::get(CV); CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16); SDValue Val = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, 16); // If the magnitude operand wasn't a constant, we need to AND out the sign. if (!isa(Op0)) Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Val); // OR the magnitude value with the sign bit. return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); } static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { SDValue N0 = Op.getOperand(0); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, DAG.getConstant(1, VT)); return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT)); } // Check whether an OR'd tree is PTEST-able. static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); if (!Subtarget->hasSSE41()) return SDValue(); if (!Op->hasOneUse()) return SDValue(); SDNode *N = Op.getNode(); SDLoc DL(N); SmallVector Opnds; DenseMap VecInMap; SmallVector VecIns; EVT VT = MVT::Other; // Recognize a special case where a vector is casted into wide integer to // test all 0s. Opnds.push_back(N->getOperand(0)); Opnds.push_back(N->getOperand(1)); for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { SmallVectorImpl::const_iterator I = Opnds.begin() + Slot; // BFS traverse all OR'd operands. if (I->getOpcode() == ISD::OR) { Opnds.push_back(I->getOperand(0)); Opnds.push_back(I->getOperand(1)); // Re-evaluate the number of nodes to be traversed. e += 2; // 2 more nodes (LHS and RHS) are pushed. continue; } // Quit if a non-EXTRACT_VECTOR_ELT if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); // Quit if without a constant index. SDValue Idx = I->getOperand(1); if (!isa(Idx)) return SDValue(); SDValue ExtractedFromVec = I->getOperand(0); DenseMap::iterator M = VecInMap.find(ExtractedFromVec); if (M == VecInMap.end()) { VT = ExtractedFromVec.getValueType(); // Quit if not 128/256-bit vector. if (!VT.is128BitVector() && !VT.is256BitVector()) return SDValue(); // Quit if not the same type. if (VecInMap.begin() != VecInMap.end() && VT != VecInMap.begin()->first.getValueType()) return SDValue(); M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; VecIns.push_back(ExtractedFromVec); } M->second |= 1U << cast(Idx)->getZExtValue(); } assert((VT.is128BitVector() || VT.is256BitVector()) && "Not extracted from 128-/256-bit vector."); unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; for (DenseMap::const_iterator I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { // Quit if not all elements are used. if (I->second != FullMask) return SDValue(); } EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; // Cast all vectors into TestVT for PTEST. for (unsigned i = 0, e = VecIns.size(); i < e; ++i) VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]); // If more than one full vectors are evaluated, OR them first before PTEST. for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { // Each iteration will OR 2 nodes and append the result until there is only // 1 node left, i.e. the final OR'd value of all vectors. SDValue LHS = VecIns[Slot]; SDValue RHS = VecIns[Slot + 1]; VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); } return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back()); } /// \brief return true if \c Op has a use that doesn't just read flags. static bool hasNonFlagsUse(SDValue Op) { for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) { SDNode *User = *UI; unsigned UOpNo = UI.getOperandNo(); if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { // Look pass truncate. UOpNo = User->use_begin().getOperandNo(); User = *User->use_begin(); } if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) return true; } return false; } /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent. SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl, SelectionDAG &DAG) const { if (Op.getValueType() == MVT::i1) // KORTEST instruction should be selected return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, Op.getValueType())); // CF and OF aren't always set the way we want. Determine which // of these we need. bool NeedCF = false; bool NeedOF = false; switch (X86CC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: NeedCF = true; break; case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: { // Check if we really need to set the // Overflow flag. If NoSignedWrap is present // that is not actually needed. switch (Op->getOpcode()) { case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SHL: { const BinaryWithFlagsSDNode *BinNode = cast(Op.getNode()); if (BinNode->hasNoSignedWrap()) break; } default: NeedOF = true; break; } break; } } // See if we can use the EFLAGS value from the operand instead of // doing a separate TEST. TEST always sets OF and CF to 0, so unless // we prove that the arithmetic won't overflow, we can't use OF or CF. if (Op.getResNo() != 0 || NeedOF || NeedCF) { // Emit a CMP with 0, which is the TEST pattern. //if (Op.getValueType() == MVT::i1) // return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op, // DAG.getConstant(0, MVT::i1)); return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, Op.getValueType())); } unsigned Opcode = 0; unsigned NumOperands = 0; // Truncate operations may prevent the merge of the SETCC instruction // and the arithmetic instruction before it. Attempt to truncate the operands // of the arithmetic instruction and use a reduced bit-width instruction. bool NeedTruncation = false; SDValue ArithOp = Op; if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { SDValue Arith = Op->getOperand(0); // Both the trunc and the arithmetic op need to have one user each. if (Arith->hasOneUse()) switch (Arith.getOpcode()) { default: break; case ISD::ADD: case ISD::SUB: case ISD::AND: case ISD::OR: case ISD::XOR: { NeedTruncation = true; ArithOp = Arith; } } } // NOTICE: In the code below we use ArithOp to hold the arithmetic operation // which may be the result of a CAST. We use the variable 'Op', which is the // non-casted variable when we check for possible users. switch (ArithOp.getOpcode()) { case ISD::ADD: // Due to an isel shortcoming, be conservative if this add is likely to be // selected as part of a load-modify-store instruction. When the root node // in a match is a store, isel doesn't know how to remap non-chain non-flag // uses of other nodes in the match, such as the ADD in this case. This // leads to the ADD being left around and reselected, with the result being // two adds in the output. Alas, even if none our users are stores, that // doesn't prove we're O.K. Ergo, if we have any parents that aren't // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require // climbing the DAG back to the root, and it doesn't seem to be worth the // effort. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC && UI->getOpcode() != ISD::STORE) goto default_case; if (ConstantSDNode *C = dyn_cast(ArithOp.getNode()->getOperand(1))) { // An add of one will be selected as an INC. if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) { Opcode = X86ISD::INC; NumOperands = 1; break; } // An add of negative one (subtract of one) will be selected as a DEC. if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) { Opcode = X86ISD::DEC; NumOperands = 1; break; } } // Otherwise use a regular EFLAGS-setting add. Opcode = X86ISD::ADD; NumOperands = 2; break; case ISD::SHL: case ISD::SRL: // If we have a constant logical shift that's only used in a comparison // against zero turn it into an equivalent AND. This allows turning it into // a TEST instruction later. if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() && isa(Op->getOperand(1)) && !hasNonFlagsUse(Op)) { EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); unsigned ShAmt = Op->getConstantOperandVal(1); if (ShAmt >= BitWidth) // Avoid undefined shifts. break; APInt Mask = ArithOp.getOpcode() == ISD::SRL ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); if (!Mask.isSignedIntN(32)) // Avoid large immediates. break; SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0), DAG.getConstant(Mask, VT)); DAG.ReplaceAllUsesWith(Op, New); Op = New; } break; case ISD::AND: // If the primary and result isn't used, don't bother using X86ISD::AND, // because a TEST instruction will be better. if (!hasNonFlagsUse(Op)) break; // FALL THROUGH case ISD::SUB: case ISD::OR: case ISD::XOR: // Due to the ISEL shortcoming noted above, be conservative if this op is // likely to be selected as part of a load-modify-store instruction. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() == ISD::STORE) goto default_case; // Otherwise use a regular EFLAGS-setting instruction. switch (ArithOp.getOpcode()) { default: llvm_unreachable("unexpected operator!"); case ISD::SUB: Opcode = X86ISD::SUB; break; case ISD::XOR: Opcode = X86ISD::XOR; break; case ISD::AND: Opcode = X86ISD::AND; break; case ISD::OR: { if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG); if (EFLAGS.getNode()) return EFLAGS; } Opcode = X86ISD::OR; break; } } NumOperands = 2; break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: return SDValue(Op.getNode(), 1); default: default_case: break; } // If we found that truncation is beneficial, perform the truncation and // update 'Op'. if (NeedTruncation) { EVT VT = Op.getValueType(); SDValue WideVal = Op->getOperand(0); EVT WideVT = WideVal.getValueType(); unsigned ConvertedOp = 0; // Use a target machine opcode to prevent further DAGCombine // optimizations that may separate the arithmetic operations // from the setcc node. switch (WideVal.getOpcode()) { default: break; case ISD::ADD: ConvertedOp = X86ISD::ADD; break; case ISD::SUB: ConvertedOp = X86ISD::SUB; break; case ISD::AND: ConvertedOp = X86ISD::AND; break; case ISD::OR: ConvertedOp = X86ISD::OR; break; case ISD::XOR: ConvertedOp = X86ISD::XOR; break; } if (ConvertedOp) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); } } } if (Opcode == 0) // Emit a CMP with 0, which is the TEST pattern. return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, Op.getValueType())); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SmallVector Ops; for (unsigned i = 0; i != NumOperands; ++i) Ops.push_back(Op.getOperand(i)); SDValue New = DAG.getNode(Opcode, dl, VTs, Ops); DAG.ReplaceAllUsesWith(Op, New); return SDValue(New.getNode(), 1); } /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent. SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl, SelectionDAG &DAG) const { if (ConstantSDNode *C = dyn_cast(Op1)) { if (C->getAPIntValue() == 0) return EmitTest(Op0, X86CC, dl, DAG); if (Op0.getValueType() == MVT::i1) llvm_unreachable("Unexpected comparison operation for MVT::i1 operands"); } if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { // Do the comparison at i32 if it's smaller, besides the Atom case. // This avoids subregister aliasing issues. Keep the smaller reference // if we're optimizing for size, however, as that'll allow better folding // of memory operations. if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 && !DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute( AttributeSet::FunctionIndex, Attribute::MinSize) && !Subtarget->isAtom()) { unsigned ExtendOp = isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); } // Use SUB instead of CMP to enable CSE between SUB and CMP. SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1); return SDValue(Sub.getNode(), 1); } return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); } /// Convert a comparison if required by the subtarget. SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const { // If the subtarget does not support the FUCOMI instruction, floating-point // comparisons have to be converted. if (Subtarget->hasCMov() || Cmp.getOpcode() != X86ISD::CMP || !Cmp.getOperand(0).getValueType().isFloatingPoint() || !Cmp.getOperand(1).getValueType().isFloatingPoint()) return Cmp; // The instruction selector will select an FUCOM instruction instead of // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence // build an SDNode sequence that transfers the result from FPSW into EFLAGS: // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) SDLoc dl(Cmp); SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, DAG.getConstant(8, MVT::i8)); SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); } /// The minimum architected relative accuracy is 2^-12. We need one /// Newton-Raphson step to have a good float result (24 bits of precision). SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op, DAGCombinerInfo &DCI, unsigned &RefinementSteps, bool &UseOneConstNR) const { // FIXME: We should use instruction latency models to calculate the cost of // each potential sequence, but this is very hard to do reliably because // at least Intel's Core* chips have variable timing based on the number of // significant digits in the divisor and/or sqrt operand. if (!Subtarget->useSqrtEst()) return SDValue(); EVT VT = Op.getValueType(); // SSE1 has rsqrtss and rsqrtps. // TODO: Add support for AVX512 (v16f32). // It is likely not profitable to do this for f64 because a double-precision // rsqrt estimate with refinement on x86 prior to FMA requires at least 16 // instructions: convert to single, rsqrtss, convert back to double, refine // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA // along with FMA, this could be a throughput win. if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) || (Subtarget->hasAVX() && VT == MVT::v8f32)) { RefinementSteps = 1; UseOneConstNR = false; return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op); } return SDValue(); } /// The minimum architected relative accuracy is 2^-12. We need one /// Newton-Raphson step to have a good float result (24 bits of precision). SDValue X86TargetLowering::getRecipEstimate(SDValue Op, DAGCombinerInfo &DCI, unsigned &RefinementSteps) const { // FIXME: We should use instruction latency models to calculate the cost of // each potential sequence, but this is very hard to do reliably because // at least Intel's Core* chips have variable timing based on the number of // significant digits in the divisor. if (!Subtarget->useReciprocalEst()) return SDValue(); EVT VT = Op.getValueType(); // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps. // TODO: Add support for AVX512 (v16f32). // It is likely not profitable to do this for f64 because a double-precision // reciprocal estimate with refinement on x86 prior to FMA requires // 15 instructions: convert to single, rcpss, convert back to double, refine // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA // along with FMA, this could be a throughput win. if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) || (Subtarget->hasAVX() && VT == MVT::v8f32)) { RefinementSteps = ReciprocalEstimateRefinementSteps; return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op); } return SDValue(); } static bool isAllOnes(SDValue V) { ConstantSDNode *C = dyn_cast(V); return C && C->isAllOnesValue(); } /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node /// if it's possible. SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, SDLoc dl, SelectionDAG &DAG) const { SDValue Op0 = And.getOperand(0); SDValue Op1 = And.getOperand(1); if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::TRUNCATE) Op1 = Op1.getOperand(0); SDValue LHS, RHS; if (Op1.getOpcode() == ISD::SHL) std::swap(Op0, Op1); if (Op0.getOpcode() == ISD::SHL) { if (ConstantSDNode *And00C = dyn_cast(Op0.getOperand(0))) if (And00C->getZExtValue() == 1) { // If we looked past a truncate, check that it's only truncating away // known zeros. unsigned BitWidth = Op0.getValueSizeInBits(); unsigned AndBitWidth = And.getValueSizeInBits(); if (BitWidth > AndBitWidth) { APInt Zeros, Ones; DAG.computeKnownBits(Op0, Zeros, Ones); if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) return SDValue(); } LHS = Op1; RHS = Op0.getOperand(1); } } else if (Op1.getOpcode() == ISD::Constant) { ConstantSDNode *AndRHS = cast(Op1); uint64_t AndRHSVal = AndRHS->getZExtValue(); SDValue AndLHS = Op0; if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { LHS = AndLHS.getOperand(0); RHS = AndLHS.getOperand(1); } // Use BT if the immediate can't be encoded in a TEST instruction. if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { LHS = AndLHS; RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType()); } } if (LHS.getNode()) { // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT // instruction. Since the shift amount is in-range-or-undefined, we know // that doing a bittest on the i32 value is ok. We extend to i32 because // the encoding for the i16 version is larger than the i32 version. // Also promote i16 to i32 for performance / code size reason. if (LHS.getValueType() == MVT::i8 || LHS.getValueType() == MVT::i16) LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); // If the operand types disagree, extend the shift amount to match. Since // BT ignores high bits (like shifts) we can use anyextend. if (LHS.getValueType() != RHS.getValueType()) RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(Cond, MVT::i8), BT); } return SDValue(); } /// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point /// mask CMPs. static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, SDValue &Op1) { unsigned SSECC; bool Swap = false; // SSE Condition code mapping: // 0 - EQ // 1 - LT // 2 - LE // 3 - UNORD // 4 - NEQ // 5 - NLT // 6 - NLE // 7 - ORD switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETOEQ: case ISD::SETEQ: SSECC = 0; break; case ISD::SETOGT: case ISD::SETGT: Swap = true; // Fallthrough case ISD::SETLT: case ISD::SETOLT: SSECC = 1; break; case ISD::SETOGE: case ISD::SETGE: Swap = true; // Fallthrough case ISD::SETLE: case ISD::SETOLE: SSECC = 2; break; case ISD::SETUO: SSECC = 3; break; case ISD::SETUNE: case ISD::SETNE: SSECC = 4; break; case ISD::SETULE: Swap = true; // Fallthrough case ISD::SETUGE: SSECC = 5; break; case ISD::SETULT: Swap = true; // Fallthrough case ISD::SETUGT: SSECC = 6; break; case ISD::SETO: SSECC = 7; break; case ISD::SETUEQ: case ISD::SETONE: SSECC = 8; break; } if (Swap) std::swap(Op0, Op1); return SSECC; } // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 // ones, and then concatenate the result back. static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); SDLoc dl(Op); SDValue CC = Op.getOperand(2); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); // Extract the RHS vectors SDValue RHS = Op.getOperand(1); SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); // Issue the operation on the smaller types and concatenate the result back MVT EltVT = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); } static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 && Op.getValueType().getScalarType() == MVT::i1 && "Cannot set masked compare for this operation"); ISD::CondCode SetCCOpcode = cast(CC)->get(); unsigned Opc = 0; bool Unsigned = false; bool Swap = false; unsigned SSECC; switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: SSECC = 4; break; case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break; case ISD::SETUGT: SSECC = 6; Unsigned = true; break; case ISD::SETLT: Swap = true; //fall-through case ISD::SETGT: Opc = X86ISD::PCMPGTM; break; case ISD::SETULT: SSECC = 1; Unsigned = true; break; case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap case ISD::SETULE: Unsigned = true; //fall-through case ISD::SETLE: SSECC = 2; break; } if (Swap) std::swap(Op0, Op1); if (Opc) return DAG.getNode(Opc, dl, VT, Op0, Op1); Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM; return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); } /// \brief Try to turn a VSETULT into a VSETULE by modifying its second /// operand \p Op1. If non-trivial (for example because it's not constant) /// return an empty value. static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG) { BuildVectorSDNode *BV = dyn_cast(Op1.getNode()); if (!BV) return SDValue(); MVT VT = Op1.getSimpleValueType(); MVT EVT = VT.getVectorElementType(); unsigned n = VT.getVectorNumElements(); SmallVector ULTOp1; for (unsigned i = 0; i < n; ++i) { ConstantSDNode *Elt = dyn_cast(BV->getOperand(i)); if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT) return SDValue(); // Avoid underflow. APInt Val = Elt->getAPIntValue(); if (Val == 0) return SDValue(); ULTOp1.push_back(DAG.getConstant(Val - 1, EVT)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1); } static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getSimpleValueType(); ISD::CondCode SetCCOpcode = cast(CC)->get(); bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); SDLoc dl(Op); if (isFP) { #ifndef NDEBUG MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); assert(EltVT == MVT::f32 || EltVT == MVT::f64); #endif unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1); unsigned Opc = X86ISD::CMPP; if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) { assert(VT.getVectorNumElements() <= 16); Opc = X86ISD::CMPM; } // In the two special cases we can't handle, emit two comparisons. if (SSECC == 8) { unsigned CC0, CC1; unsigned CombineOpc; if (SetCCOpcode == ISD::SETUEQ) { CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; } else { assert(SetCCOpcode == ISD::SETONE); CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; } SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(CC0, MVT::i8)); SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(CC1, MVT::i8)); return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); } // Handle all other FP comparisons here. return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); } // Break 256-bit integer vector compare into smaller ones. if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntVSETCC(Op, DAG); bool MaskResult = (VT.getVectorElementType() == MVT::i1); EVT OpVT = Op1.getValueType(); if (Subtarget->hasAVX512()) { if (Op1.getValueType().is512BitVector() || (Subtarget->hasBWI() && Subtarget->hasVLX()) || (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32)) return LowerIntVSETCC_AVX512(Op, DAG, Subtarget); // In AVX-512 architecture setcc returns mask with i1 elements, // But there is no compare instruction for i8 and i16 elements in KNL. // We are not talking about 512-bit operands in this case, these // types are illegal. if (MaskResult && (OpVT.getVectorElementType().getSizeInBits() < 32 && OpVT.getVectorElementType().getSizeInBits() >= 8)) return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC)); } // We are handling one of the integer comparisons here. Since SSE only has // GT and EQ comparisons for integer, swapping operands and multiple // operations may be required for some comparisons. unsigned Opc; bool Swap = false, Invert = false, FlipSigns = false, MinMax = false; bool Subus = false; switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = X86ISD::PCMPGT; break; case ISD::SETGE: Swap = true; case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break; case ISD::SETUGE: Swap = true; case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break; } // Special case: Use min/max operations for SETULE/SETUGE MVT VET = VT.getVectorElementType(); bool hasMinMax = (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32)) || (Subtarget->hasSSE2() && (VET == MVT::i8)); if (hasMinMax) { switch (SetCCOpcode) { default: break; case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break; case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break; } if (MinMax) { Swap = false; Invert = false; FlipSigns = false; } } bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16); if (!MinMax && hasSubus) { // As another special case, use PSUBUS[BW] when it's profitable. E.g. for // Op0 u<= Op1: // t = psubus Op0, Op1 // pcmpeq t, <0..0> switch (SetCCOpcode) { default: break; case ISD::SETULT: { // If the comparison is against a constant we can turn this into a // setule. With psubus, setule does not require a swap. This is // beneficial because the constant in the register is no longer // destructed as the destination so it can be hoisted out of a loop. // Only do this pre-AVX since vpcmp* is no longer destructive. if (Subtarget->hasAVX()) break; SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG); if (ULEOp1.getNode()) { Op1 = ULEOp1; Subus = true; Invert = false; Swap = false; } break; } // Psubus is better than flip-sign because it requires no inversion. case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break; case ISD::SETULE: Subus = true; Invert = false; Swap = false; break; } if (Subus) { Opc = X86ISD::SUBUS; FlipSigns = false; } } if (Swap) std::swap(Op0, Op1); // Check that the operation in question is available (most are plain SSE2, // but PCMPGTQ and PCMPEQQ have different requirements). if (VT == MVT::v2i64) { if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) { assert(Subtarget->hasSSE2() && "Don't know how to lower!"); // First cast everything to the right type. Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. The lower // compare is always unsigned. SDValue SB; if (FlipSigns) { SB = DAG.getConstant(0x80000000U, MVT::v4i32); } else { SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32); SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32); SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Sign, Zero, Sign, Zero); } Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); // Create masks for only the low parts/high parts of the 64 bit integers. static const int MaskHi[] = { 1, 1, 3, 3 }; static const int MaskLo[] = { 0, 0, 2, 2 }; SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); if (Invert) Result = DAG.getNOT(dl, Result, MVT::v4i32); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with // pcmpeqd + pshufd + pand. assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); // First cast everything to the right type. Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); // Do the compare. SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); // Make sure the lower and upper halves are both all-ones. static const int Mask[] = { 1, 0, 3, 2 }; SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); if (Invert) Result = DAG.getNOT(dl, Result, MVT::v4i32); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } } // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. if (FlipSigns) { EVT EltVT = VT.getVectorElementType(); SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT); Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB); Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB); } SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); // If the logical-not of the result is required, perform that now. if (Invert) Result = DAG.getNOT(dl, Result, VT); if (MinMax) Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); if (Subus) Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, getZeroVector(VT, Subtarget, DAG, dl)); return Result; } SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1)) && "SetCC type must be 8-bit or 1-bit integer"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDLoc dl(Op); ISD::CondCode CC = cast(Op.getOperand(2))->get(); // Optimize to BT if possible. // Lower (X & (1 << N)) == 0 to BT(X, N). // Lower ((X >>u N) & 1) != 0 to BT(X, N). // Lower ((X >>s N) & 1) != 0 to BT(X, N). if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && Op1.getOpcode() == ISD::Constant && cast(Op1)->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); if (NewSetCC.getNode()) { if (VT == MVT::i1) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC); return NewSetCC; } } // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of // these. if (Op1.getOpcode() == ISD::Constant && (cast(Op1)->getZExtValue() == 1 || cast(Op1)->isNullValue()) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // If the input is a setcc, then reuse the input setcc or use a new one with // the inverted condition. if (Op0.getOpcode() == X86ISD::SETCC) { X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); bool Invert = (CC == ISD::SETNE) ^ cast(Op1)->isNullValue(); if (!Invert) return Op0; CCode = X86::GetOppositeBranchCondition(CCode); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); if (VT == MVT::i1) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); return SetCC; } } if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) && (cast(Op1)->getZExtValue() == 1) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true); return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC); } bool isFP = Op1.getSimpleValueType().isFloatingPoint(); unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); if (X86CC == X86::COND_INVALID) return SDValue(); SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG); EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), EFLAGS); if (VT == MVT::i1) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); return SetCC; } // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. static bool isX86LogicalCmp(SDValue Op) { unsigned Opc = Op.getNode()->getOpcode(); if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || Opc == X86ISD::SAHF) return true; if (Op.getResNo() == 1 && (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC || Opc == X86ISD::SBB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL || Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR || Opc == X86ISD::XOR || Opc == X86ISD::AND)) return true; if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) return true; return false; } static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { if (V.getOpcode() != ISD::TRUNCATE) return false; SDValue VOp0 = V.getOperand(0); unsigned InBits = VOp0.getValueSizeInBits(); unsigned Bits = V.getValueSizeInBits(); return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); } SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { bool addTest = true; SDValue Cond = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); SDLoc DL(Op); EVT VT = Op1.getValueType(); SDValue CC; // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops // are available. Otherwise fp cmovs get lowered into a less efficient branch // sequence later on. if (Cond.getOpcode() == ISD::SETCC && ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) || (Subtarget->hasSSE1() && VT == MVT::f32)) && VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) { SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); int SSECC = translateX86FSETCC( cast(Cond.getOperand(2))->get(), CondOp0, CondOp1); if (SSECC != 8) { if (Subtarget->hasAVX512()) { SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1, DAG.getConstant(SSECC, MVT::i8)); return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2); } SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, DAG.getConstant(SSECC, MVT::i8)); SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); } } if (Cond.getOpcode() == ISD::SETCC) { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y if (Cond.getOpcode() == X86ISD::SETCC && Cond.getOperand(1).getOpcode() == X86ISD::CMP && isZero(Cond.getOperand(1).getOperand(1))) { SDValue Cmp = Cond.getOperand(1); unsigned CondCode =cast(Cond.getOperand(0))->getZExtValue(); if ((isAllOnes(Op1) || isAllOnes(Op2)) && (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { SDValue Y = isAllOnes(Op2) ? Op1 : Op2; SDValue CmpOp0 = Cmp.getOperand(0); // Apply further optimizations for special cases // (select (x != 0), -1, 0) -> neg & sbb // (select (x == 0), 0, -1) -> neg & sbb if (ConstantSDNode *YC = dyn_cast(Y)) if (YC->isNullValue() && (isAllOnes(Op1) == (CondCode == X86::COND_NE))) { SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, DAG.getConstant(0, CmpOp0.getValueType()), CmpOp0); SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, MVT::i8), SDValue(Neg.getNode(), 1)); return Res; } Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); Cmp = ConvertCmpIfNecessary(Cmp, DAG); SDValue Res = // Res = 0 or -1. DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, MVT::i8), Cmp); if (isAllOnes(Op1) != (CondCode == X86::COND_E)) Res = DAG.getNOT(DL, Res, Res.getValueType()); ConstantSDNode *N2C = dyn_cast(Op2); if (!N2C || !N2C->isNullValue()) Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); return Res; } } // Look past (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(Cond.getOperand(1)); if (C && C->getAPIntValue() == 1) Cond = Cond.getOperand(0); } // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. unsigned CondOpcode = Cond.getOpcode(); if (CondOpcode == X86ISD::SETCC || CondOpcode == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); MVT VT = Op.getSimpleValueType(); bool IllegalFPCMov = false; if (VT.isFloatingPoint() && !VT.isVector() && !isScalarFPTypeInSSEReg(VT)) // FPStack? IllegalFPCMov = !hasFPCMov(cast(CC)->getSExtValue()); if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME Cond = Cmp; addTest = false; } } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && Cond.getOperand(0).getValueType() != MVT::i8)) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); unsigned X86Opcode; unsigned X86Cond; SDVTList VTs; switch (CondOpcode) { case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; default: llvm_unreachable("unexpected overflowing operator"); } if (CondOpcode == ISD::UMULO) VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32); else VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); if (CondOpcode == ISD::UMULO) Cond = X86Op.getValue(2); else Cond = X86Op.getValue(1); CC = DAG.getConstant(X86Cond, MVT::i8); addTest = false; } if (addTest) { // Look pass the truncate if the high bits are known zero. if (isTruncWithZeroHighBitsInput(Cond, DAG)) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); if (NewSetCC.getNode()) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); Cond = EmitTest(Cond, X86::COND_NE, DL, DAG); } // a < b ? -1 : 0 -> RES = ~setcc_carry // a < b ? 0 : -1 -> RES = setcc_carry // a >= b ? -1 : 0 -> RES = setcc_carry // a >= b ? 0 : -1 -> RES = ~setcc_carry if (Cond.getOpcode() == X86ISD::SUB) { Cond = ConvertCmpIfNecessary(Cond, DAG); unsigned CondCode = cast(CC)->getZExtValue(); if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, MVT::i8), Cond); if (isAllOnes(Op1) != (CondCode == X86::COND_B)) return DAG.getNOT(DL, Res, Res.getValueType()); return Res; } } // X86 doesn't have an i8 cmov. If both operands are the result of a truncate // widen the cmov and push the truncate through. This avoids introducing a new // branch during isel and doesn't add any extensions. if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); if (T1.getValueType() == T2.getValueType() && // Blacklist CopyFromReg to avoid partial register stalls. T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); } } // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = { Op2, Op1, CC, Cond }; return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops); } static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); MVT VTElt = VT.getVectorElementType(); MVT InVTElt = InVT.getVectorElementType(); SDLoc dl(Op); // SKX processor if ((InVTElt == MVT::i1) && (((Subtarget->hasBWI() && Subtarget->hasVLX() && VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) || ((Subtarget->hasBWI() && VT.is512BitVector() && VTElt.getSizeInBits() <= 16)) || ((Subtarget->hasDQI() && Subtarget->hasVLX() && VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) || ((Subtarget->hasDQI() && VT.is512BitVector() && VTElt.getSizeInBits() >= 32)))) return DAG.getNode(X86ISD::VSEXT, dl, VT, In); unsigned int NumElts = VT.getVectorNumElements(); if (NumElts != 8 && NumElts != 16) return SDValue(); if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) { if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT) return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0)); return DAG.getNode(X86ISD::VSEXT, dl, VT, In); } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32; Constant *C = ConstantInt::get(*DAG.getContext(), APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits())); SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy()); unsigned Alignment = cast(CP)->getAlignment(); SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld); if (VT.is512BitVector()) return Brcst; return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst); } static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); SDLoc dl(Op); if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG); if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && (VT != MVT::v8i32 || InVT != MVT::v8i16) && (VT != MVT::v16i16 || InVT != MVT::v16i8)) return SDValue(); if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VSEXT, dl, VT, In); // Optimize vectors in AVX mode // Sign extend v8i16 to v8i32 and // v4i32 to v4i64 // // Divide input vector into two parts // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 // concat the vectors to original VT unsigned NumElems = InVT.getVectorNumElements(); SDValue Undef = DAG.getUNDEF(InVT); SmallVector ShufMask1(NumElems, -1); for (unsigned i = 0; i != NumElems/2; ++i) ShufMask1[i] = i; SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); SmallVector ShufMask2(NumElems, -1); for (unsigned i = 0; i != NumElems/2; ++i) ShufMask2[i] = i + NumElems/2; SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), VT.getVectorNumElements()/2); OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo); OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); } // Lower vector extended loads using a shuffle. If SSSE3 is not available we // may emit an illegal shuffle but the expansion is still better than scalar // code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise // we'll emit a shuffle and a arithmetic shift. // TODO: It is possible to support ZExt by zeroing the undef values during // the shuffle phase or after the shuffle. static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT RegVT = Op.getSimpleValueType(); assert(RegVT.isVector() && "We only custom lower vector sext loads."); assert(RegVT.isInteger() && "We only custom lower integer vector sext loads."); // Nothing useful we can do without SSE2 shuffles. assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2."); LoadSDNode *Ld = cast(Op.getNode()); SDLoc dl(Ld); EVT MemVT = Ld->getMemoryVT(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned RegSz = RegVT.getSizeInBits(); ISD::LoadExtType Ext = Ld->getExtensionType(); assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD) && "Only anyext and sext are currently implemented."); assert(MemVT != RegVT && "Cannot extend to the same type"); assert(MemVT.isVector() && "Must load a vector from memory"); unsigned NumElems = RegVT.getVectorNumElements(); unsigned MemSz = MemVT.getSizeInBits(); assert(RegSz > MemSz && "Register size must be greater than the mem size"); if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) { // The only way in which we have a legal 256-bit vector result but not the // integer 256-bit operations needed to directly lower a sextload is if we // have AVX1 but not AVX2. In that case, we can always emit a sextload to // a 128-bit vector and a normal sign_extend to 256-bits that should get // correctly legalized. We do this late to allow the canonical form of // sextload to persist throughout the rest of the DAG combiner -- it wants // to fold together any extensions it can, and so will fuse a sign_extend // of an sextload into a sextload targeting a wider value. SDValue Load; if (MemSz == 128) { // Just switch this to a normal load. assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, " "it must be a legal 128-bit vector " "type!"); Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); } else { assert(MemSz < 128 && "Can't extend a type wider than 128 bits to a 256 bit vector!"); // Do an sext load to a 128-bit vector type. We want to use the same // number of elements, but elements half as wide. This will end up being // recursively lowered by this routine, but will succeed as we definitely // have all the necessary features if we're using AVX1. EVT HalfEltVT = EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2); EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems); Load = DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), MemVT, Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); } // Replace chain users with the new chain. assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); // Finally, do a normal sign-extend to the desired register. return DAG.getSExtOrTrunc(Load, dl, RegVT); } // All sizes must be a power of two. assert(isPowerOf2_32(RegSz * MemSz * NumElems) && "Non-power-of-two elements are not custom lowered!"); // Attempt to load the original value using scalar loads. // Find the largest scalar type that divides the total loaded size. MVT SclrLoadTy = MVT::i8; for (MVT Tp : MVT::integer_valuetypes()) { if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { SclrLoadTy = Tp; } } // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && (64 <= MemSz)) SclrLoadTy = MVT::f64; // Calculate the number of scalar loads that we need to perform // in order to load our vector from memory. unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); assert((Ext != ISD::SEXTLOAD || NumLoads == 1) && "Can only lower sext loads with a single scalar load!"); unsigned loadRegZize = RegSz; if (Ext == ISD::SEXTLOAD && RegSz == 256) loadRegZize /= 2; // Represent our vector as a sequence of elements which are the // largest scalar that we can load. EVT LoadUnitVecVT = EVT::getVectorVT( *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits()); // Represent the data using the same element type that is stored in // memory. In practice, we ''widen'' MemVT. EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), loadRegZize / MemVT.getScalarType().getSizeInBits()); assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && "Invalid vector type"); // We can't shuffle using an illegal type. assert(TLI.isTypeLegal(WideVecVT) && "We only lower types that form legal widened vector types"); SmallVector Chains; SDValue Ptr = Ld->getBasePtr(); SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy()); SDValue Res = DAG.getUNDEF(LoadUnitVecVT); for (unsigned i = 0; i < NumLoads; ++i) { // Perform a single load. SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); Chains.push_back(ScalarLoad.getValue(1)); // Create the first element type using SCALAR_TO_VECTOR in order to avoid // another round of DAGCombining. if (i == 0) Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); else Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, ScalarLoad, DAG.getIntPtrConstant(i)); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); } SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); // Bitcast the loaded value to a vector of the original element type, in // the size of the target vector type. SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res); unsigned SizeRatio = RegSz / MemSz; if (Ext == ISD::SEXTLOAD) { // If we have SSE4.1, we can directly emit a VSEXT node. if (Subtarget->hasSSE41()) { SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); return Sext; } // Otherwise we'll shuffle the small elements in the high bits of the // larger type and perform an arithmetic shift. If the shift is not legal // it's better to scalarize. assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) && "We can't implement a sext load without an arithmetic right shift!"); // Redistribute the loaded elements into the different locations. SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i * SizeRatio + SizeRatio - 1] = i; SDValue Shuff = DAG.getVectorShuffle( WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); // Build the arithmetic shift. unsigned Amt = RegVT.getVectorElementType().getSizeInBits() - MemVT.getVectorElementType().getSizeInBits(); Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT)); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); return Shuff; } // Redistribute the loaded elements into the different locations. SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i * SizeRatio] = i; SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); // Bitcast to the requested type. Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); return Shuff; } // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart // from the AND / OR. static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { Opc = Op.getOpcode(); if (Opc != ISD::OR && Opc != ISD::AND) return false; return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse() && Op.getOperand(1).getOpcode() == X86ISD::SETCC && Op.getOperand(1).hasOneUse()); } // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and // 1 and that the SETCC node has a single use. static bool isXor1OfSetCC(SDValue Op) { if (Op.getOpcode() != ISD::XOR) return false; ConstantSDNode *N1C = dyn_cast(Op.getOperand(1)); if (N1C && N1C->getAPIntValue() == 1) { return Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse(); } return false; } SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { bool addTest = true; SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue Dest = Op.getOperand(2); SDLoc dl(Op); SDValue CC; bool Inverted = false; if (Cond.getOpcode() == ISD::SETCC) { // Check for setcc([su]{add,sub,mul}o == 0). if (cast(Cond.getOperand(2))->get() == ISD::SETEQ && isa(Cond.getOperand(1)) && cast(Cond.getOperand(1))->isNullValue() && Cond.getOperand(0).getResNo() == 1 && (Cond.getOperand(0).getOpcode() == ISD::SADDO || Cond.getOperand(0).getOpcode() == ISD::UADDO || Cond.getOperand(0).getOpcode() == ISD::SSUBO || Cond.getOperand(0).getOpcode() == ISD::USUBO || Cond.getOperand(0).getOpcode() == ISD::SMULO || Cond.getOperand(0).getOpcode() == ISD::UMULO)) { Inverted = true; Cond = Cond.getOperand(0); } else { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } } #if 0 // FIXME: LowerXALUO doesn't handle these!! else if (Cond.getOpcode() == X86ISD::ADD || Cond.getOpcode() == X86ISD::SUB || Cond.getOpcode() == X86ISD::SMUL || Cond.getOpcode() == X86ISD::UMUL) Cond = LowerXALUO(Cond, DAG); #endif // Look pass (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(Cond.getOperand(1)); if (C && C->getAPIntValue() == 1) Cond = Cond.getOperand(0); } // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. unsigned CondOpcode = Cond.getOpcode(); if (CondOpcode == X86ISD::SETCC || CondOpcode == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { Cond = Cmp; addTest = false; } else { switch (cast(CC)->getZExtValue()) { default: break; case X86::COND_O: case X86::COND_B: // These can only come from an arithmetic instruction with overflow, // e.g. SADDO, UADDO. Cond = Cond.getNode()->getOperand(1); addTest = false; break; } } } CondOpcode = Cond.getOpcode(); if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && Cond.getOperand(0).getValueType() != MVT::i8)) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); unsigned X86Opcode; unsigned X86Cond; SDVTList VTs; // Keep this in sync with LowerXALUO, otherwise we might create redundant // instructions that can't be removed afterwards (i.e. X86ISD::ADD and // X86ISD::INC). switch (CondOpcode) { case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; case ISD::SADDO: if (ConstantSDNode *C = dyn_cast(RHS)) if (C->isOne()) { X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; break; } X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; case ISD::SSUBO: if (ConstantSDNode *C = dyn_cast(RHS)) if (C->isOne()) { X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; break; } X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; default: llvm_unreachable("unexpected overflowing operator"); } if (Inverted) X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); if (CondOpcode == ISD::UMULO) VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32); else VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); if (CondOpcode == ISD::UMULO) Cond = X86Op.getValue(2); else Cond = X86Op.getValue(1); CC = DAG.getConstant(X86Cond, MVT::i8); addTest = false; } else { unsigned CondOpc; if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { SDValue Cmp = Cond.getOperand(0).getOperand(1); if (CondOpc == ISD::OR) { // Also, recognize the pattern generated by an FCMP_UNE. We can emit // two branches instead of an explicit OR instruction with a // separate test. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp)) { CC = Cond.getOperand(0).getOperand(0); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = Cond.getOperand(1).getOperand(0); Cond = Cmp; addTest = false; } } else { // ISD::AND // Also, recognize the pattern generated by an FCMP_OEQ. We can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp) && Op.getNode()->hasOneUse()) { X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; Dest = FalseBB; Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); X86::CondCode CCode = (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); Cond = Cmp; addTest = false; } } } } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. // It should be transformed during dag combiner except when the condition // is set by a arithmetics with overflow node. X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); Cond = Cond.getOperand(0).getOperand(1); addTest = false; } else if (Cond.getOpcode() == ISD::SETCC && cast(Cond.getOperand(2))->get() == ISD::SETOEQ) { // For FCMP_OEQ, we can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Op.getNode()->hasOneUse()) { SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; Dest = FalseBB; SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond.getOperand(0), Cond.getOperand(1)); Cmp = ConvertCmpIfNecessary(Cmp, DAG); CC = DAG.getConstant(X86::COND_NE, MVT::i8); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = DAG.getConstant(X86::COND_P, MVT::i8); Cond = Cmp; addTest = false; } } } else if (Cond.getOpcode() == ISD::SETCC && cast(Cond.getOperand(2))->get() == ISD::SETUNE) { // For FCMP_UNE, we can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Op.getNode()->hasOneUse()) { SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_UNE. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond.getOperand(0), Cond.getOperand(1)); Cmp = ConvertCmpIfNecessary(Cmp, DAG); CC = DAG.getConstant(X86::COND_NE, MVT::i8); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = DAG.getConstant(X86::COND_NP, MVT::i8); Cond = Cmp; addTest = false; Dest = FalseBB; } } } } if (addTest) { // Look pass the truncate if the high bits are known zero. if (isTruncWithZeroHighBitsInput(Cond, DAG)) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); if (NewSetCC.getNode()) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE; CC = DAG.getConstant(X86Cond, MVT::i8); Cond = EmitTest(Cond, X86Cond, dl, DAG); } Cond = ConvertCmpIfNecessary(Cond, DAG); return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cond); } // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. // Calls to _alloca are needed to probe the stack when allocating more than 4k // bytes in one go. Touching the stack at 4K increments is necessary to ensure // that the guard pages used by the OS virtual memory manager are allocated in // correct sequence. SDValue X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool SplitStack = MF.shouldSplitStack(); bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) || SplitStack; SDLoc dl(Op); if (!Lower) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDNode* Node = Op.getNode(); unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" " not tell us which reg is the stack pointer!"); EVT VT = Node->getValueType(0); SDValue Tmp1 = SDValue(Node, 0); SDValue Tmp2 = SDValue(Node, 1); SDValue Tmp3 = Node->getOperand(2); SDValue Chain = Tmp1.getOperand(0); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true), SDLoc(Node)); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); unsigned Align = cast(Tmp3)->getZExtValue(); const TargetFrameLowering &TFI = *DAG.getSubtarget().getFrameLowering(); unsigned StackAlign = TFI.getStackAlignment(); Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value if (Align > StackAlign) Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, DAG.getConstant(-(uint64_t)Align, VT)); Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), DAG.getIntPtrConstant(0, true), SDValue(), SDLoc(Node)); SDValue Ops[2] = { Tmp1, Tmp2 }; return DAG.getMergeValues(Ops, dl); } // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); unsigned Align = cast(Op.getOperand(2))->getZExtValue(); EVT VT = Op.getNode()->getValueType(0); bool Is64Bit = Subtarget->is64Bit(); EVT SPTy = getPointerTy(); if (SplitStack) { MachineRegisterInfo &MRI = MF.getRegInfo(); if (Is64Bit) { // The 64 bit implementation of segmented stacks needs to clobber both r10 // r11. This makes it impossible to use it along with nested parameters. const Function *F = MF.getFunction(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (I->hasNestAttr()) report_fatal_error("Cannot use segmented stacks with functions that " "have nested arguments."); } const TargetRegisterClass *AddrRegClass = getRegClassFor(getPointerTy()); unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, DAG.getRegister(Vreg, SPTy)); SDValue Ops1[2] = { Value, Chain }; return DAG.getMergeValues(Ops1, dl); } else { SDValue Flag; const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX); Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); unsigned SPReg = RegInfo->getStackRegister(); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); Chain = SP.getValue(1); if (Align) { SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align, VT)); Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); } SDValue Ops1[2] = { SP, Chain }; return DAG.getMergeValues(Ops1, dl); } } SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); const Value *SV = cast(Op.getOperand(2))->getValue(); SDLoc DL(Op); if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } // __va_list_tag: // gp_offset (0 - 6 * 8) // fp_offset (48 - 48 + 8 * 16) // overflow_arg_area (point to parameters coming in memory). // reg_save_area SmallVector MemOps; SDValue FIN = Op.getOperand(1); // Store gp_offset SDValue Store = DAG.getStore(Op.getOperand(0), DL, DAG.getConstant(FuncInfo->getVarArgsGPOffset(), MVT::i32), FIN, MachinePointerInfo(SV), false, false, 0); MemOps.push_back(Store); // Store fp_offset FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); Store = DAG.getStore(Op.getOperand(0), DL, DAG.getConstant(FuncInfo->getVarArgsFPOffset(), MVT::i32), FIN, MachinePointerInfo(SV, 4), false, false, 0); MemOps.push_back(Store); // Store ptr to overflow_arg_area FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8), false, false, 0); MemOps.push_back(Store); // Store ptr to reg_save_area. FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy()); Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo(SV, 16), false, false, 0); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->is64Bit() && "LowerVAARG only handles 64-bit va_arg!"); assert((Subtarget->isTargetLinux() || Subtarget->isTargetDarwin()) && "Unhandled target in LowerVAARG"); assert(Op.getNode()->getNumOperands() == 4); SDValue Chain = Op.getOperand(0); SDValue SrcPtr = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); unsigned Align = Op.getConstantOperandVal(3); SDLoc dl(Op); EVT ArgVT = Op.getNode()->getValueType(0); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); uint8_t ArgMode; // Decide which area this value should be read from. // TODO: Implement the AMD64 ABI in its entirety. This simple // selection mechanism works only for the basic types. if (ArgVT == MVT::f80) { llvm_unreachable("va_arg for f80 not yet implemented"); } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { ArgMode = 2; // Argument passed in XMM register. Use fp_offset. } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. } else { llvm_unreachable("Unhandled argument type in LowerVAARG"); } if (ArgMode == 2) { // Sanity Check: Make sure using fp_offset makes sense. assert(!DAG.getTarget().Options.UseSoftFloat && !(DAG.getMachineFunction() .getFunction()->getAttributes() .hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) && Subtarget->hasSSE1()); } // Insert VAARG_64 node into the DAG // VAARG_64 returns two values: Variable Argument Address, Chain SmallVector InstOps; InstOps.push_back(Chain); InstOps.push_back(SrcPtr); InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); InstOps.push_back(DAG.getConstant(Align, MVT::i32)); SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, VTs, InstOps, MVT::i64, MachinePointerInfo(SV), /*Align=*/0, /*Volatile=*/false, /*ReadMem=*/true, /*WriteMem=*/true); Chain = VAARG.getValue(1); // Load the next argument and return it return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo(), false, false, false, 0); } static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { // X86-64 va_list is a struct { i32, i32, i8*, i8* }. assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); SDLoc DL(Op); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, false, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } // getTargetVShiftByConstNode - Handle vector element shifts where the shift // amount is a constant. Takes immediate version of shift as input. static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT, SDValue SrcOp, uint64_t ShiftAmt, SelectionDAG &DAG) { MVT ElementType = VT.getVectorElementType(); // Fold this packed shift into its first operand if ShiftAmt is 0. if (ShiftAmt == 0) return SrcOp; // Check for ShiftAmt >= element width if (ShiftAmt >= ElementType.getSizeInBits()) { if (Opc == X86ISD::VSRAI) ShiftAmt = ElementType.getSizeInBits() - 1; else return DAG.getConstant(0, VT); } assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) && "Unknown target vector shift-by-constant node"); // Fold this packed vector shift into a build vector if SrcOp is a // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT. if (VT == SrcOp.getSimpleValueType() && ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { SmallVector Elts; unsigned NumElts = SrcOp->getNumOperands(); ConstantSDNode *ND; switch(Opc) { default: llvm_unreachable(nullptr); case X86ISD::VSHLI: for (unsigned i=0; i!=NumElts; ++i) { SDValue CurrentOp = SrcOp->getOperand(i); if (CurrentOp->getOpcode() == ISD::UNDEF) { Elts.push_back(CurrentOp); continue; } ND = cast(CurrentOp); const APInt &C = ND->getAPIntValue(); Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType)); } break; case X86ISD::VSRLI: for (unsigned i=0; i!=NumElts; ++i) { SDValue CurrentOp = SrcOp->getOperand(i); if (CurrentOp->getOpcode() == ISD::UNDEF) { Elts.push_back(CurrentOp); continue; } ND = cast(CurrentOp); const APInt &C = ND->getAPIntValue(); Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType)); } break; case X86ISD::VSRAI: for (unsigned i=0; i!=NumElts; ++i) { SDValue CurrentOp = SrcOp->getOperand(i); if (CurrentOp->getOpcode() == ISD::UNDEF) { Elts.push_back(CurrentOp); continue; } ND = cast(CurrentOp); const APInt &C = ND->getAPIntValue(); Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType)); } break; } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); } return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8)); } // getTargetVShiftNode - Handle vector element shifts where the shift amount // may or may not be a constant. Takes immediate version of shift as input. static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT, SDValue SrcOp, SDValue ShAmt, SelectionDAG &DAG) { MVT SVT = ShAmt.getSimpleValueType(); assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!"); // Catch shift-by-constant. if (ConstantSDNode *CShAmt = dyn_cast(ShAmt)) return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, CShAmt->getZExtValue(), DAG); // Change opcode to non-immediate version switch (Opc) { default: llvm_unreachable("Unknown target vector shift node"); case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; } const X86Subtarget &Subtarget = DAG.getTarget().getSubtarget(); if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND && ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) { // Let the shuffle legalizer expand this shift amount node. SDValue Op0 = ShAmt.getOperand(0); Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0); ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG); } else { // Need to build a vector containing shift amount. // SSE/AVX packed shifts only use the lower 64-bit of the shift count. SmallVector ShOps; ShOps.push_back(ShAmt); if (SVT == MVT::i32) { ShOps.push_back(DAG.getConstant(0, SVT)); ShOps.push_back(DAG.getUNDEF(SVT)); } ShOps.push_back(DAG.getUNDEF(SVT)); MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64; ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps); } // The return type has to be a 128-bit type with the same element // type as the input type. MVT EltVT = VT.getVectorElementType(); EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt); return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); } /// \brief Return (and \p Op, \p Mask) for compare instructions or /// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the /// necessary casting for \p Mask when lowering masking intrinsics. static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, SDValue PreservedSrc, const X86Subtarget *Subtarget, SelectionDAG &DAG) { EVT VT = Op.getValueType(); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VT.getVectorNumElements()); EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, Mask.getValueType().getSizeInBits()); SDLoc dl(Op); assert(MaskVT.isSimple() && "invalid mask type"); if (isAllOnes(Mask)) return Op; // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements // are extracted by EXTRACT_SUBVECTOR. SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask), DAG.getIntPtrConstant(0)); switch (Op.getOpcode()) { default: break; case X86ISD::PCMPEQM: case X86ISD::PCMPGTM: case X86ISD::CMPM: case X86ISD::CMPMU: return DAG.getNode(ISD::AND, dl, VT, Op, VMask); } if (PreservedSrc.getOpcode() == ISD::UNDEF) PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(ISD::VSELECT, dl, VT, VMask, Op, PreservedSrc); } /// \brief Creates an SDNode for a predicated scalar operation. /// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc). /// The mask is comming as MVT::i8 and it should be truncated /// to MVT::i1 while lowering masking intrinsics. /// The main difference between ScalarMaskingNode and VectorMaskingNode is using /// "X86select" instead of "vselect". We just can't create the "vselect" node for /// a scalar instruction. static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, SDValue PreservedSrc, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (isAllOnes(Mask)) return Op; EVT VT = Op.getValueType(); SDLoc dl(Op); // The mask should be of type MVT::i1 SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask); if (PreservedSrc.getOpcode() == ISD::UNDEF) PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc); } static unsigned getOpcodeForFMAIntrinsic(unsigned IntNo) { switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_fma_vfmadd_ps: case Intrinsic::x86_fma_vfmadd_pd: case Intrinsic::x86_fma_vfmadd_ps_256: case Intrinsic::x86_fma_vfmadd_pd_256: case Intrinsic::x86_fma_mask_vfmadd_ps_512: case Intrinsic::x86_fma_mask_vfmadd_pd_512: return X86ISD::FMADD; case Intrinsic::x86_fma_vfmsub_ps: case Intrinsic::x86_fma_vfmsub_pd: case Intrinsic::x86_fma_vfmsub_ps_256: case Intrinsic::x86_fma_vfmsub_pd_256: case Intrinsic::x86_fma_mask_vfmsub_ps_512: case Intrinsic::x86_fma_mask_vfmsub_pd_512: return X86ISD::FMSUB; case Intrinsic::x86_fma_vfnmadd_ps: case Intrinsic::x86_fma_vfnmadd_pd: case Intrinsic::x86_fma_vfnmadd_ps_256: case Intrinsic::x86_fma_vfnmadd_pd_256: case Intrinsic::x86_fma_mask_vfnmadd_ps_512: case Intrinsic::x86_fma_mask_vfnmadd_pd_512: return X86ISD::FNMADD; case Intrinsic::x86_fma_vfnmsub_ps: case Intrinsic::x86_fma_vfnmsub_pd: case Intrinsic::x86_fma_vfnmsub_ps_256: case Intrinsic::x86_fma_vfnmsub_pd_256: case Intrinsic::x86_fma_mask_vfnmsub_ps_512: case Intrinsic::x86_fma_mask_vfnmsub_pd_512: return X86ISD::FNMSUB; case Intrinsic::x86_fma_vfmaddsub_ps: case Intrinsic::x86_fma_vfmaddsub_pd: case Intrinsic::x86_fma_vfmaddsub_ps_256: case Intrinsic::x86_fma_vfmaddsub_pd_256: case Intrinsic::x86_fma_mask_vfmaddsub_ps_512: case Intrinsic::x86_fma_mask_vfmaddsub_pd_512: return X86ISD::FMADDSUB; case Intrinsic::x86_fma_vfmsubadd_ps: case Intrinsic::x86_fma_vfmsubadd_pd: case Intrinsic::x86_fma_vfmsubadd_ps_256: case Intrinsic::x86_fma_vfmsubadd_pd_256: case Intrinsic::x86_fma_mask_vfmsubadd_ps_512: case Intrinsic::x86_fma_mask_vfmsubadd_pd_512: return X86ISD::FMSUBADD; } } static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); EVT VT = Op.getValueType(); const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo); if (IntrData) { switch(IntrData->Type) { case INTR_TYPE_1OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1)); case INTR_TYPE_2OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case INTR_TYPE_3OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case INTR_TYPE_1OP_MASK_RM: { SDValue Src = Op.getOperand(1); SDValue Src0 = Op.getOperand(2); SDValue Mask = Op.getOperand(3); SDValue RoundingMode = Op.getOperand(4); return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, RoundingMode), Mask, Src0, Subtarget, DAG); } case INTR_TYPE_SCALAR_MASK_RM: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src0 = Op.getOperand(3); SDValue Mask = Op.getOperand(4); SDValue RoundingMode = Op.getOperand(5); return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, RoundingMode), Mask, Src0, Subtarget, DAG); } case INTR_TYPE_2OP_MASK: { return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1), Op.getOperand(2)), Op.getOperand(4), Op.getOperand(3), Subtarget, DAG); } case CMP_MASK: case CMP_MASK_CC: { // Comparison intrinsics with masks. // Example of transformation: // (i8 (int_x86_avx512_mask_pcmpeq_q_128 // (v2i64 %a), (v2i64 %b), (i8 %mask))) -> // (i8 (bitcast // (v8i1 (insert_subvector undef, // (v2i1 (and (PCMPEQM %a, %b), // (extract_subvector // (v8i1 (bitcast %mask)), 0))), 0)))) EVT VT = Op.getOperand(1).getValueType(); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VT.getVectorNumElements()); SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3); EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, Mask.getValueType().getSizeInBits()); SDValue Cmp; if (IntrData->Type == CMP_MASK_CC) { Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } else { assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!"); Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), Op.getOperand(2)); } SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, DAG.getTargetConstant(0, MaskVT), Subtarget, DAG); SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, DAG.getUNDEF(BitcastVT), CmpMask, DAG.getIntPtrConstant(0)); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } case COMI: { // Comparison intrinsics ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1; SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case VSHIFT: return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), Op.getOperand(1), Op.getOperand(2), DAG); case VSHIFT_MASK: return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), Op.getOperand(1), Op.getOperand(2), DAG), Op.getOperand(4), Op.getOperand(3), Subtarget, DAG); case COMPRESS_EXPAND_IN_REG: { SDValue Mask = Op.getOperand(3); SDValue DataToCompress = Op.getOperand(1); SDValue PassThru = Op.getOperand(2); if (isAllOnes(Mask)) // return data as is return Op.getOperand(1); EVT VT = Op.getValueType(); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VT.getVectorNumElements()); EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, Mask.getValueType().getSizeInBits()); SDLoc dl(Op); SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask), DAG.getIntPtrConstant(0)); return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress, PassThru); } case BLEND: { SDValue Mask = Op.getOperand(3); EVT VT = Op.getValueType(); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VT.getVectorNumElements()); EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, Mask.getValueType().getSizeInBits()); SDLoc dl(Op); SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask), DAG.getIntPtrConstant(0)); return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1), Op.getOperand(2)); } case FMA_OP_MASK: { return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)), Op.getOperand(4), Op.getOperand(1), Subtarget, DAG); } default: break; } } switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::x86_avx512_mask_valign_q_512: case Intrinsic::x86_avx512_mask_valign_d_512: // Vector source operands are swapped. return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(1), Op.getOperand(3)), Op.getOperand(5), Op.getOperand(4), Subtarget, DAG); // ptest and testp intrinsics. The intrinsic these come from are designed to // return an integer value, not just an instruction so lower it to the ptest // or testp pattern and a setcc for the result. case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestnzc: case Intrinsic::x86_avx_ptestz_256: case Intrinsic::x86_avx_ptestc_256: case Intrinsic::x86_avx_ptestnzc_256: case Intrinsic::x86_avx_vtestz_ps: case Intrinsic::x86_avx_vtestc_ps: case Intrinsic::x86_avx_vtestnzc_ps: case Intrinsic::x86_avx_vtestz_pd: case Intrinsic::x86_avx_vtestc_pd: case Intrinsic::x86_avx_vtestnzc_pd: case Intrinsic::x86_avx_vtestz_ps_256: case Intrinsic::x86_avx_vtestc_ps_256: case Intrinsic::x86_avx_vtestnzc_ps_256: case Intrinsic::x86_avx_vtestz_pd_256: case Intrinsic::x86_avx_vtestc_pd_256: case Intrinsic::x86_avx_vtestnzc_pd_256: { bool IsTestPacked = false; unsigned X86CC; switch (IntNo) { default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); case Intrinsic::x86_avx_vtestz_ps: case Intrinsic::x86_avx_vtestz_pd: case Intrinsic::x86_avx_vtestz_ps_256: case Intrinsic::x86_avx_vtestz_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_avx_ptestz_256: // ZF = 1 X86CC = X86::COND_E; break; case Intrinsic::x86_avx_vtestc_ps: case Intrinsic::x86_avx_vtestc_pd: case Intrinsic::x86_avx_vtestc_ps_256: case Intrinsic::x86_avx_vtestc_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_avx_ptestc_256: // CF = 1 X86CC = X86::COND_B; break; case Intrinsic::x86_avx_vtestnzc_ps: case Intrinsic::x86_avx_vtestnzc_pd: case Intrinsic::x86_avx_vtestnzc_ps_256: case Intrinsic::x86_avx_vtestnzc_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestnzc: case Intrinsic::x86_avx_ptestnzc_256: // ZF and CF = 0 X86CC = X86::COND_A; break; } SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); SDValue CC = DAG.getConstant(X86CC, MVT::i8); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_avx512_kortestz_w: case Intrinsic::x86_avx512_kortestc_w: { unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B; SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2)); SDValue CC = DAG.getConstant(X86CC, MVT::i8); SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_sse42_pcmpistria128: case Intrinsic::x86_sse42_pcmpestria128: case Intrinsic::x86_sse42_pcmpistric128: case Intrinsic::x86_sse42_pcmpestric128: case Intrinsic::x86_sse42_pcmpistrio128: case Intrinsic::x86_sse42_pcmpestrio128: case Intrinsic::x86_sse42_pcmpistris128: case Intrinsic::x86_sse42_pcmpestris128: case Intrinsic::x86_sse42_pcmpistriz128: case Intrinsic::x86_sse42_pcmpestriz128: { unsigned Opcode; unsigned X86CC; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse42_pcmpistria128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_A; break; case Intrinsic::x86_sse42_pcmpestria128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_A; break; case Intrinsic::x86_sse42_pcmpistric128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_B; break; case Intrinsic::x86_sse42_pcmpestric128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_B; break; case Intrinsic::x86_sse42_pcmpistrio128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_O; break; case Intrinsic::x86_sse42_pcmpestrio128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_O; break; case Intrinsic::x86_sse42_pcmpistris128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_S; break; case Intrinsic::x86_sse42_pcmpestris128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_S; break; case Intrinsic::x86_sse42_pcmpistriz128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_E; break; case Intrinsic::x86_sse42_pcmpestriz128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_E; break; } SmallVector NewOps(Op->op_begin()+1, Op->op_end()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), SDValue(PCMP.getNode(), 1)); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_sse42_pcmpistri128: case Intrinsic::x86_sse42_pcmpestri128: { unsigned Opcode; if (IntNo == Intrinsic::x86_sse42_pcmpistri128) Opcode = X86ISD::PCMPISTRI; else Opcode = X86ISD::PCMPESTRI; SmallVector NewOps(Op->op_begin()+1, Op->op_end()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(Opcode, dl, VTs, NewOps); } case Intrinsic::x86_fma_mask_vfmadd_ps_512: case Intrinsic::x86_fma_mask_vfmadd_pd_512: case Intrinsic::x86_fma_mask_vfmsub_ps_512: case Intrinsic::x86_fma_mask_vfmsub_pd_512: case Intrinsic::x86_fma_mask_vfnmadd_ps_512: case Intrinsic::x86_fma_mask_vfnmadd_pd_512: case Intrinsic::x86_fma_mask_vfnmsub_ps_512: case Intrinsic::x86_fma_mask_vfnmsub_pd_512: case Intrinsic::x86_fma_mask_vfmaddsub_ps_512: case Intrinsic::x86_fma_mask_vfmaddsub_pd_512: case Intrinsic::x86_fma_mask_vfmsubadd_ps_512: case Intrinsic::x86_fma_mask_vfmsubadd_pd_512: { auto *SAE = cast(Op.getOperand(5)); if (SAE->getZExtValue() == X86::STATIC_ROUNDING::CUR_DIRECTION) return getVectorMaskingNode(DAG.getNode(getOpcodeForFMAIntrinsic(IntNo), dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)), Op.getOperand(4), Op.getOperand(1), Subtarget, DAG); else return SDValue(); } case Intrinsic::x86_fma_vfmadd_ps: case Intrinsic::x86_fma_vfmadd_pd: case Intrinsic::x86_fma_vfmsub_ps: case Intrinsic::x86_fma_vfmsub_pd: case Intrinsic::x86_fma_vfnmadd_ps: case Intrinsic::x86_fma_vfnmadd_pd: case Intrinsic::x86_fma_vfnmsub_ps: case Intrinsic::x86_fma_vfnmsub_pd: case Intrinsic::x86_fma_vfmaddsub_ps: case Intrinsic::x86_fma_vfmaddsub_pd: case Intrinsic::x86_fma_vfmsubadd_ps: case Intrinsic::x86_fma_vfmsubadd_pd: case Intrinsic::x86_fma_vfmadd_ps_256: case Intrinsic::x86_fma_vfmadd_pd_256: case Intrinsic::x86_fma_vfmsub_ps_256: case Intrinsic::x86_fma_vfmsub_pd_256: case Intrinsic::x86_fma_vfnmadd_ps_256: case Intrinsic::x86_fma_vfnmadd_pd_256: case Intrinsic::x86_fma_vfnmsub_ps_256: case Intrinsic::x86_fma_vfnmsub_pd_256: case Intrinsic::x86_fma_vfmaddsub_ps_256: case Intrinsic::x86_fma_vfmaddsub_pd_256: case Intrinsic::x86_fma_vfmsubadd_ps_256: case Intrinsic::x86_fma_vfmsubadd_pd_256: return DAG.getNode(getOpcodeForFMAIntrinsic(IntNo), dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } } static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Src, SDValue Mask, SDValue Base, SDValue Index, SDValue ScaleOp, SDValue Chain, const X86Subtarget * Subtarget) { SDLoc dl(Op); ConstantSDNode *C = dyn_cast(ScaleOp); assert(C && "Invalid scale type"); SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); EVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); SDValue MaskInReg; ConstantSDNode *MaskC = dyn_cast(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT); else MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask); SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); SDValue Disp = DAG.getTargetConstant(0, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); if (Src.getOpcode() == ISD::UNDEF) Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl); SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; return DAG.getMergeValues(RetOps, dl); } static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Src, SDValue Mask, SDValue Base, SDValue Index, SDValue ScaleOp, SDValue Chain) { SDLoc dl(Op); ConstantSDNode *C = dyn_cast(ScaleOp); assert(C && "Invalid scale type"); SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); SDValue Disp = DAG.getTargetConstant(0, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); EVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); SDValue MaskInReg; ConstantSDNode *MaskC = dyn_cast(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT); else MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask); SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); return SDValue(Res, 1); } static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Mask, SDValue Base, SDValue Index, SDValue ScaleOp, SDValue Chain) { SDLoc dl(Op); ConstantSDNode *C = dyn_cast(ScaleOp); assert(C && "Invalid scale type"); SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8); SDValue Disp = DAG.getTargetConstant(0, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); EVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); SDValue MaskInReg; ConstantSDNode *MaskC = dyn_cast(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT); else MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask); //SDVTList VTs = DAG.getVTList(MVT::Other); SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops); return SDValue(Res, 0); } // getReadPerformanceCounter - Handles the lowering of builtin intrinsics that // read performance monitor counters (x86_rdpmc). static void getReadPerformanceCounter(SDNode *N, SDLoc DL, SelectionDAG &DAG, const X86Subtarget *Subtarget, SmallVectorImpl &Results) { assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue LO, HI; // The ECX register is used to select the index of the performance counter // to read. SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2)); SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain); // Reads the content of a 64-bit performance counter and returns it in the // registers EDX:EAX. if (Subtarget->is64Bit()) { LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, LO.getValue(2)); } else { LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, LO.getValue(2)); } Chain = HI.getValue(1); if (Subtarget->is64Bit()) { // The EAX register is loaded with the low-order 32 bits. The EDX register // is loaded with the supported high-order bits of the counter. SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, DAG.getConstant(32, MVT::i8)); Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); Results.push_back(Chain); return; } // Use a buildpair to merge the two 32-bit values into a 64-bit one. SDValue Ops[] = { LO, HI }; SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); Results.push_back(Pair); Results.push_back(Chain); } // getReadTimeStampCounter - Handles the lowering of builtin intrinsics that // read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is // also used to custom lower READCYCLECOUNTER nodes. static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode, SelectionDAG &DAG, const X86Subtarget *Subtarget, SmallVectorImpl &Results) { SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0)); SDValue LO, HI; // The processor's time-stamp counter (a 64-bit MSR) is stored into the // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR // and the EAX register is loaded with the low-order 32 bits. if (Subtarget->is64Bit()) { LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, LO.getValue(2)); } else { LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, LO.getValue(2)); } SDValue Chain = HI.getValue(1); if (Opcode == X86ISD::RDTSCP_DAG) { assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into // the ECX register. Add 'ecx' explicitly to the chain. SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, HI.getValue(2)); // Explicitly store the content of ECX at the location passed in input // to the 'rdtscp' intrinsic. Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2), MachinePointerInfo(), false, false, 0); } if (Subtarget->is64Bit()) { // The EDX register is loaded with the high-order 32 bits of the MSR, and // the EAX register is loaded with the low-order 32 bits. SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, DAG.getConstant(32, MVT::i8)); Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); Results.push_back(Chain); return; } // Use a buildpair to merge the two 32-bit values into a 64-bit one. SDValue Ops[] = { LO, HI }; SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); Results.push_back(Pair); Results.push_back(Chain); } static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SmallVector Results; SDLoc DL(Op); getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget, Results); return DAG.getMergeValues(Results, DL); } static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { unsigned IntNo = cast(Op.getOperand(1))->getZExtValue(); const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo); if (!IntrData) return SDValue(); SDLoc dl(Op); switch(IntrData->Type) { default: llvm_unreachable("Unknown Intrinsic Type"); break; case RDSEED: case RDRAND: { // Emit the node with the right value type. SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. // Otherwise return the value from Rand, which is always 0, casted to i32. SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), DAG.getConstant(1, Op->getValueType(1)), DAG.getConstant(X86::COND_B, MVT::i32), SDValue(Result.getNode(), 1) }; SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, DAG.getVTList(Op->getValueType(1), MVT::Glue), Ops); // Return { result, isValid, chain }. return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, SDValue(Result.getNode(), 2)); } case GATHER: { //gather(v1, mask, index, base, scale); SDValue Chain = Op.getOperand(0); SDValue Src = Op.getOperand(2); SDValue Base = Op.getOperand(3); SDValue Index = Op.getOperand(4); SDValue Mask = Op.getOperand(5); SDValue Scale = Op.getOperand(6); return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain, Subtarget); } case SCATTER: { //scatter(base, mask, index, v1, scale); SDValue Chain = Op.getOperand(0); SDValue Base = Op.getOperand(2); SDValue Mask = Op.getOperand(3); SDValue Index = Op.getOperand(4); SDValue Src = Op.getOperand(5); SDValue Scale = Op.getOperand(6); return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain); } case PREFETCH: { SDValue Hint = Op.getOperand(6); unsigned HintVal; if (dyn_cast (Hint) == nullptr || (HintVal = dyn_cast (Hint)->getZExtValue()) > 1) llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1"); unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0); SDValue Chain = Op.getOperand(0); SDValue Mask = Op.getOperand(2); SDValue Index = Op.getOperand(3); SDValue Base = Op.getOperand(4); SDValue Scale = Op.getOperand(5); return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain); } // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP). case RDTSC: { SmallVector Results; getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results); return DAG.getMergeValues(Results, dl); } // Read Performance Monitoring Counters. case RDPMC: { SmallVector Results; getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results); return DAG.getMergeValues(Results, dl); } // XTEST intrinsics. case XTEST: { SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_NE, MVT::i8), InTrans); SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Ret, SDValue(InTrans.getNode(), 1)); } // ADC/ADCX/SBB case ADX: { SmallVector Results; SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other); SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other); SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2), DAG.getConstant(-1, MVT::i8)); SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3), Op.getOperand(4), GenCF.getValue(1)); SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0), Op.getOperand(5), MachinePointerInfo(), false, false, 0); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_B, MVT::i8), Res.getValue(1)); Results.push_back(SetCC); Results.push_back(Store); return DAG.getMergeValues(Results, dl); } case COMPRESS_TO_MEM: { SDLoc dl(Op); SDValue Mask = Op.getOperand(4); SDValue DataToCompress = Op.getOperand(3); SDValue Addr = Op.getOperand(2); SDValue Chain = Op.getOperand(0); if (isAllOnes(Mask)) // return just a store return DAG.getStore(Chain, dl, DataToCompress, Addr, MachinePointerInfo(), false, false, 0); EVT VT = DataToCompress.getValueType(); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VT.getVectorNumElements()); EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, Mask.getValueType().getSizeInBits()); SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask), DAG.getIntPtrConstant(0)); SDValue Compressed = DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress, DAG.getUNDEF(VT)); return DAG.getStore(Chain, dl, Compressed, Addr, MachinePointerInfo(), false, false, 0); } case EXPAND_FROM_MEM: { SDLoc dl(Op); SDValue Mask = Op.getOperand(4); SDValue PathThru = Op.getOperand(3); SDValue Addr = Op.getOperand(2); SDValue Chain = Op.getOperand(0); EVT VT = Op.getValueType(); if (isAllOnes(Mask)) // return just a load return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, false, 0); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VT.getVectorNumElements()); EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, Mask.getValueType().getSizeInBits()); SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask), DAG.getIntPtrConstant(0)); SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, false, 0); SmallVector Results; Results.push_back(DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand, PathThru)); Results.push_back(Chain); return DAG.getMergeValues(Results, dl); } } } SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); SDLoc dl(Op); EVT PtrVT = getPointerTy(); if (Depth > 0) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Just load the return address. SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, MachinePointerInfo(), false, false, false, 0); } SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); // FIXME probably not meaningful unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); unsigned FrameReg = RegInfo->getPtrSizedFrameRegister( DAG.getMachineFunction()); assert(((FrameReg == X86::RBP && VT == MVT::i64) || (FrameReg == X86::EBP && VT == MVT::i32)) && "Invalid Frame Register!"); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT) const { unsigned Reg = StringSwitch(RegName) .Case("esp", X86::ESP) .Case("rsp", X86::RSP) .Default(0); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize()); } SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); SDLoc dl (Op); EVT PtrVT = getPointerTy(); const X86RegisterInfo *RegInfo = static_cast( DAG.getSubtarget().getRegisterInfo()); unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || (FrameReg == X86::EBP && PtrVT == MVT::i32)) && "Invalid Frame Register!"); SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, DAG.getIntPtrConstant(RegInfo->getSlotSize())); StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), false, false, 0); Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, DAG.getRegister(StoreAddrReg, PtrVT)); } SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); } SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); } static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { return Op.getOperand(0); } SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { SDValue Root = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value SDLoc dl (Op); const Value *TrmpAddr = cast(Op.getOperand(4))->getValue(); const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); if (Subtarget->is64Bit()) { SDValue OutChains[6]; // Large code-model. const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix // Load the pointer to the nested function into R11. unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 SDValue Addr = Trmp; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2), false, false, 2); // Load the 'nest' parameter value into R10. // R10 is specified in X86CallingConv.td OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, MachinePointerInfo(TrmpAddr, 10), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12), false, false, 2); // Jump to the nested function. OpCode = (JMP64r << 8) | REX_WB; // jmpq *... Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, MachinePointerInfo(TrmpAddr, 20), false, false, 0); unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, MachinePointerInfo(TrmpAddr, 22), false, false, 0); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } else { const Function *Func = cast(cast(Op.getOperand(5))->getValue()); CallingConv::ID CC = Func->getCallingConv(); unsigned NestReg; switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::X86_StdCall: { // Pass 'nest' parameter in ECX. // Must be kept in sync with X86CallingConv.td NestReg = X86::ECX; // Check that ECX wasn't needed by an 'inreg' parameter. FunctionType *FTy = Func->getFunctionType(); const AttributeSet &Attrs = Func->getAttributes(); if (!Attrs.isEmpty() && !Func->isVarArg()) { unsigned InRegCount = 0; unsigned Idx = 1; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I, ++Idx) if (Attrs.hasAttribute(Idx, Attribute::InReg)) // FIXME: should only count parameters that are lowered to integers. InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; if (InRegCount > 2) { report_fatal_error("Nest register in use - reduce number of inreg" " parameters!"); } } break; } case CallingConv::X86_FastCall: case CallingConv::X86_ThisCall: case CallingConv::Fast: // Pass 'nest' parameter in EAX. // Must be kept in sync with X86CallingConv.td NestReg = X86::EAX; break; } SDValue OutChains[4]; SDValue Addr, Disp; Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); // This is storing the opcode for MOV32ri. const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), Trmp, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1), false, false, 1); const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, MachinePointerInfo(TrmpAddr, 5), false, false, 1); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6), false, false, 1); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } } SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { /* The rounding mode is in bits 11:10 of FPSR, and has the following settings: 00 Round to nearest 01 Round to -inf 10 Round to +inf 11 Round to 0 FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) */ MachineFunction &MF = DAG.getMachineFunction(); const TargetMachine &TM = MF.getTarget(); const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering(); unsigned StackAlignment = TFI.getStackAlignment(); MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); // Save FP Control Word to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, 2, 2); SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, DAG.getVTList(MVT::Other), Ops, MVT::i16, MMO); // Load FP Control Word from stack slot SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo(), false, false, false, 0); // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::SRL, DL, MVT::i16, DAG.getNode(ISD::AND, DL, MVT::i16, CWD, DAG.getConstant(0x800, MVT::i16)), DAG.getConstant(11, MVT::i8)); SDValue CWD2 = DAG.getNode(ISD::SRL, DL, MVT::i16, DAG.getNode(ISD::AND, DL, MVT::i16, CWD, DAG.getConstant(0x400, MVT::i16)), DAG.getConstant(9, MVT::i8)); SDValue RetVal = DAG.getNode(ISD::AND, DL, MVT::i16, DAG.getNode(ISD::ADD, DL, MVT::i16, DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), DAG.getConstant(1, MVT::i16)), DAG.getConstant(3, MVT::i16)); return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); } static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); SDLoc dl(Op); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // If src is zero (i.e. bsr sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits+NumBits-1, OpVT), DAG.getConstant(X86::COND_E, MVT::i8), Op.getValue(1) }; Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops); // Finally xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); SDLoc dl(Op); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse). SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // And xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); unsigned NumBits = VT.getSizeInBits(); SDLoc dl(Op); Op = Op.getOperand(0); // Issue a bsf (scan bits forward) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(VT, MVT::i32); Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); // If src is zero (i.e. bsf sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits, VT), DAG.getConstant(X86::COND_E, MVT::i8), Op.getValue(1) }; return DAG.getNode(X86ISD::CMOV, dl, VT, Ops); } // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit // ones, and then concatenate the result back. static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); assert(VT.is256BitVector() && VT.isInteger() && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); SDLoc dl(Op); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); // Extract the RHS vectors SDValue RHS = Op.getOperand(1); SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); MVT EltVT = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); } static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { assert(Op.getSimpleValueType().is256BitVector() && Op.getSimpleValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { assert(Op.getSimpleValueType().is256BitVector() && Op.getSimpleValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); // Decompose 256-bit ops into smaller 128-bit ops. if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntArith(Op, DAG); SDValue A = Op.getOperand(0); SDValue B = Op.getOperand(1); // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. if (VT == MVT::v4i32) { assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && "Should not custom lower when pmuldq is available!"); // Extract the odd parts. static const int UnpackMask[] = { 1, -1, 3, -1 }; SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); // Multiply the even parts. SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); // Now multiply odd parts. SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens); Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds); // Merge the two vectors back together with a shuffle. This expands into 2 // shuffles. static const int ShufMask[] = { 0, 4, 2, 6 }; return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); } assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && "Only know how to lower V2I64/V4I64/V8I64 multiply"); // Ahi = psrlqi(a, 32); // Bhi = psrlqi(b, 32); // // AloBlo = pmuludq(a, b); // AloBhi = pmuludq(a, Bhi); // AhiBlo = pmuludq(Ahi, b); // AloBhi = psllqi(AloBhi, 32); // AhiBlo = psllqi(AhiBlo, 32); // return AloBlo + AloBhi + AhiBlo; SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); // Bit cast to 32-bit vectors for MULUDQ EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32; A = DAG.getNode(ISD::BITCAST, dl, MulVT, A); B = DAG.getNode(ISD::BITCAST, dl, MulVT, B); Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi); Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi); SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG); AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG); SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); } SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWin64() && "Unexpected target"); EVT VT = Op.getValueType(); assert(VT.isInteger() && VT.getSizeInBits() == 128 && "Unexpected return type for lowering"); RTLIB::Libcall LC; bool isSigned; switch (Op->getOpcode()) { default: llvm_unreachable("Unexpected request for libcall!"); case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break; case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break; case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break; case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break; case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break; case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break; } SDLoc dl(Op); SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { EVT ArgVT = Op->getOperand(i).getValueType(); assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 && "Unexpected argument type for lowering"); SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16); Entry.Node = StackPtr; InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(), false, false, 16); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Ty = PointerType::get(ArgTy,0); Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain) .setCallee(getLibcallCallingConv(LC), static_cast(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee, std::move(Args), 0) .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); std::pair CallInfo = LowerCallTo(CLI); return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first); } static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); EVT VT = Op0.getValueType(); SDLoc dl(Op); assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) || (VT == MVT::v8i32 && Subtarget->hasInt256())); // PMULxD operations multiply each even value (starting at 0) of LHS with // the related value of RHS and produce a widen result. // E.g., PMULUDQ <4 x i32> , <4 x i32> // => <2 x i64> // // In other word, to have all the results, we need to perform two PMULxD: // 1. one with the even values. // 2. one with the odd values. // To achieve #2, with need to place the odd values at an even position. // // Place the odd value at an even position (basically, shift all values 1 // step to the left): const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1}; // => SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask); // => SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask); // Emit two multiplies, one for the lower 2 ints and one for the higher 2 // ints. MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64; bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI; unsigned Opcode = (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ; // PMULUDQ <4 x i32> , <4 x i32> // => <2 x i64> SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1)); // PMULUDQ <4 x i32> , <4 x i32> // => <2 x i64> SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1)); // Shuffle it back into the right order. SDValue Highs, Lows; if (VT == MVT::v8i32) { const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15}; Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14}; Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); } else { const int HighMask[] = {1, 5, 3, 7}; Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); const int LowMask[] = {0, 4, 2, 6}; Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); } // If we have a signed multiply but no PMULDQ fix up the high parts of a // unsigned multiply. if (IsSigned && !Subtarget->hasSSE41()) { SDValue ShAmt = DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT)); SDValue T1 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1); SDValue T2 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0); SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2); Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup); } // The first result of MUL_LOHI is actually the low value, followed by the // high value. SDValue Ops[] = {Lows, Highs}; return DAG.getMergeValues(Ops, dl); } static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); // Optimize shl/srl/sra with constant shift amount. if (auto *BVAmt = dyn_cast(Amt)) { if (auto *ShiftConst = BVAmt->getConstantSplatNode()) { uint64_t ShiftAmt = ShiftConst->getZExtValue(); if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || (Subtarget->hasInt256() && (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) || (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) { if (Op.getOpcode() == ISD::SHL) return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt, DAG); if (Op.getOpcode() == ISD::SRL) return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64) return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt, DAG); } if (VT == MVT::v16i8) { if (Op.getOpcode() == ISD::SHL) { // Make a large shift. SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, R, ShiftAmt, DAG); SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); // Zero out the rightmost bits. SmallVector V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt), MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); } if (Op.getOpcode() == ISD::SRL) { // Make a large shift. SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, MVT::v8i16, R, ShiftAmt, DAG); SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); // Zero out the leftmost bits. SmallVector V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SRL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); } if (Op.getOpcode() == ISD::SRA) { if (ShiftAmt == 7) { // R s>> 7 === R s< 0 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); } // R s>> a === ((R u>> a) ^ m) - m SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); SmallVector V(16, DAG.getConstant(128 >> ShiftAmt, MVT::i8)); SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V); Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); return Res; } llvm_unreachable("Unknown shift opcode."); } if (Subtarget->hasInt256() && VT == MVT::v32i8) { if (Op.getOpcode() == ISD::SHL) { // Make a large shift. SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v16i16, R, ShiftAmt, DAG); SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); // Zero out the rightmost bits. SmallVector V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt), MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); } if (Op.getOpcode() == ISD::SRL) { // Make a large shift. SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, MVT::v16i16, R, ShiftAmt, DAG); SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); // Zero out the leftmost bits. SmallVector V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SRL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); } if (Op.getOpcode() == ISD::SRA) { if (ShiftAmt == 7) { // R s>> 7 === R s< 0 SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); } // R s>> a === ((R u>> a) ^ m) - m SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); SmallVector V(32, DAG.getConstant(128 >> ShiftAmt, MVT::i8)); SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V); Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); return Res; } llvm_unreachable("Unknown shift opcode."); } } } // Special case in 32-bit mode, where i64 is expanded into high and low parts. if (!Subtarget->is64Bit() && (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && Amt.getOpcode() == ISD::BITCAST && Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { Amt = Amt.getOperand(0); unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / VT.getVectorNumElements(); unsigned RatioInLog2 = Log2_32_Ceil(Ratio); uint64_t ShiftAmt = 0; for (unsigned i = 0; i != Ratio; ++i) { ConstantSDNode *C = dyn_cast(Amt.getOperand(i)); if (!C) return SDValue(); // 6 == Log2(64) ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); } // Check remaining shift amounts. for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { uint64_t ShAmt = 0; for (unsigned j = 0; j != Ratio; ++j) { ConstantSDNode *C = dyn_cast(Amt.getOperand(i + j)); if (!C) return SDValue(); // 6 == Log2(64) ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); } if (ShAmt != ShiftAmt) return SDValue(); } switch (Op.getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); case ISD::SHL: return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt, DAG); case ISD::SRL: return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); case ISD::SRA: return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt, DAG); } } return SDValue(); } static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, const X86Subtarget* Subtarget) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) || VT == MVT::v4i32 || VT == MVT::v8i16 || (Subtarget->hasInt256() && ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) || VT == MVT::v8i32 || VT == MVT::v16i16)) || (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) { SDValue BaseShAmt; EVT EltVT = VT.getVectorElementType(); if (BuildVectorSDNode *BV = dyn_cast(Amt)) { // Check if this build_vector node is doing a splat. // If so, then set BaseShAmt equal to the splat value. BaseShAmt = BV->getSplatValue(); if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF) BaseShAmt = SDValue(); } else { if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) Amt = Amt.getOperand(0); ShuffleVectorSDNode *SVN = dyn_cast(Amt); if (SVN && SVN->isSplat()) { unsigned SplatIdx = (unsigned)SVN->getSplatIndex(); SDValue InVec = Amt.getOperand(0); if (InVec.getOpcode() == ISD::BUILD_VECTOR) { assert((SplatIdx < InVec.getValueType().getVectorNumElements()) && "Unexpected shuffle index found!"); BaseShAmt = InVec.getOperand(SplatIdx); } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { if (ConstantSDNode *C = dyn_cast(InVec.getOperand(2))) { if (C->getZExtValue() == SplatIdx) BaseShAmt = InVec.getOperand(1); } } if (!BaseShAmt) // Avoid introducing an extract element from a shuffle. BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec, DAG.getIntPtrConstant(SplatIdx)); } } if (BaseShAmt.getNode()) { assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!"); if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt); else if (EltVT.bitsLT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); case ISD::SHL: switch (VT.SimpleTy) { default: return SDValue(); case MVT::v2i64: case MVT::v4i32: case MVT::v8i16: case MVT::v4i64: case MVT::v8i32: case MVT::v16i16: case MVT::v16i32: case MVT::v8i64: return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG); } case ISD::SRA: switch (VT.SimpleTy) { default: return SDValue(); case MVT::v4i32: case MVT::v8i16: case MVT::v8i32: case MVT::v16i16: case MVT::v16i32: case MVT::v8i64: return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG); } case ISD::SRL: switch (VT.SimpleTy) { default: return SDValue(); case MVT::v2i64: case MVT::v4i32: case MVT::v8i16: case MVT::v4i64: case MVT::v8i32: case MVT::v16i16: case MVT::v16i32: case MVT::v8i64: return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG); } } } } // Special case in 32-bit mode, where i64 is expanded into high and low parts. if (!Subtarget->is64Bit() && (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) || (Subtarget->hasAVX512() && VT == MVT::v8i64)) && Amt.getOpcode() == ISD::BITCAST && Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { Amt = Amt.getOperand(0); unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / VT.getVectorNumElements(); std::vector Vals(Ratio); for (unsigned i = 0; i != Ratio; ++i) Vals[i] = Amt.getOperand(i); for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { for (unsigned j = 0; j != Ratio; ++j) if (Vals[j] != Amt.getOperand(i + j)) return SDValue(); } switch (Op.getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); case ISD::SHL: return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1)); case ISD::SRL: return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1)); case ISD::SRA: return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1)); } } return SDValue(); } static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); SDValue V; assert(VT.isVector() && "Custom lowering only for vector shifts!"); assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!"); V = LowerScalarImmediateShift(Op, DAG, Subtarget); if (V.getNode()) return V; V = LowerScalarVariableShift(Op, DAG, Subtarget); if (V.getNode()) return V; if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64)) return Op; // AVX2 has VPSLLV/VPSRAV/VPSRLV. if (Subtarget->hasInt256()) { if (Op.getOpcode() == ISD::SRL && (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v4i64 || VT == MVT::v8i32)) return Op; if (Op.getOpcode() == ISD::SHL && (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v4i64 || VT == MVT::v8i32)) return Op; if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32)) return Op; } // If possible, lower this packed shift into a vector multiply instead of // expanding it into a sequence of scalar shifts. // Do this only if the vector shift count is a constant build_vector. if (Op.getOpcode() == ISD::SHL && (VT == MVT::v8i16 || VT == MVT::v4i32 || (Subtarget->hasInt256() && VT == MVT::v16i16)) && ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { SmallVector Elts; EVT SVT = VT.getScalarType(); unsigned SVTBits = SVT.getSizeInBits(); const APInt &One = APInt(SVTBits, 1); unsigned NumElems = VT.getVectorNumElements(); for (unsigned i=0; i !=NumElems; ++i) { SDValue Op = Amt->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) { Elts.push_back(Op); continue; } ConstantSDNode *ND = cast(Op); const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue()); uint64_t ShAmt = C.getZExtValue(); if (ShAmt >= SVTBits) { Elts.push_back(DAG.getUNDEF(SVT)); continue; } Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT)); } SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); return DAG.getNode(ISD::MUL, dl, VT, R, BV); } // Lower SHL with variable shift amount. if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT)); Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT)); Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); return DAG.getNode(ISD::MUL, dl, VT, Op, R); } // If possible, lower this shift as a sequence of two shifts by // constant plus a MOVSS/MOVSD instead of scalarizing it. // Example: // (v4i32 (srl A, (build_vector < X, Y, Y, Y>))) // // Could be rewritten as: // (v4i32 (MOVSS (srl A, ), (srl A, ))) // // The advantage is that the two shifts from the example would be // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing // the vector shift into four scalar shifts plus four pairs of vector // insert/extract. if ((VT == MVT::v8i16 || VT == MVT::v4i32) && ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { unsigned TargetOpcode = X86ISD::MOVSS; bool CanBeSimplified; // The splat value for the first packed shift (the 'X' from the example). SDValue Amt1 = Amt->getOperand(0); // The splat value for the second packed shift (the 'Y' from the example). SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : Amt->getOperand(2); // See if it is possible to replace this node with a sequence of // two shifts followed by a MOVSS/MOVSD if (VT == MVT::v4i32) { // Check if it is legal to use a MOVSS. CanBeSimplified = Amt2 == Amt->getOperand(2) && Amt2 == Amt->getOperand(3); if (!CanBeSimplified) { // Otherwise, check if we can still simplify this node using a MOVSD. CanBeSimplified = Amt1 == Amt->getOperand(1) && Amt->getOperand(2) == Amt->getOperand(3); TargetOpcode = X86ISD::MOVSD; Amt2 = Amt->getOperand(2); } } else { // Do similar checks for the case where the machine value type // is MVT::v8i16. CanBeSimplified = Amt1 == Amt->getOperand(1); for (unsigned i=3; i != 8 && CanBeSimplified; ++i) CanBeSimplified = Amt2 == Amt->getOperand(i); if (!CanBeSimplified) { TargetOpcode = X86ISD::MOVSD; CanBeSimplified = true; Amt2 = Amt->getOperand(4); for (unsigned i=0; i != 4 && CanBeSimplified; ++i) CanBeSimplified = Amt1 == Amt->getOperand(i); for (unsigned j=4; j != 8 && CanBeSimplified; ++j) CanBeSimplified = Amt2 == Amt->getOperand(j); } } if (CanBeSimplified && isa(Amt1) && isa(Amt2)) { // Replace this node with two shifts followed by a MOVSS/MOVSD. EVT CastVT = MVT::v4i32; SDValue Splat1 = DAG.getConstant(cast(Amt1)->getAPIntValue(), VT); SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1); SDValue Splat2 = DAG.getConstant(cast(Amt2)->getAPIntValue(), VT); SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2); if (TargetOpcode == X86ISD::MOVSD) CastVT = MVT::v2i64; SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1); SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2); SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2, BitCast1, DAG); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } } if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) { assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq."); // a = a << 5; Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT)); Op = DAG.getNode(ISD::BITCAST, dl, VT, Op); // Turn 'a' into a mask suitable for VSELECT SDValue VSelM = DAG.getConstant(0x80, VT); SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); SDValue CM1 = DAG.getConstant(0x0f, VT); SDValue CM2 = DAG.getConstant(0x3f, VT); // r = VSELECT(r, psllw(r & (char16)15, 4), a); SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1); M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG); M = DAG.getNode(ISD::BITCAST, dl, VT, M); R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); // a += a Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); // r = VSELECT(r, psllw(r & (char16)63, 2), a); M = DAG.getNode(ISD::AND, dl, VT, R, CM2); M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG); M = DAG.getNode(ISD::BITCAST, dl, VT, M); R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); // a += a Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); // return VSELECT(r, r+r, a); R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, DAG.getNode(ISD::ADD, dl, VT, R, R), R); return R; } // It's worth extending once and using the v8i32 shifts for 16-bit types, but // the extra overheads to get from v16i8 to v8i32 make the existing SSE // solution better. if (Subtarget->hasInt256() && VT == MVT::v8i16) { MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16; unsigned ExtOpc = Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; R = DAG.getNode(ExtOpc, dl, NewVT, R); Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt); return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt)); } // Decompose 256-bit shifts into smaller 128-bit shifts. if (VT.is256BitVector()) { unsigned NumElems = VT.getVectorNumElements(); MVT EltVT = VT.getVectorElementType(); EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); // Extract the two vectors SDValue V1 = Extract128BitVector(R, 0, DAG, dl); SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); // Recreate the shift amount vectors SDValue Amt1, Amt2; if (Amt.getOpcode() == ISD::BUILD_VECTOR) { // Constant shift amount SmallVector Amt1Csts; SmallVector Amt2Csts; for (unsigned i = 0; i != NumElems/2; ++i) Amt1Csts.push_back(Amt->getOperand(i)); for (unsigned i = NumElems/2; i != NumElems; ++i) Amt2Csts.push_back(Amt->getOperand(i)); Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts); Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts); } else { // Variable shift amount Amt1 = Extract128BitVector(Amt, 0, DAG, dl); Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); } // Issue new vector shifts for the smaller types V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); // Concatenate the result back return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); } return SDValue(); } static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Lower the "add/sub/mul with overflow" instruction into a regular ins plus // a "setcc" instruction that checks the overflow flag. The "brcond" lowering // looks for this combo and may remove the "setcc" instruction if the "setcc" // has only one use. SDNode *N = Op.getNode(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); unsigned BaseOp = 0; unsigned Cond = 0; SDLoc DL(Op); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown ovf instruction!"); case ISD::SADDO: // A subtract of one will be selected as a INC. Note that INC doesn't // set CF, so we can't do this for UADDO. if (ConstantSDNode *C = dyn_cast(RHS)) if (C->isOne()) { BaseOp = X86ISD::INC; Cond = X86::COND_O; break; } BaseOp = X86ISD::ADD; Cond = X86::COND_O; break; case ISD::UADDO: BaseOp = X86ISD::ADD; Cond = X86::COND_B; break; case ISD::SSUBO: // A subtract of one will be selected as a DEC. Note that DEC doesn't // set CF, so we can't do this for USUBO. if (ConstantSDNode *C = dyn_cast(RHS)) if (C->isOne()) { BaseOp = X86ISD::DEC; Cond = X86::COND_O; break; } BaseOp = X86ISD::SUB; Cond = X86::COND_O; break; case ISD::USUBO: BaseOp = X86ISD::SUB; Cond = X86::COND_B; break; case ISD::SMULO: BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL; Cond = X86::COND_O; break; case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs if (N->getValueType(0) == MVT::i8) { BaseOp = X86ISD::UMUL8; Cond = X86::COND_O; break; } SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(X86::COND_O, MVT::i32), SDValue(Sum.getNode(), 2)); return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); } } // Also sets EFLAGS. SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1)); return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); } // Sign extension of the low part of vector elements. This may be used either // when sign extend instructions are not available or if the vector element // sizes already match the sign-extended size. If the vector elements are in // their pre-extended size and sign extend instructions are available, that will // be handled by LowerSIGN_EXTEND. SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT ExtraVT = cast(Op.getOperand(1))->getVT(); MVT VT = Op.getSimpleValueType(); if (!Subtarget->hasSSE2() || !VT.isVector()) return SDValue(); unsigned BitsDiff = VT.getScalarType().getSizeInBits() - ExtraVT.getScalarType().getSizeInBits(); switch (VT.SimpleTy) { default: return SDValue(); case MVT::v8i32: case MVT::v16i16: if (!Subtarget->hasFp256()) return SDValue(); if (!Subtarget->hasInt256()) { // needs to be split unsigned NumElems = VT.getVectorNumElements(); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); MVT EltVT = VT.getVectorElementType(); EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); EVT ExtraEltVT = ExtraVT.getVectorElementType(); unsigned ExtraNumElems = ExtraVT.getVectorNumElements(); ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT, ExtraNumElems/2); SDValue Extra = DAG.getValueType(ExtraVT); LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra); LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2); } // fall through case MVT::v4i32: case MVT::v8i16: { SDValue Op0 = Op.getOperand(0); // This is a sign extension of some low part of vector elements without // changing the size of the vector elements themselves: // Shift-Left + Shift-Right-Algebraic. SDValue Shl = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff, DAG); return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Shl, BitsDiff, DAG); } } } /// Returns true if the operand type is exactly twice the native width, and /// the corresponding cmpxchg8b or cmpxchg16b instruction is available. /// Used to know whether to use cmpxchg8/16b when expanding atomic operations /// (otherwise we leave them alone to become __sync_fetch_and_... calls). bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const { const X86Subtarget &Subtarget = getTargetMachine().getSubtarget(); unsigned OpWidth = MemType->getPrimitiveSizeInBits(); if (OpWidth == 64) return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b else if (OpWidth == 128) return Subtarget.hasCmpxchg16b(); else return false; } bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { return needsCmpXchgNb(SI->getValueOperand()->getType()); } // Note: this turns large loads into lock cmpxchg8b/16b. // FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b. bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { auto PTy = cast(LI->getPointerOperand()->getType()); return needsCmpXchgNb(PTy->getElementType()); } bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { const X86Subtarget &Subtarget = getTargetMachine().getSubtarget(); unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32; const Type *MemType = AI->getType(); // If the operand is too big, we must see if cmpxchg8/16b is available // and default to library calls otherwise. if (MemType->getPrimitiveSizeInBits() > NativeWidth) return needsCmpXchgNb(MemType); AtomicRMWInst::BinOp Op = AI->getOperation(); switch (Op) { default: llvm_unreachable("Unknown atomic operation"); case AtomicRMWInst::Xchg: case AtomicRMWInst::Add: case AtomicRMWInst::Sub: // It's better to use xadd, xsub or xchg for these in all cases. return false; case AtomicRMWInst::Or: case AtomicRMWInst::And: case AtomicRMWInst::Xor: // If the atomicrmw's result isn't actually used, we can just add a "lock" // prefix to a normal instruction for these operations. return !AI->use_empty(); case AtomicRMWInst::Nand: case AtomicRMWInst::Max: case AtomicRMWInst::Min: case AtomicRMWInst::UMax: case AtomicRMWInst::UMin: // These always require a non-trivial set of data operations on x86. We must // use a cmpxchg loop. return true; } } static bool hasMFENCE(const X86Subtarget& Subtarget) { // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for // no-sse2). There isn't any reason to disable it if the target processor // supports it. return Subtarget.hasSSE2() || Subtarget.is64Bit(); } LoadInst * X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { const X86Subtarget &Subtarget = getTargetMachine().getSubtarget(); unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32; const Type *MemType = AI->getType(); // Accesses larger than the native width are turned into cmpxchg/libcalls, so // there is no benefit in turning such RMWs into loads, and it is actually // harmful as it introduces a mfence. if (MemType->getPrimitiveSizeInBits() > NativeWidth) return nullptr; auto Builder = IRBuilder<>(AI); Module *M = Builder.GetInsertBlock()->getParent()->getParent(); auto SynchScope = AI->getSynchScope(); // We must restrict the ordering to avoid generating loads with Release or // ReleaseAcquire orderings. auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering()); auto Ptr = AI->getPointerOperand(); // Before the load we need a fence. Here is an example lifted from // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence // is required: // Thread 0: // x.store(1, relaxed); // r1 = y.fetch_add(0, release); // Thread 1: // y.fetch_add(42, acquire); // r2 = x.load(relaxed); // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is // lowered to just a load without a fence. A mfence flushes the store buffer, // making the optimization clearly correct. // FIXME: it is required if isAtLeastRelease(Order) but it is not clear // otherwise, we might be able to be more agressive on relaxed idempotent // rmw. In practice, they do not look useful, so we don't try to be // especially clever. if (SynchScope == SingleThread) { // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at // the IR level, so we must wrap it in an intrinsic. return nullptr; } else if (hasMFENCE(Subtarget)) { Function *MFence = llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence); Builder.CreateCall(MFence); } else { // FIXME: it might make sense to use a locked operation here but on a // different cache-line to prevent cache-line bouncing. In practice it // is probably a small win, and x86 processors without mfence are rare // enough that we do not bother. return nullptr; } // Finally we can emit the atomic load. LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr, AI->getType()->getPrimitiveSizeInBits()); Loaded->setAtomic(Order, SynchScope); AI->replaceAllUsesWith(Loaded); AI->eraseFromParent(); return Loaded; } static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); AtomicOrdering FenceOrdering = static_cast( cast(Op.getOperand(1))->getZExtValue()); SynchronizationScope FenceScope = static_cast( cast(Op.getOperand(2))->getZExtValue()); // The only fence that needs an instruction is a sequentially-consistent // cross-thread fence. if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { if (hasMFENCE(*Subtarget)) return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); SDValue Chain = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, MVT::i32); SDValue Ops[] = { DAG.getRegister(X86::ESP, MVT::i32), // Base DAG.getTargetConstant(1, MVT::i8), // Scale DAG.getRegister(0, MVT::i32), // Index DAG.getTargetConstant(0, MVT::i32), // Disp DAG.getRegister(0, MVT::i32), // Segment. Zero, Chain }; SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); return SDValue(Res, 0); } // MEMBARRIER is a compiler barrier; it codegens to a no-op. return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); } static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT T = Op.getSimpleValueType(); SDLoc DL(Op); unsigned Reg = 0; unsigned size = 0; switch(T.SimpleTy) { default: llvm_unreachable("Invalid value type!"); case MVT::i8: Reg = X86::AL; size = 1; break; case MVT::i16: Reg = X86::AX; size = 2; break; case MVT::i32: Reg = X86::EAX; size = 4; break; case MVT::i64: assert(Subtarget->is64Bit() && "Node not type legal!"); Reg = X86::RAX; size = 8; break; } SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, Op.getOperand(2), SDValue()); SDValue Ops[] = { cpIn.getValue(0), Op.getOperand(1), Op.getOperand(3), DAG.getTargetConstant(size, MVT::i8), cpIn.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); MachineMemOperand *MMO = cast(Op)->getMemOperand(); SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, Ops, T, MMO); SDValue cpOut = DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS, MVT::i32, cpOut.getValue(2)); SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1), DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS); DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut); DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1)); return SDValue(); } static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT SrcVT = Op.getOperand(0).getSimpleValueType(); MVT DstVT = Op.getSimpleValueType(); if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); if (DstVT != MVT::f64) // This conversion needs to be expanded. return SDValue(); SDValue InVec = Op->getOperand(0); SDLoc dl(Op); unsigned NumElts = SrcVT.getVectorNumElements(); EVT SVT = SrcVT.getVectorElementType(); // Widen the vector in input in the case of MVT::v2i32. // Example: from MVT::v2i32 to MVT::v4i32. SmallVector Elts; for (unsigned i = 0, e = NumElts; i != e; ++i) Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec, DAG.getIntPtrConstant(i))); // Explicitly mark the extra elements as Undef. SDValue Undef = DAG.getUNDEF(SVT); for (unsigned i = NumElts, e = NumElts * 2; i != e; ++i) Elts.push_back(Undef); EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts); SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64, DAG.getIntPtrConstant(0)); } assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && Subtarget->hasMMX() && "Unexpected custom BITCAST"); assert((DstVT == MVT::i64 || (DstVT.isVector() && DstVT.getSizeInBits()==64)) && "Unexpected custom BITCAST"); // i64 <=> MMX conversions are Legal. if (SrcVT==MVT::i64 && DstVT.isVector()) return Op; if (DstVT==MVT::i64 && SrcVT.isVector()) return Op; // MMX <=> MMX conversions are Legal. if (SrcVT.isVector() && DstVT.isVector()) return Op; // All other conversions need to be expanded. return SDValue(); } static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); SDLoc dl(Node); Op = Op.getOperand(0); EVT VT = Op.getValueType(); assert((VT.is128BitVector() || VT.is256BitVector()) && "CTPOP lowering only implemented for 128/256-bit wide vector types"); unsigned NumElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); unsigned Len = EltVT.getSizeInBits(); // This is the vectorized version of the "best" algorithm from // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // with a minor tweak to use a series of adds + shifts instead of vector // multiplications. Implemented for the v2i64, v4i64, v4i32, v8i32 types: // // v2i64, v4i64, v4i32 => Only profitable w/ popcnt disabled // v8i32 => Always profitable // // FIXME: There a couple of possible improvements: // // 1) Support for i8 and i16 vectors (needs measurements if popcnt enabled). // 2) Use strategies from http://wm.ite.pl/articles/sse-popcount.html // assert(EltVT.isInteger() && (Len == 32 || Len == 64) && Len % 8 == 0 && "CTPOP not implemented for this vector element type."); // X86 canonicalize ANDs to vXi64, generate the appropriate bitcasts to avoid // extra legalization. bool NeedsBitcast = EltVT == MVT::i32; MVT BitcastVT = VT.is256BitVector() ? MVT::v4i64 : MVT::v2i64; SDValue Cst55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), EltVT); SDValue Cst33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), EltVT); SDValue Cst0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), EltVT); // v = v - ((v >> 1) & 0x55555555...) SmallVector Ones(NumElts, DAG.getConstant(1, EltVT)); SDValue OnesV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ones); SDValue Srl = DAG.getNode(ISD::SRL, dl, VT, Op, OnesV); if (NeedsBitcast) Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl); SmallVector Mask55(NumElts, Cst55); SDValue M55 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask55); if (NeedsBitcast) M55 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M55); SDValue And = DAG.getNode(ISD::AND, dl, Srl.getValueType(), Srl, M55); if (VT != And.getValueType()) And = DAG.getNode(ISD::BITCAST, dl, VT, And); SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op, And); // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) SmallVector Mask33(NumElts, Cst33); SDValue M33 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask33); SmallVector Twos(NumElts, DAG.getConstant(2, EltVT)); SDValue TwosV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Twos); Srl = DAG.getNode(ISD::SRL, dl, VT, Sub, TwosV); if (NeedsBitcast) { Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl); M33 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M33); Sub = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Sub); } SDValue AndRHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Srl, M33); SDValue AndLHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Sub, M33); if (VT != AndRHS.getValueType()) { AndRHS = DAG.getNode(ISD::BITCAST, dl, VT, AndRHS); AndLHS = DAG.getNode(ISD::BITCAST, dl, VT, AndLHS); } SDValue Add = DAG.getNode(ISD::ADD, dl, VT, AndLHS, AndRHS); // v = (v + (v >> 4)) & 0x0F0F0F0F... SmallVector Fours(NumElts, DAG.getConstant(4, EltVT)); SDValue FoursV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Fours); Srl = DAG.getNode(ISD::SRL, dl, VT, Add, FoursV); Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl); SmallVector Mask0F(NumElts, Cst0F); SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask0F); if (NeedsBitcast) { Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add); M0F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M0F); } And = DAG.getNode(ISD::AND, dl, M0F.getValueType(), Add, M0F); if (VT != And.getValueType()) And = DAG.getNode(ISD::BITCAST, dl, VT, And); // The algorithm mentioned above uses: // v = (v * 0x01010101...) >> (Len - 8) // // Change it to use vector adds + vector shifts which yield faster results on // Haswell than using vector integer multiplication. // // For i32 elements: // v = v + (v >> 8) // v = v + (v >> 16) // // For i64 elements: // v = v + (v >> 8) // v = v + (v >> 16) // v = v + (v >> 32) // Add = And; SmallVector Csts; for (unsigned i = 8; i <= Len/2; i *= 2) { Csts.assign(NumElts, DAG.getConstant(i, EltVT)); SDValue CstsV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Csts); Srl = DAG.getNode(ISD::SRL, dl, VT, Add, CstsV); Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl); Csts.clear(); } // The result is on the least significant 6-bits on i32 and 7-bits on i64. SDValue Cst3F = DAG.getConstant(APInt(Len, Len == 32 ? 0x3F : 0x7F), EltVT); SmallVector Cst3FV(NumElts, Cst3F); SDValue M3F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Cst3FV); if (NeedsBitcast) { Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add); M3F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M3F); } And = DAG.getNode(ISD::AND, dl, M3F.getValueType(), Add, M3F); if (VT != And.getValueType()) And = DAG.getNode(ISD::BITCAST, dl, VT, And); return And; } static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); SDLoc dl(Node); EVT T = Node->getValueType(0); SDValue negOp = DAG.getNode(ISD::SUB, dl, T, DAG.getConstant(0, T), Node->getOperand(2)); return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), negOp, cast(Node)->getMemOperand(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); } static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); SDLoc dl(Node); EVT VT = cast(Node)->getMemoryVT(); // Convert seq_cst store -> xchg // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) // FIXME: On 32-bit, store -> fist or movq would be more efficient // (The only way to get a 16-byte store is cmpxchg16b) // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. if (cast(Node)->getOrdering() == SequentiallyConsistent || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), cast(Node)->getMemOperand(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); return Swap.getValue(1); } // Other atomic stores have a simple pattern. return Op; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getNode()->getSimpleValueType(0); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = X86ISD::ADD; break; case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; case ISD::SUBC: Opc = X86ISD::SUB; break; case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); // For MacOSX, we want to call an alternative entry point: __sincos_stret, // which returns the values as { float, float } (in XMM0) or // { double, double } (which is returned in XMM0, XMM1). SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); bool isF64 = ArgVT == MVT::f64; // Only optimize x86_64 for now. i386 is a bit messy. For f32, // the small struct {f32, f32} is returned in (eax, edx). For f64, // the results are returned via SRet in memory. const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret"; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy()); Type *RetTy = isF64 ? (Type*)StructType::get(ArgTy, ArgTy, nullptr) : (Type*)VectorType::get(ArgTy, 4); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0); std::pair CallResult = TLI.LowerCallTo(CLI); if (isF64) // Returned in xmm0 and xmm1. return CallResult.first; // Returned in bits 0:31 and 32:64 xmm0. SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, CallResult.first, DAG.getIntPtrConstant(0)); SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, CallResult.first, DAG.getIntPtrConstant(1)); SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: return LowerCMP_SWAP(Op, Subtarget, DAG); case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG); case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::VSELECT: return LowerVSELECT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG); case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG); case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG); case ISD::FABS: case ISD::FNEG: return LowerFABSorFNEG(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::CTLZ: return LowerCTLZ(Op, DAG); case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG); case ISD::CTTZ: return LowerCTTZ(Op, DAG); case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); case ISD::UMUL_LOHI: case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG); case ISD::SRA: case ISD::SRL: case ISD::SHL: return LowerShift(Op, Subtarget, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::ADD: return LowerADD(Op, DAG); case ISD::SUB: return LowerSUB(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG); } } /// ReplaceNodeResults - Replace a node with an illegal result type /// with a new node built out of custom code. void X86TargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const { SDLoc dl(N); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32. case X86ISD::FMINC: case X86ISD::FMIN: case X86ISD::FMAXC: case X86ISD::FMAX: { EVT VT = N->getValueType(0); if (VT != MVT::v2f32) llvm_unreachable("Unexpected type (!= v2f32) on FMIN/FMAX."); SDValue UNDEF = DAG.getUNDEF(VT); SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, N->getOperand(0), UNDEF); SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, N->getOperand(1), UNDEF); Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS)); return; } case ISD::SIGN_EXTEND_INREG: case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: // We don't want to expand or promote these. return; case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::SDIVREM: case ISD::UDIVREM: { SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG); Results.push_back(V); return; } case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType())) return; std::pair Vals = FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); SDValue FIST = Vals.first, StackSlot = Vals.second; if (FIST.getNode()) { EVT VT = N->getValueType(0); // Return a load from the stack slot. if (StackSlot.getNode()) Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo(), false, false, false, 0)); else Results.push_back(FIST); } return; } case ISD::UINT_TO_FP: { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); if (N->getOperand(0).getValueType() != MVT::v2i32 || N->getValueType(0) != MVT::v2f32) return; SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, N->getOperand(0)); SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), MVT::f64); SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias)); Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or); SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); return; } case ISD::FP_ROUND: { if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) return; SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); Results.push_back(V); return; } case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default : llvm_unreachable("Do not know how to custom type " "legalize this intrinsic operation!"); case Intrinsic::x86_rdtsc: return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, Results); case Intrinsic::x86_rdtscp: return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget, Results); case Intrinsic::x86_rdpmc: return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results); } } case ISD::READCYCLECOUNTER: { return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, Results); } case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { EVT T = N->getValueType(0); assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); bool Regs64bit = T == MVT::i128; EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; SDValue cpInL, cpInH; cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), DAG.getConstant(0, HalfT)); cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), DAG.getConstant(1, HalfT)); cpInL = DAG.getCopyToReg(N->getOperand(0), dl, Regs64bit ? X86::RAX : X86::EAX, cpInL, SDValue()); cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, Regs64bit ? X86::RDX : X86::EDX, cpInH, cpInL.getValue(1)); SDValue swapInL, swapInH; swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), DAG.getConstant(0, HalfT)); swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), DAG.getConstant(1, HalfT)); swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RBX : X86::EBX, swapInL, cpInH.getValue(1)); swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX, swapInH, swapInL.getValue(1)); SDValue Ops[] = { swapInH.getValue(0), N->getOperand(1), swapInH.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); MachineMemOperand *MMO = cast(N)->getMemOperand(); unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG; SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, Regs64bit ? X86::RAX : X86::EAX, HalfT, Result.getValue(1)); SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, Regs64bit ? X86::RDX : X86::EDX, HalfT, cpOutL.getValue(2)); SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS, MVT::i32, cpOutH.getValue(2)); SDValue Success = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS); Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1)); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF)); Results.push_back(Success); Results.push_back(EFLAGS.getValue(1)); return; } case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_LOAD: { // Delegate to generic TypeLegalization. Situations we can really handle // should have already been dealt with by AtomicExpandPass.cpp. break; } case ISD::BITCAST: { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); EVT DstVT = N->getValueType(0); EVT SrcVT = N->getOperand(0)->getValueType(0); if (SrcVT != MVT::f64 || (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8)) return; unsigned NumElts = DstVT.getVectorNumElements(); EVT SVT = DstVT.getVectorElementType(); EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, N->getOperand(0)); SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded); if (ExperimentalVectorWideningLegalization) { // If we are legalizing vectors by widening, we already have the desired // legal vector type, just return it. Results.push_back(ToVecInt); return; } SmallVector Elts; for (unsigned i = 0, e = NumElts; i != e; ++i) Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, ToVecInt, DAG.getIntPtrConstant(i))); Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts)); } } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return nullptr; case X86ISD::BSF: return "X86ISD::BSF"; case X86ISD::BSR: return "X86ISD::BSR"; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FANDN: return "X86ISD::FANDN"; case X86ISD::FOR: return "X86ISD::FOR"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FSRL: return "X86ISD::FSRL"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG"; case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG"; case X86ISD::BT: return "X86ISD::BT"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::COMI: return "X86ISD::COMI"; case X86ISD::UCOMI: return "X86ISD::UCOMI"; case X86ISD::CMPM: return "X86ISD::CMPM"; case X86ISD::CMPMU: return "X86ISD::CMPMU"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; case X86ISD::FSETCC: return "X86ISD::FSETCC"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; case X86ISD::Wrapper: return "X86ISD::Wrapper"; case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; case X86ISD::PINSRB: return "X86ISD::PINSRB"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; case X86ISD::ANDNP: return "X86ISD::ANDNP"; case X86ISD::PSIGN: return "X86ISD::PSIGN"; case X86ISD::BLENDI: return "X86ISD::BLENDI"; case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND"; case X86ISD::SUBUS: return "X86ISD::SUBUS"; case X86ISD::HADD: return "X86ISD::HADD"; case X86ISD::HSUB: return "X86ISD::HSUB"; case X86ISD::FHADD: return "X86ISD::FHADD"; case X86ISD::FHSUB: return "X86ISD::FHSUB"; case X86ISD::UMAX: return "X86ISD::UMAX"; case X86ISD::UMIN: return "X86ISD::UMIN"; case X86ISD::SMAX: return "X86ISD::SMAX"; case X86ISD::SMIN: return "X86ISD::SMIN"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMIN: return "X86ISD::FMIN"; case X86ISD::FMAXC: return "X86ISD::FMAXC"; case X86ISD::FMINC: return "X86ISD::FMINC"; case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; case X86ISD::FRCP: return "X86ISD::FRCP"; case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG"; case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; case X86ISD::VZEXT: return "X86ISD::VZEXT"; case X86ISD::VSEXT: return "X86ISD::VSEXT"; case X86ISD::VTRUNC: return "X86ISD::VTRUNC"; case X86ISD::VTRUNCM: return "X86ISD::VTRUNCM"; case X86ISD::VINSERT: return "X86ISD::VINSERT"; case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; case X86ISD::VSHL: return "X86ISD::VSHL"; case X86ISD::VSRL: return "X86ISD::VSRL"; case X86ISD::VSRA: return "X86ISD::VSRA"; case X86ISD::VSHLI: return "X86ISD::VSHLI"; case X86ISD::VSRLI: return "X86ISD::VSRLI"; case X86ISD::VSRAI: return "X86ISD::VSRAI"; case X86ISD::CMPP: return "X86ISD::CMPP"; case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM"; case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM"; case X86ISD::ADD: return "X86ISD::ADD"; case X86ISD::SUB: return "X86ISD::SUB"; case X86ISD::ADC: return "X86ISD::ADC"; case X86ISD::SBB: return "X86ISD::SBB"; case X86ISD::SMUL: return "X86ISD::SMUL"; case X86ISD::UMUL: return "X86ISD::UMUL"; case X86ISD::SMUL8: return "X86ISD::SMUL8"; case X86ISD::UMUL8: return "X86ISD::UMUL8"; case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG"; case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG"; case X86ISD::INC: return "X86ISD::INC"; case X86ISD::DEC: return "X86ISD::DEC"; case X86ISD::OR: return "X86ISD::OR"; case X86ISD::XOR: return "X86ISD::XOR"; case X86ISD::AND: return "X86ISD::AND"; case X86ISD::BEXTR: return "X86ISD::BEXTR"; case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; case X86ISD::PTEST: return "X86ISD::PTEST"; case X86ISD::TESTP: return "X86ISD::TESTP"; case X86ISD::TESTM: return "X86ISD::TESTM"; case X86ISD::TESTNM: return "X86ISD::TESTNM"; case X86ISD::KORTEST: return "X86ISD::KORTEST"; case X86ISD::PACKSS: return "X86ISD::PACKSS"; case X86ISD::PACKUS: return "X86ISD::PACKUS"; case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; case X86ISD::VALIGN: return "X86ISD::VALIGN"; case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; case X86ISD::SHUFP: return "X86ISD::SHUFP"; case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; case X86ISD::MOVSD: return "X86ISD::MOVSD"; case X86ISD::MOVSS: return "X86ISD::MOVSS"; case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM"; case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT"; case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI"; case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; case X86ISD::VPERMV: return "X86ISD::VPERMV"; case X86ISD::VPERMV3: return "X86ISD::VPERMV3"; case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3"; case X86ISD::VPERMI: return "X86ISD::VPERMI"; case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; case X86ISD::PMULDQ: return "X86ISD::PMULDQ"; case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL"; case X86ISD::SAHF: return "X86ISD::SAHF"; case X86ISD::RDRAND: return "X86ISD::RDRAND"; case X86ISD::RDSEED: return "X86ISD::RDSEED"; case X86ISD::FMADD: return "X86ISD::FMADD"; case X86ISD::FMSUB: return "X86ISD::FMSUB"; case X86ISD::FNMADD: return "X86ISD::FNMADD"; case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; case X86ISD::XTEST: return "X86ISD::XTEST"; case X86ISD::COMPRESS: return "X86ISD::COMPRESS"; case X86ISD::EXPAND: return "X86ISD::EXPAND"; case X86ISD::SELECT: return "X86ISD::SELECT"; } } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // X86 supports extremely general addressing modes. CodeModel::Model M = getTargetMachine().getCodeModel(); Reloc::Model R = getTargetMachine().getRelocationModel(); // X86 allows a sign-extended 32-bit immediate field as a displacement. if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr)) return false; if (AM.BaseGV) { unsigned GVFlags = Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); // If a reference to this global requires an extra load, we can't fold it. if (isGlobalStubReference(GVFlags)) return false; // If BaseGV requires a register for the PIC base, we cannot also have a // BaseReg specified. if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) return false; // If lower 4G is not available, then we must use rip-relative addressing. if ((M != CodeModel::Small || R != Reloc::Static) && Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) return false; } switch (AM.Scale) { case 0: case 1: case 2: case 4: case 8: // These scales always work. break; case 3: case 5: case 9: // These scales are formed with basereg+scalereg. Only accept if there is // no basereg yet. if (AM.HasBaseReg) return false; break; default: // Other stuff never works. return false; } return true; } bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { unsigned Bits = Ty->getScalarSizeInBits(); // 8-bit shifts are always expensive, but versions with a scalar amount aren't // particularly cheaper than those without. if (Bits == 8) return false; // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make // variable shifts just as cheap as scalar ones. if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64)) return false; // Otherwise, it's significantly cheaper to shift by a scalar amount than by a // fully general vector. return true; } bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 > NumBits2; } bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; if (!isTypeLegal(EVT::getEVT(Ty1))) return false; assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); // Assuming the caller doesn't have a zeroext or signext return parameter, // truncation all the way down to i1 is valid. return true; } bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { return isInt<32>(Imm); } bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { // Can also use sub to handle negated immediates. return isInt<32>(Imm); } bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 > NumBits2; } bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { EVT VT1 = Val.getValueType(); if (isZExtFree(VT1, VT2)) return true; if (Val.getOpcode() != ISD::LOAD) return false; if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i8: case MVT::i16: case MVT::i32: // X86 has 8, 16, and 32-bit zero-extending loads. return true; } return false; } bool X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { if (!(Subtarget->hasFMA() || Subtarget->hasFMA4())) return false; VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; default: break; } return false; } bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { // i16 instructions are longer (0x66 prefix) and potentially slower. return !(VT1 == MVT::i32 && VT2 == MVT::i16); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl &M, EVT VT) const { if (!VT.isSimple()) return false; MVT SVT = VT.getSimpleVT(); // Very little shuffling can be done for 64-bit vectors right now. if (VT.getSizeInBits() == 64) return false; // This is an experimental legality test that is tailored to match the // legality test of the experimental lowering more closely. They are gated // separately to ease testing of performance differences. if (ExperimentalVectorShuffleLegality) // We only care that the types being shuffled are legal. The lowering can // handle any possible shuffle mask that results. return isTypeLegal(SVT); // If this is a single-input shuffle with no 128 bit lane crossings we can // lower it into pshufb. if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) || (SVT.is256BitVector() && Subtarget->hasInt256())) { bool isLegal = true; for (unsigned I = 0, E = M.size(); I != E; ++I) { if (M[I] >= (int)SVT.getVectorNumElements() || ShuffleCrosses128bitLane(SVT, I, M[I])) { isLegal = false; break; } } if (isLegal) return true; } // FIXME: blends, shifts. return (SVT.getVectorNumElements() == 2 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isMOVLMask(M, SVT) || isCommutedMOVLMask(M, SVT) || isMOVHLPSMask(M, SVT) || isSHUFPMask(M, SVT) || isSHUFPMask(M, SVT, /* Commuted */ true) || isPSHUFDMask(M, SVT) || isPSHUFDMask(M, SVT, /* SecondOperand */ true) || isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) || isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) || isPALIGNRMask(M, SVT, Subtarget) || isUNPCKLMask(M, SVT, Subtarget->hasInt256()) || isUNPCKHMask(M, SVT, Subtarget->hasInt256()) || isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) || isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()) || isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()) || (Subtarget->hasSSE41() && isINSERTPSMask(M, SVT))); } bool X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl &Mask, EVT VT) const { if (!VT.isSimple()) return false; MVT SVT = VT.getSimpleVT(); // This is an experimental legality test that is tailored to match the // legality test of the experimental lowering more closely. They are gated // separately to ease testing of performance differences. if (ExperimentalVectorShuffleLegality) // The new vector shuffle lowering is very good at managing zero-inputs. return isShuffleMaskLegal(Mask, VT); unsigned NumElts = SVT.getVectorNumElements(); // FIXME: This collection of masks seems suspect. if (NumElts == 2) return true; if (NumElts == 4 && SVT.is128BitVector()) { return (isMOVLMask(Mask, SVT) || isCommutedMOVLMask(Mask, SVT, true) || isSHUFPMask(Mask, SVT) || isSHUFPMask(Mask, SVT, /* Commuted */ true) || isBlendMask(Mask, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256())); } return false; } //===----------------------------------------------------------------------===// // X86 Scheduler Hooks //===----------------------------------------------------------------------===// /// Utility function to emit xbegin specifying the start of an RTM region. static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, const TargetInstrInfo *TII) { DebugLoc DL = MI->getDebugLoc(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; // For the v = xbegin(), we generate // // thisMBB: // xbegin sinkMBB // // mainMBB: // eax = -1 // // sinkMBB: // v = eax MachineBasicBlock *thisMBB = MBB; MachineFunction *MF = MBB->getParent(); MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: // xbegin sinkMBB // # fallthrough to mainMBB // # abortion to sinkMBB BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); thisMBB->addSuccessor(mainMBB); thisMBB->addSuccessor(sinkMBB); // mainMBB: // EAX = -1 BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); mainMBB->addSuccessor(sinkMBB); // sinkMBB: // EAX is live into the sinkMBB sinkMBB->addLiveIn(X86::EAX); BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::EAX); MI->eraseFromParent(); return sinkMBB; } // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 // or XMM0_V32I8 in AVX all of this code can be replaced with that // in the .td file. static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII) { unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break; case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break; case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break; case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break; case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; } DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); unsigned NumArgs = MI->getNumOperands(); for (unsigned i = 1; i < NumArgs; ++i) { MachineOperand &Op = MI->getOperand(i); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } if (MI->hasOneMemOperand()) MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::XMM0); MI->eraseFromParent(); return BB; } // FIXME: Custom handling because TableGen doesn't support multiple implicit // defs in an instruction pattern static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII) { unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break; case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break; case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break; case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break; case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; } DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); unsigned NumArgs = MI->getNumOperands(); // remove the results for (unsigned i = 1; i < NumArgs; ++i) { MachineOperand &Op = MI->getOperand(i); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } if (MI->hasOneMemOperand()) MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::ECX); MI->eraseFromParent(); return BB; } static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII, const X86Subtarget* Subtarget) { DebugLoc dl = MI->getDebugLoc(); // Address into RAX/EAX, other two args into ECX, EDX. unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); for (int i = 0; i < X86::AddrNumOperands; ++i) MIB.addOperand(MI->getOperand(i)); unsigned ValOps = X86::AddrNumOperands; BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) .addReg(MI->getOperand(ValOps).getReg()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) .addReg(MI->getOperand(ValOps+1).getReg()); // The instruction doesn't actually take any operands though. BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); MI->eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock * X86TargetLowering::EmitVAARG64WithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit va_arg instruction on X86-64. // Operands to this pseudo-instruction: // 0 ) Output : destination address (reg) // 1-5) Input : va_list address (addr, i64mem) // 6 ) ArgSize : Size (in bytes) of vararg type // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset // 8 ) Align : Alignment of type // 9 ) EFLAGS (implicit-def) assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); unsigned DestReg = MI->getOperand(0).getReg(); MachineOperand &Base = MI->getOperand(1); MachineOperand &Scale = MI->getOperand(2); MachineOperand &Index = MI->getOperand(3); MachineOperand &Disp = MI->getOperand(4); MachineOperand &Segment = MI->getOperand(5); unsigned ArgSize = MI->getOperand(6).getImm(); unsigned ArgMode = MI->getOperand(7).getImm(); unsigned Align = MI->getOperand(8).getImm(); // Memory Reference assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); // Machine Information const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo(); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); DebugLoc DL = MI->getDebugLoc(); // struct va_list { // i32 gp_offset // i32 fp_offset // i64 overflow_area (address) // i64 reg_save_area (address) // } // sizeof(va_list) = 24 // alignment(va_list) = 8 unsigned TotalNumIntRegs = 6; unsigned TotalNumXMMRegs = 8; bool UseGPOffset = (ArgMode == 1); bool UseFPOffset = (ArgMode == 2); unsigned MaxOffset = TotalNumIntRegs * 8 + (UseFPOffset ? TotalNumXMMRegs * 16 : 0); /* Align ArgSize to a multiple of 8 */ unsigned ArgSizeA8 = (ArgSize + 7) & ~7; bool NeedsAlign = (Align > 8); MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *overflowMBB; MachineBasicBlock *offsetMBB; MachineBasicBlock *endMBB; unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB unsigned OffsetReg = 0; if (!UseGPOffset && !UseFPOffset) { // If we only pull from the overflow region, we don't create a branch. // We don't need to alter control flow. OffsetDestReg = 0; // unused OverflowDestReg = DestReg; offsetMBB = nullptr; overflowMBB = thisMBB; endMBB = thisMBB; } else { // First emit code to check if gp_offset (or fp_offset) is below the bound. // If so, pull the argument from reg_save_area. (branch to offsetMBB) // If not, pull from overflow_area. (branch to overflowMBB) // // thisMBB // | . // | . // offsetMBB overflowMBB // | . // | . // endMBB // Registers for the PHI in endMBB OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *MF = MBB->getParent(); overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); endMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator MBBIter = MBB; ++MBBIter; // Insert the new basic blocks MF->insert(MBBIter, offsetMBB); MF->insert(MBBIter, overflowMBB); MF->insert(MBBIter, endMBB); // Transfer the remainder of MBB and its successor edges to endMBB. endMBB->splice(endMBB->begin(), thisMBB, std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); // Make offsetMBB and overflowMBB successors of thisMBB thisMBB->addSuccessor(offsetMBB); thisMBB->addSuccessor(overflowMBB); // endMBB is a successor of both offsetMBB and overflowMBB offsetMBB->addSuccessor(endMBB); overflowMBB->addSuccessor(endMBB); // Load the offset value into a register OffsetReg = MRI.createVirtualRegister(OffsetRegClass); BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, UseFPOffset ? 4 : 0) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // Check if there is enough room left to pull this argument. BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) .addReg(OffsetReg) .addImm(MaxOffset + 8 - ArgSizeA8); // Branch to "overflowMBB" if offset >= max // Fall through to "offsetMBB" otherwise BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) .addMBB(overflowMBB); } // In offsetMBB, emit code to use the reg_save_area. if (offsetMBB) { assert(OffsetReg != 0); // Read the reg_save_area address. unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 16) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // Zero-extend the offset unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) .addImm(0) .addReg(OffsetReg) .addImm(X86::sub_32bit); // Add the offset to the reg_save_area to get the final address. BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) .addReg(OffsetReg64) .addReg(RegSaveReg); // Compute the offset for the next argument unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) .addReg(OffsetReg) .addImm(UseFPOffset ? 16 : 8); // Store it back into the va_list. BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, UseFPOffset ? 4 : 0) .addOperand(Segment) .addReg(NextOffsetReg) .setMemRefs(MMOBegin, MMOEnd); // Jump to endMBB BuildMI(offsetMBB, DL, TII->get(X86::JMP_1)) .addMBB(endMBB); } // // Emit code to use overflow area // // Load the overflow_area address into a register. unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // If we need to align it, do so. Otherwise, just copy the address // to OverflowDestReg. if (NeedsAlign) { // Align the overflow address assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); // aligned_addr = (addr + (align-1)) & ~(align-1) BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) .addReg(OverflowAddrReg) .addImm(Align-1); BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) .addReg(TmpReg) .addImm(~(uint64_t)(Align-1)); } else { BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) .addReg(OverflowAddrReg); } // Compute the next overflow address after this argument. // (the overflow address should be kept 8-byte aligned) unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) .addReg(OverflowDestReg) .addImm(ArgSizeA8); // Store the new overflow address. BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8) .addOperand(Segment) .addReg(NextAddrReg) .setMemRefs(MMOBegin, MMOEnd); // If we branched, emit the PHI to the front of endMBB. if (offsetMBB) { BuildMI(*endMBB, endMBB->begin(), DL, TII->get(X86::PHI), DestReg) .addReg(OffsetDestReg).addMBB(offsetMBB) .addReg(OverflowDestReg).addMBB(overflowMBB); } // Erase the pseudo instruction MI->eraseFromParent(); return endMBB; } MachineBasicBlock * X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit code to save XMM registers to the stack. The ABI says that the // number of registers to save is given in %al, so it's theoretically // possible to do an indirect jump trick to avoid saving all of them, // however this code takes a simpler approach and just executes all // of the stores if %al is non-zero. It's less code, and it's probably // easier on the hardware branch predictor, and stores aren't all that // expensive anyway. // Create the new basic blocks. One block contains all the XMM stores, // and one block is the final destination regardless of whether any // stores were performed. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *F = MBB->getParent(); MachineFunction::iterator MBBIter = MBB; ++MBBIter; MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, XMMSaveMBB); F->insert(MBBIter, EndMBB); // Transfer the remainder of MBB and its successor edges to EndMBB. EndMBB->splice(EndMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndMBB->transferSuccessorsAndUpdatePHIs(MBB); // The original block will now fall through to the XMM save block. MBB->addSuccessor(XMMSaveMBB); // The XMMSaveMBB will fall through to the end block. XMMSaveMBB->addSuccessor(EndMBB); // Now add the instructions. const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned CountReg = MI->getOperand(0).getReg(); int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); if (!Subtarget->isTargetWin64()) { // If %al is 0, branch around the XMM save block. BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB); MBB->addSuccessor(EndMBB); } // Make sure the last operand is EFLAGS, which gets clobbered by the branch // that was just emitted, but clearly shouldn't be "saved". assert((MI->getNumOperands() <= 3 || !MI->getOperand(MI->getNumOperands() - 1).isReg() || MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS) && "Expected last argument to be EFLAGS"); unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; // In the XMM save block, save all the XMM argument registers. for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) { int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; MachineMemOperand *MMO = F->getMachineMemOperand( MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), MachineMemOperand::MOStore, /*Size=*/16, /*Align=*/16); BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) .addFrameIndex(RegSaveFrameIndex) .addImm(/*Scale=*/1) .addReg(/*IndexReg=*/0) .addImm(/*Disp=*/Offset) .addReg(/*Segment=*/0) .addReg(MI->getOperand(i).getReg()) .addMemOperand(MMO); } MI->eraseFromParent(); // The pseudo instruction is gone now. return EndMBB; } // The EFLAGS operand of SelectItr might be missing a kill marker // because there were multiple uses of EFLAGS, and ISel didn't know // which to mark. Figure out whether SelectItr should have had a // kill marker, and set it if it should. Returns the correct kill // marker value. static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, MachineBasicBlock* BB, const TargetRegisterInfo* TRI) { // Scan forward through BB for a use/def of EFLAGS. MachineBasicBlock::iterator miI(std::next(SelectItr)); for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { const MachineInstr& mi = *miI; if (mi.readsRegister(X86::EFLAGS)) return false; if (mi.definesRegister(X86::EFLAGS)) break; // Should have kill-flag - update below. } // If we hit the end of the block, check whether EFLAGS is live into a // successor. if (miI == BB->end()) { for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), sEnd = BB->succ_end(); sItr != sEnd; ++sItr) { MachineBasicBlock* succ = *sItr; if (succ->isLiveIn(X86::EFLAGS)) return false; } } // We found a def, or hit the end of the basic block and EFLAGS wasn't live // out. SelectMI should have a kill flag on EFLAGS. SelectItr->addRegisterKilled(X86::EFLAGS, TRI); return true; } MachineBasicBlock * X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // If the EFLAGS register isn't dead in the terminator, then claim that it's // live into the sink and copy blocks. const TargetRegisterInfo *TRI = BB->getParent()->getSubtarget().getRegisterInfo(); if (!MI->killsRegister(X86::EFLAGS) && !checkAndUpdateEFLAGSKill(MI, BB, TRI)) { copy0MBB->addLiveIn(X86::EFLAGS); sinkMBB->addLiveIn(X86::EFLAGS); } // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // Create the conditional branch instruction. unsigned Opc = X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB copy0MBB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return sinkMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB) const { MachineFunction *MF = BB->getParent(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); assert(MF->shouldSplitStack()); const bool Is64Bit = Subtarget->is64Bit(); const bool IsLP64 = Subtarget->isTarget64BitLP64(); const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30; // BB: // ... [Till the alloca] // If stacklet is not large enough, jump to mallocMBB // // bumpMBB: // Allocate by subtracting from RSP // Jump to continueMBB // // mallocMBB: // Allocate by call to runtime // // continueMBB: // ... // [rest of original BB] // MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetRegisterClass *AddrRegClass = getRegClassFor(getPointerTy()); unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), sizeVReg = MI->getOperand(1).getReg(), physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP; MachineFunction::iterator MBBIter = BB; ++MBBIter; MF->insert(MBBIter, bumpMBB); MF->insert(MBBIter, mallocMBB); MF->insert(MBBIter, continueMBB); continueMBB->splice(continueMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); continueMBB->transferSuccessorsAndUpdatePHIs(BB); // Add code to the main basic block to check if the stack limit has been hit, // and if so, jump to mallocMBB otherwise to bumpMBB. BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) .addReg(tmpSPVReg).addReg(sizeVReg); BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr)) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) .addReg(SPLimitVReg); BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB); // bumpMBB simply decreases the stack pointer, since we know the current // stacklet has enough space. BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) .addReg(SPLimitVReg); BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) .addReg(SPLimitVReg); BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); // Calls into a routine in libgcc to allocate more space from the heap. const uint32_t *RegMask = MF->getTarget() .getSubtargetImpl() ->getRegisterInfo() ->getCallPreservedMask(CallingConv::C); if (IsLP64) { BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) .addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::RDI, RegState::Implicit) .addReg(X86::RAX, RegState::ImplicitDefine); } else if (Is64Bit) { BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI) .addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::EDI, RegState::Implicit) .addReg(X86::EAX, RegState::ImplicitDefine); } else { BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) .addImm(12); BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::EAX, RegState::ImplicitDefine); } if (!Is64Bit) BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) .addImm(16); BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) .addReg(IsLP64 ? X86::RAX : X86::EAX); BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); // Set up the CFG correctly. BB->addSuccessor(bumpMBB); BB->addSuccessor(mallocMBB); mallocMBB->addSuccessor(continueMBB); bumpMBB->addSuccessor(continueMBB); // Take care of the PHI nodes. BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(mallocPtrVReg).addMBB(mallocMBB) .addReg(bumpSPPtrVReg).addMBB(bumpMBB); // Delete the original pseudo instruction. MI->eraseFromParent(); // And we're done. return continueMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); assert(!Subtarget->isTargetMachO()); // The lowering is pretty easy: we're just emitting the call to _alloca. The // non-trivial part is impdef of ESP. if (Subtarget->isTargetWin64()) { if (Subtarget->isTargetCygMing()) { // ___chkstk(Mingw64): // Clobbers R10, R11, RAX and EFLAGS. // Updates RSP. BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) .addExternalSymbol("___chkstk") .addReg(X86::RAX, RegState::Implicit) .addReg(X86::RSP, RegState::Implicit) .addReg(X86::RAX, RegState::Define | RegState::Implicit) .addReg(X86::RSP, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); } else { // __chkstk(MSVCRT): does not update stack pointer. // Clobbers R10, R11 and EFLAGS. BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) .addExternalSymbol("__chkstk") .addReg(X86::RAX, RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); // RAX has the offset to be subtracted from RSP. BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP) .addReg(X86::RSP) .addReg(X86::RAX); } } else { const char *StackProbeSymbol = (Subtarget->isTargetKnownWindowsMSVC() || Subtarget->isTargetWindowsItanium()) ? "_chkstk" : "_alloca"; BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) .addExternalSymbol(StackProbeSymbol) .addReg(X86::EAX, RegState::Implicit) .addReg(X86::ESP, RegState::Implicit) .addReg(X86::EAX, RegState::Define | RegState::Implicit) .addReg(X86::ESP, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock * X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, MachineBasicBlock *BB) const { // This is pretty easy. We're taking the value that we received from // our load from the relocation, sticking it in either RDI (x86-64) // or EAX and doing an indirect call. The return value will then // be in the normal return register. MachineFunction *F = BB->getParent(); const X86InstrInfo *TII = static_cast(F->getSubtarget().getInstrInfo()); DebugLoc DL = MI->getDebugLoc(); assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); assert(MI->getOperand(3).isGlobal() && "This should be a global"); // Get a register mask for the lowered call. // FIXME: The 32-bit calls have non-standard calling conventions. Use a // proper register mask. const uint32_t *RegMask = F->getTarget() .getSubtargetImpl() ->getRegisterInfo() ->getCallPreservedMask(CallingConv::C); if (Subtarget->is64Bit()) { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI) .addReg(X86::RIP) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); addDirectMem(MIB, X86::RDI); MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) .addReg(0) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); addDirectMem(MIB, X86::EAX); MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); } else { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) .addReg(TII->getGlobalBaseReg(F)) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); addDirectMem(MIB, X86::EAX); MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock * X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); unsigned DstReg; unsigned MemOpndSlot = 0; unsigned CurOp = 0; DstReg = MI->getOperand(CurOp++).getReg(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); assert(RC->hasType(MVT::i32) && "Invalid destination!"); unsigned mainDstReg = MRI.createVirtualRegister(RC); unsigned restoreDstReg = MRI.createVirtualRegister(RC); MemOpndSlot = CurOp; MVT PVT = getPointerTy(); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); // For v = setjmp(buf), we generate // // thisMBB: // buf[LabelOffset] = restoreMBB // SjLjSetup restoreMBB // // mainMBB: // v_main = 0 // // sinkMBB: // v = phi(main, restore) // // restoreMBB: // if base pointer being used, load it from frame // v_restore = 1 MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MF->push_back(restoreMBB); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: unsigned PtrStoreOpc = 0; unsigned LabelReg = 0; const int64_t LabelOffset = 1 * PVT.getStoreSize(); Reloc::Model RM = MF->getTarget().getRelocationModel(); bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); // Prepare IP either in reg or imm. if (!UseImmLabel) { PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; const TargetRegisterClass *PtrRC = getRegClassFor(PVT); LabelReg = MRI.createVirtualRegister(PtrRC); if (Subtarget->is64Bit()) { MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) .addReg(X86::RIP) .addImm(0) .addReg(0) .addMBB(restoreMBB) .addReg(0); } else { const X86InstrInfo *XII = static_cast(TII); MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) .addReg(XII->getGlobalBaseReg(MF)) .addImm(0) .addReg(0) .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) .addReg(0); } } else PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; // Store IP MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); else MIB.addOperand(MI->getOperand(MemOpndSlot + i)); } if (!UseImmLabel) MIB.addReg(LabelReg); else MIB.addMBB(restoreMBB); MIB.setMemRefs(MMOBegin, MMOEnd); // Setup MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) .addMBB(restoreMBB); const X86RegisterInfo *RegInfo = static_cast( MF->getSubtarget().getRegisterInfo()); MIB.addRegMask(RegInfo->getNoPreservedMask()); thisMBB->addSuccessor(mainMBB); thisMBB->addSuccessor(restoreMBB); // mainMBB: // EAX = 0 BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg) .addReg(mainDstReg).addMBB(mainMBB) .addReg(restoreDstReg).addMBB(restoreMBB); // restoreMBB: if (RegInfo->hasBasePointer(*MF)) { const X86Subtarget &STI = MF->getTarget().getSubtarget(); const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); X86MachineFunctionInfo *X86FI = MF->getInfo(); X86FI->setRestoreBasePointer(MF); unsigned FramePtr = RegInfo->getFrameRegister(*MF); unsigned BasePtr = RegInfo->getBaseRegister(); unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm; addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr), FramePtr, true, X86FI->getRestoreBasePointerOffset()) .setMIFlag(MachineInstr::FrameSetup); } BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); restoreMBB->addSuccessor(sinkMBB); MI->eraseFromParent(); return sinkMBB; } MachineBasicBlock * X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); MachineRegisterInfo &MRI = MF->getRegInfo(); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); MVT PVT = getPointerTy(); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); const TargetRegisterClass *RC = (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; unsigned Tmp = MRI.createVirtualRegister(RC); // Since FP is only updated here but NOT referenced, it's treated as GPR. const X86RegisterInfo *RegInfo = static_cast( MF->getSubtarget().getRegisterInfo()); unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; unsigned SP = RegInfo->getStackRegister(); MachineInstrBuilder MIB; const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t SPOffset = 2 * PVT.getStoreSize(); unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; // Reload FP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) MIB.addOperand(MI->getOperand(i)); MIB.setMemRefs(MMOBegin, MMOEnd); // Reload IP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(i), LabelOffset); else MIB.addOperand(MI->getOperand(i)); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload SP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(i), SPOffset); else MIB.addOperand(MI->getOperand(i)); } MIB.setMemRefs(MMOBegin, MMOEnd); // Jump BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); MI->eraseFromParent(); return MBB; } // Replace 213-type (isel default) FMA3 instructions with 231-type for // accumulator loops. Writing back to the accumulator allows the coalescer // to remove extra copies in the loop. MachineBasicBlock * X86TargetLowering::emitFMA3Instr(MachineInstr *MI, MachineBasicBlock *MBB) const { MachineOperand &AddendOp = MI->getOperand(3); // Bail out early if the addend isn't a register - we can't switch these. if (!AddendOp.isReg()) return MBB; MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Check whether the addend is defined by a PHI: assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?"); MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg()); if (!AddendDef.isPHI()) return MBB; // Look for the following pattern: // loop: // %addend = phi [%entry, 0], [%loop, %result] // ... // %result = FMA213 %m2, %m1, %addend // Replace with: // loop: // %addend = phi [%entry, 0], [%loop, %result] // ... // %result = FMA231 %addend, %m1, %m2 for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) { assert(AddendDef.getOperand(i).isReg()); MachineOperand PHISrcOp = AddendDef.getOperand(i); MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg()); if (&PHISrcInst == MI) { // Found a matching instruction. unsigned NewFMAOpc = 0; switch (MI->getOpcode()) { case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break; case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break; case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break; case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break; case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break; case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break; case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break; case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break; case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break; case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break; case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break; case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break; case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break; case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break; case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break; case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break; case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break; case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break; case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break; case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break; case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break; case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break; case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break; case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break; case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break; case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break; case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break; case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break; case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break; case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break; case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break; case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break; default: llvm_unreachable("Unrecognized FMA variant."); } const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(3)) .addOperand(MI->getOperand(2)) .addOperand(MI->getOperand(1)); MBB->insert(MachineBasicBlock::iterator(MI), MIB); MI->eraseFromParent(); } } return MBB; } MachineBasicBlock * X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case X86::TAILJMPd64: case X86::TAILJMPr64: case X86::TAILJMPm64: llvm_unreachable("TAILJMP64 would not be touched here."); case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: return BB; case X86::WIN_ALLOCA: return EmitLoweredWinAlloca(MI, BB); case X86::SEG_ALLOCA_32: case X86::SEG_ALLOCA_64: return EmitLoweredSegAlloca(MI, BB); case X86::TLSCall_32: case X86::TLSCall_64: return EmitLoweredTLSCall(MI, BB); case X86::CMOV_GR8: case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_V4F32: case X86::CMOV_V2F64: case X86::CMOV_V2I64: case X86::CMOV_V8F32: case X86::CMOV_V4F64: case X86::CMOV_V4I64: case X86::CMOV_V16F32: case X86::CMOV_V8F64: case X86::CMOV_V8I64: case X86::CMOV_GR16: case X86::CMOV_GR32: case X86::CMOV_RFP32: case X86::CMOV_RFP64: case X86::CMOV_RFP80: return EmitLoweredSelect(MI, BB); case X86::FP32_TO_INT16_IN_MEM: case X86::FP32_TO_INT32_IN_MEM: case X86::FP32_TO_INT64_IN_MEM: case X86::FP64_TO_INT16_IN_MEM: case X86::FP64_TO_INT32_IN_MEM: case X86::FP64_TO_INT64_IN_MEM: case X86::FP80_TO_INT16_IN_MEM: case X86::FP80_TO_INT32_IN_MEM: case X86::FP80_TO_INT64_IN_MEM: { MachineFunction *F = BB->getParent(); const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) .addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) .addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isReg()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getIndex(); } Op = MI->getOperand(1); if (Op.isImm()) AM.Scale = Op.getImm(); Op = MI->getOperand(2); if (Op.isImm()) AM.IndexReg = Op.getImm(); Op = MI->getOperand(3); if (Op.isGlobal()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImm(); } addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); // Reload the original control word now. addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } // String/text processing lowering. case X86::PCMPISTRM128REG: case X86::VPCMPISTRM128REG: case X86::PCMPISTRM128MEM: case X86::VPCMPISTRM128MEM: case X86::PCMPESTRM128REG: case X86::VPCMPESTRM128REG: case X86::PCMPESTRM128MEM: case X86::VPCMPESTRM128MEM: assert(Subtarget->hasSSE42() && "Target must have SSE4.2 or AVX features enabled"); return EmitPCMPSTRM(MI, BB, BB->getParent()->getSubtarget().getInstrInfo()); // String/text processing lowering. case X86::PCMPISTRIREG: case X86::VPCMPISTRIREG: case X86::PCMPISTRIMEM: case X86::VPCMPISTRIMEM: case X86::PCMPESTRIREG: case X86::VPCMPESTRIREG: case X86::PCMPESTRIMEM: case X86::VPCMPESTRIMEM: assert(Subtarget->hasSSE42() && "Target must have SSE4.2 or AVX features enabled"); return EmitPCMPSTRI(MI, BB, BB->getParent()->getSubtarget().getInstrInfo()); // Thread synchronization. case X86::MONITOR: return EmitMonitor(MI, BB, BB->getParent()->getSubtarget().getInstrInfo(), Subtarget); // xbegin case X86::XBEGIN: return EmitXBegin(MI, BB, BB->getParent()->getSubtarget().getInstrInfo()); case X86::VASTART_SAVE_XMM_REGS: return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); case X86::VAARG_64: return EmitVAARG64WithCustomInserter(MI, BB); case X86::EH_SjLj_SetJmp32: case X86::EH_SjLj_SetJmp64: return emitEHSjLjSetJmp(MI, BB); case X86::EH_SjLj_LongJmp32: case X86::EH_SjLj_LongJmp64: return emitEHSjLjLongJmp(MI, BB); case TargetOpcode::STATEPOINT: // As an implementation detail, STATEPOINT shares the STACKMAP format at // this point in the process. We diverge later. return emitPatchPoint(MI, BB); case TargetOpcode::STACKMAP: case TargetOpcode::PATCHPOINT: return emitPatchPoint(MI, BB); case X86::VFMADDPDr213r: case X86::VFMADDPSr213r: case X86::VFMADDSDr213r: case X86::VFMADDSSr213r: case X86::VFMSUBPDr213r: case X86::VFMSUBPSr213r: case X86::VFMSUBSDr213r: case X86::VFMSUBSSr213r: case X86::VFNMADDPDr213r: case X86::VFNMADDPSr213r: case X86::VFNMADDSDr213r: case X86::VFNMADDSSr213r: case X86::VFNMSUBPDr213r: case X86::VFNMSUBPSr213r: case X86::VFNMSUBSDr213r: case X86::VFNMSUBSSr213r: case X86::VFMADDSUBPDr213r: case X86::VFMADDSUBPSr213r: case X86::VFMSUBADDPDr213r: case X86::VFMSUBADDPSr213r: case X86::VFMADDPDr213rY: case X86::VFMADDPSr213rY: case X86::VFMSUBPDr213rY: case X86::VFMSUBPSr213rY: case X86::VFNMADDPDr213rY: case X86::VFNMADDPSr213rY: case X86::VFNMSUBPDr213rY: case X86::VFNMSUBPSr213rY: case X86::VFMADDSUBPDr213rY: case X86::VFMADDSUBPSr213rY: case X86::VFMSUBADDPDr213rY: case X86::VFMSUBADDPSr213rY: return emitFMA3Instr(MI, BB); } } //===----------------------------------------------------------------------===// // X86 Optimization Hooks //===----------------------------------------------------------------------===// void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = KnownZero.getBitWidth(); unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. switch (Opc) { default: break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::ADC: case X86ISD::SBB: case X86ISD::SMUL: case X86ISD::UMUL: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: // These nodes' second result is a boolean. if (Op.getResNo() == 0) break; // Fallthrough case X86ISD::SETCC: KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); break; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntId = cast(Op.getOperand(0))->getZExtValue(); unsigned NumLoBits = 0; switch (IntId) { default: break; case Intrinsic::x86_sse_movmsk_ps: case Intrinsic::x86_avx_movmsk_ps_256: case Intrinsic::x86_sse2_movmsk_pd: case Intrinsic::x86_avx_movmsk_pd_256: case Intrinsic::x86_mmx_pmovmskb: case Intrinsic::x86_sse2_pmovmskb_128: case Intrinsic::x86_avx2_pmovmskb: { // High bits of movmskp{s|d}, pmovmskb are known zero. switch (IntId) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break; case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break; case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break; case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break; case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break; case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break; case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break; } KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); break; } } break; } } } unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const SelectionDAG &, unsigned Depth) const { // SETCC_CARRY sets the dest to ~0 for true or 0 for false. if (Op.getOpcode() == X86ISD::SETCC_CARRY) return Op.getValueType().getScalarType().getSizeInBits(); // Fallback case. return 1; } /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. bool X86TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const { if (N->getOpcode() == X86ISD::Wrapper) { if (isa(N->getOperand(0))) { GA = cast(N->getOperand(0))->getGlobal(); Offset = cast(N->getOperand(0))->getOffset(); return true; } } return TargetLowering::isGAPlusOffset(N, GA, Offset); } /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the /// same as extracting the high 128-bit part of 256-bit vector and then /// inserting the result into the low part of a new 256-bit vector static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || SVOp->getMaskElt(j) >= 0) return false; return true; } /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the /// same as extracting the low 128-bit part of 256-bit vector and then /// inserting the result into the high part of a new 256-bit vector static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); // vector_shuffle or for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || SVOp->getMaskElt(j) >= 0) return false; return true; } /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget* Subtarget) { SDLoc dl(N); ShuffleVectorSDNode *SVOp = cast(N); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); if (V1.getOpcode() == ISD::CONCAT_VECTORS && V2.getOpcode() == ISD::CONCAT_VECTORS) { // // 0,0,0,... // | // V UNDEF BUILD_VECTOR UNDEF // \ / \ / // CONCAT_VECTOR CONCAT_VECTOR // \ / // \ / // RESULT: V + zero extended // if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || V2.getOperand(1).getOpcode() != ISD::UNDEF || V1.getOperand(1).getOpcode() != ISD::UNDEF) return SDValue(); if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) return SDValue(); // To match the shuffle mask, the first half of the mask should // be exactly the first vector, and all the rest a splat with the // first element of the second one. for (unsigned i = 0; i != NumElems/2; ++i) if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) return SDValue(); // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. if (LoadSDNode *Ld = dyn_cast(V1.getOperand(0))) { if (Ld->hasNUsesOfValue(1, 0)) { SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, Ld->getMemoryVT(), Ld->getPointerInfo(), Ld->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); // Make sure the newly-created LOAD is in the same position as Ld in // terms of dependency. We create a TokenFactor for Ld and ResNode, // and update uses of Ld's output chain to use the TokenFactor. if (Ld->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); } return DAG.getNode(ISD::BITCAST, dl, VT, ResNode); } } // Emit a zeroed vector and insert the desired subvector on its // first half. SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); return DCI.CombineTo(N, InsV); } //===--------------------------------------------------------------------===// // Combine some shuffles into subvector extracts and inserts: // // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> if (isShuffleHigh128VectorInsertLow(SVOp)) { SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); return DCI.CombineTo(N, InsV); } // vector_shuffle or if (isShuffleLow128VectorInsertHigh(SVOp)) { SDValue V = Extract128BitVector(V1, 0, DAG, dl); SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); return DCI.CombineTo(N, InsV); } return SDValue(); } /// \brief Combine an arbitrary chain of shuffles into a single instruction if /// possible. /// /// This is the leaf of the recursive combinine below. When we have found some /// chain of single-use x86 shuffle instructions and accumulated the combined /// shuffle mask represented by them, this will try to pattern match that mask /// into either a single instruction if there is a special purpose instruction /// for this operation, or into a PSHUFB instruction which is a fully general /// instruction but should only be used to replace chains over a certain depth. static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef Mask, int Depth, bool HasPSHUFB, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { assert(!Mask.empty() && "Cannot combine an empty shuffle mask!"); // Find the operand that enters the chain. Note that multiple uses are OK // here, we're not going to remove the operand we find. SDValue Input = Op.getOperand(0); while (Input.getOpcode() == ISD::BITCAST) Input = Input.getOperand(0); MVT VT = Input.getSimpleValueType(); MVT RootVT = Root.getSimpleValueType(); SDLoc DL(Root); // Just remove no-op shuffle masks. if (Mask.size() == 1) { DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input), /*AddTo*/ true); return true; } // Use the float domain if the operand type is a floating point type. bool FloatDomain = VT.isFloatingPoint(); // For floating point shuffles, we don't have free copies in the shuffle // instructions or the ability to load as part of the instruction, so // canonicalize their shuffles to UNPCK or MOV variants. // // Note that even with AVX we prefer the PSHUFD form of shuffle for integer // vectors because it can have a load folded into it that UNPCK cannot. This // doesn't preclude something switching to the shorter encoding post-RA. if (FloatDomain) { if (Mask.equals(0, 0) || Mask.equals(1, 1)) { bool Lo = Mask.equals(0, 0); unsigned Shuffle; MVT ShuffleVT; // Check if we have SSE3 which will let us use MOVDDUP. That instruction // is no slower than UNPCKLPD but has the option to fold the input operand // into even an unaligned memory load. if (Lo && Subtarget->hasSSE3()) { Shuffle = X86ISD::MOVDDUP; ShuffleVT = MVT::v2f64; } else { // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller // than the UNPCK variants. Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS; ShuffleVT = MVT::v4f32; } if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); if (Shuffle == X86ISD::MOVDDUP) Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); else Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op), /*AddTo*/ true); return true; } if (Subtarget->hasSSE3() && (Mask.equals(0, 0, 2, 2) || Mask.equals(1, 1, 3, 3))) { bool Lo = Mask.equals(0, 0, 2, 2); unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP; MVT ShuffleVT = MVT::v4f32; if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op), /*AddTo*/ true); return true; } if (Mask.equals(0, 0, 1, 1) || Mask.equals(2, 2, 3, 3)) { bool Lo = Mask.equals(0, 0, 1, 1); unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; MVT ShuffleVT = MVT::v4f32; if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op), /*AddTo*/ true); return true; } } // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK // variants as none of these have single-instruction variants that are // superior to the UNPCK formulation. if (!FloatDomain && (Mask.equals(0, 0, 1, 1, 2, 2, 3, 3) || Mask.equals(4, 4, 5, 5, 6, 6, 7, 7) || Mask.equals(0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7) || Mask.equals(8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15))) { bool Lo = Mask[0] == 0; unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! MVT ShuffleVT; switch (Mask.size()) { case 8: ShuffleVT = MVT::v8i16; break; case 16: ShuffleVT = MVT::v16i8; break; default: llvm_unreachable("Impossible mask size!"); }; Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op), /*AddTo*/ true); return true; } // Don't try to re-form single instruction chains under any circumstances now // that we've done encoding canonicalization for them. if (Depth < 2) return false; // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we // can replace them with a single PSHUFB instruction profitably. Intel's // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but // in practice PSHUFB tends to be *very* fast so we're more aggressive. if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) { SmallVector PSHUFBMask; assert(Mask.size() <= 16 && "Can't shuffle elements smaller than bytes!"); int Ratio = 16 / Mask.size(); for (unsigned i = 0; i < 16; ++i) { if (Mask[i / Ratio] == SM_SentinelUndef) { PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8)); continue; } int M = Mask[i / Ratio] != SM_SentinelZero ? Ratio * Mask[i / Ratio] + i % Ratio : 255; PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8)); } Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Input); DCI.AddToWorklist(Op.getNode()); SDValue PSHUFBMaskOp = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask); DCI.AddToWorklist(PSHUFBMaskOp.getNode()); Op = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, Op, PSHUFBMaskOp); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op), /*AddTo*/ true); return true; } // Failed to find any combines. return false; } /// \brief Fully generic combining of x86 shuffle instructions. /// /// This should be the last combine run over the x86 shuffle instructions. Once /// they have been fully optimized, this will recursively consider all chains /// of single-use shuffle instructions, build a generic model of the cumulative /// shuffle operation, and check for simpler instructions which implement this /// operation. We use this primarily for two purposes: /// /// 1) Collapse generic shuffles to specialized single instructions when /// equivalent. In most cases, this is just an encoding size win, but /// sometimes we will collapse multiple generic shuffles into a single /// special-purpose shuffle. /// 2) Look for sequences of shuffle instructions with 3 or more total /// instructions, and replace them with the slightly more expensive SSSE3 /// PSHUFB instruction if available. We do this as the last combining step /// to ensure we avoid using PSHUFB if we can implement the shuffle with /// a suitable short sequence of other instructions. The PHUFB will either /// use a register or have to read from memory and so is slightly (but only /// slightly) more expensive than the other shuffle instructions. /// /// Because this is inherently a quadratic operation (for each shuffle in /// a chain, we recurse up the chain), the depth is limited to 8 instructions. /// This should never be an issue in practice as the shuffle lowering doesn't /// produce sequences of more than 8 instructions. /// /// FIXME: We will currently miss some cases where the redundant shuffling /// would simplify under the threshold for PSHUFB formation because of /// combine-ordering. To fix this, we should do the redundant instruction /// combining in this recursive walk. static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root, ArrayRef RootMask, int Depth, bool HasPSHUFB, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { // Bound the depth of our recursive combine because this is ultimately // quadratic in nature. if (Depth > 8) return false; // Directly rip through bitcasts to find the underlying operand. while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse()) Op = Op.getOperand(0); MVT VT = Op.getSimpleValueType(); if (!VT.isVector()) return false; // Bail if we hit a non-vector. // FIXME: This routine should be taught about 256-bit shuffles, or a 256-bit // version should be added. if (VT.getSizeInBits() != 128) return false; assert(Root.getSimpleValueType().isVector() && "Shuffles operate on vector types!"); assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() && "Can only combine shuffles of the same vector register size."); if (!isTargetShuffle(Op.getOpcode())) return false; SmallVector OpMask; bool IsUnary; bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary); // We only can combine unary shuffles which we can decode the mask for. if (!HaveMask || !IsUnary) return false; assert(VT.getVectorNumElements() == OpMask.size() && "Different mask size from vector size!"); assert(((RootMask.size() > OpMask.size() && RootMask.size() % OpMask.size() == 0) || (OpMask.size() > RootMask.size() && OpMask.size() % RootMask.size() == 0) || OpMask.size() == RootMask.size()) && "The smaller number of elements must divide the larger."); int RootRatio = std::max(1, OpMask.size() / RootMask.size()); int OpRatio = std::max(1, RootMask.size() / OpMask.size()); assert(((RootRatio == 1 && OpRatio == 1) || (RootRatio == 1) != (OpRatio == 1)) && "Must not have a ratio for both incoming and op masks!"); SmallVector Mask; Mask.reserve(std::max(OpMask.size(), RootMask.size())); // Merge this shuffle operation's mask into our accumulated mask. Note that // this shuffle's mask will be the first applied to the input, followed by the // root mask to get us all the way to the root value arrangement. The reason // for this order is that we are recursing up the operation chain. for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) { int RootIdx = i / RootRatio; if (RootMask[RootIdx] < 0) { // This is a zero or undef lane, we're done. Mask.push_back(RootMask[RootIdx]); continue; } int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio; int OpIdx = RootMaskedIdx / OpRatio; if (OpMask[OpIdx] < 0) { // The incoming lanes are zero or undef, it doesn't matter which ones we // are using. Mask.push_back(OpMask[OpIdx]); continue; } // Ok, we have non-zero lanes, map them through. Mask.push_back(OpMask[OpIdx] * OpRatio + RootMaskedIdx % OpRatio); } // See if we can recurse into the operand to combine more things. switch (Op.getOpcode()) { case X86ISD::PSHUFB: HasPSHUFB = true; case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: if (Op.getOperand(0).hasOneUse() && combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, HasPSHUFB, DAG, DCI, Subtarget)) return true; break; case X86ISD::UNPCKL: case X86ISD::UNPCKH: assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!"); // We can't check for single use, we have to check that this shuffle is the only user. if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) && combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, HasPSHUFB, DAG, DCI, Subtarget)) return true; break; } // Minor canonicalization of the accumulated shuffle mask to make it easier // to match below. All this does is detect masks with squential pairs of // elements, and shrink them to the half-width mask. It does this in a loop // so it will reduce the size of the mask to the minimal width mask which // performs an equivalent shuffle. SmallVector WidenedMask; while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) { Mask = std::move(WidenedMask); WidenedMask.clear(); } return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI, Subtarget); } /// \brief Get the PSHUF-style mask from PSHUF node. /// /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4 /// PSHUF-style masks that can be reused with such instructions. static SmallVector getPSHUFShuffleMask(SDValue N) { SmallVector Mask; bool IsUnary; bool HaveMask = getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), Mask, IsUnary); (void)HaveMask; assert(HaveMask); switch (N.getOpcode()) { case X86ISD::PSHUFD: return Mask; case X86ISD::PSHUFLW: Mask.resize(4); return Mask; case X86ISD::PSHUFHW: Mask.erase(Mask.begin(), Mask.begin() + 4); for (int &M : Mask) M -= 4; return Mask; default: llvm_unreachable("No valid shuffle instruction found!"); } } /// \brief Search for a combinable shuffle across a chain ending in pshufd. /// /// We walk up the chain and look for a combinable shuffle, skipping over /// shuffles that we could hoist this shuffle's transformation past without /// altering anything. static SDValue combineRedundantDWordShuffle(SDValue N, MutableArrayRef Mask, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { assert(N.getOpcode() == X86ISD::PSHUFD && "Called with something other than an x86 128-bit half shuffle!"); SDLoc DL(N); // Walk up a single-use chain looking for a combinable shuffle. Keep a stack // of the shuffles in the chain so that we can form a fresh chain to replace // this one. SmallVector Chain; SDValue V = N.getOperand(0); for (; V.hasOneUse(); V = V.getOperand(0)) { switch (V.getOpcode()) { default: return SDValue(); // Nothing combined! case ISD::BITCAST: // Skip bitcasts as we always know the type for the target specific // instructions. continue; case X86ISD::PSHUFD: // Found another dword shuffle. break; case X86ISD::PSHUFLW: // Check that the low words (being shuffled) are the identity in the // dword shuffle, and the high words are self-contained. if (Mask[0] != 0 || Mask[1] != 1 || !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4)) return SDValue(); Chain.push_back(V); continue; case X86ISD::PSHUFHW: // Check that the high words (being shuffled) are the identity in the // dword shuffle, and the low words are self-contained. if (Mask[2] != 2 || Mask[3] != 3 || !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2)) return SDValue(); Chain.push_back(V); continue; case X86ISD::UNPCKL: case X86ISD::UNPCKH: // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword // shuffle into a preceding word shuffle. if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16) return SDValue(); // Search for a half-shuffle which we can combine with. unsigned CombineOp = V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW; if (V.getOperand(0) != V.getOperand(1) || !V->isOnlyUserOf(V.getOperand(0).getNode())) return SDValue(); Chain.push_back(V); V = V.getOperand(0); do { switch (V.getOpcode()) { default: return SDValue(); // Nothing to combine. case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: if (V.getOpcode() == CombineOp) break; Chain.push_back(V); // Fallthrough! case ISD::BITCAST: V = V.getOperand(0); continue; } break; } while (V.hasOneUse()); break; } // Break out of the loop if we break out of the switch. break; } if (!V.hasOneUse()) // We fell out of the loop without finding a viable combining instruction. return SDValue(); // Merge this node's mask and our incoming mask. SmallVector VMask = getPSHUFShuffleMask(V); for (int &M : Mask) M = VMask[M]; V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0), getV4X86ShuffleImm8ForMask(Mask, DAG)); // Rebuild the chain around this new shuffle. while (!Chain.empty()) { SDValue W = Chain.pop_back_val(); if (V.getValueType() != W.getOperand(0).getValueType()) V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V); switch (W.getOpcode()) { default: llvm_unreachable("Only PSHUF and UNPCK instructions get here!"); case X86ISD::UNPCKL: case X86ISD::UNPCKH: V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V); break; case X86ISD::PSHUFD: case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1)); break; } } if (V.getValueType() != N.getValueType()) V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V); // Return the new chain to replace N. return V; } /// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw. /// /// We walk up the chain, skipping shuffles of the other half and looking /// through shuffles which switch halves trying to find a shuffle of the same /// pair of dwords. static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef Mask, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { assert( (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) && "Called with something other than an x86 128-bit half shuffle!"); SDLoc DL(N); unsigned CombineOpcode = N.getOpcode(); // Walk up a single-use chain looking for a combinable shuffle. SDValue V = N.getOperand(0); for (; V.hasOneUse(); V = V.getOperand(0)) { switch (V.getOpcode()) { default: return false; // Nothing combined! case ISD::BITCAST: // Skip bitcasts as we always know the type for the target specific // instructions. continue; case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: if (V.getOpcode() == CombineOpcode) break; // Other-half shuffles are no-ops. continue; } // Break out of the loop if we break out of the switch. break; } if (!V.hasOneUse()) // We fell out of the loop without finding a viable combining instruction. return false; // Combine away the bottom node as its shuffle will be accumulated into // a preceding shuffle. DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); // Record the old value. SDValue Old = V; // Merge this node's mask and our incoming mask (adjusted to account for all // the pshufd instructions encountered). SmallVector VMask = getPSHUFShuffleMask(V); for (int &M : Mask) M = VMask[M]; V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0), getV4X86ShuffleImm8ForMask(Mask, DAG)); // Check that the shuffles didn't cancel each other out. If not, we need to // combine to the new one. if (Old != V) // Replace the combinable shuffle with the combined one, updating all users // so that we re-evaluate the chain here. DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true); return true; } /// \brief Try to combine x86 target specific shuffles. static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); MVT VT = N.getSimpleValueType(); SmallVector Mask; switch (N.getOpcode()) { case X86ISD::PSHUFD: case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: Mask = getPSHUFShuffleMask(N); assert(Mask.size() == 4); break; default: return SDValue(); } // Nuke no-op shuffles that show up after combining. if (isNoopShuffleMask(Mask)) return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); // Look for simplifications involving one or two shuffle instructions. SDValue V = N.getOperand(0); switch (N.getOpcode()) { default: break; case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: assert(VT == MVT::v8i16); (void)VT; if (combineRedundantHalfShuffle(N, Mask, DAG, DCI)) return SDValue(); // We combined away this shuffle, so we're done. // See if this reduces to a PSHUFD which is no more expensive and can // combine with more operations. Note that it has to at least flip the // dwords as otherwise it would have been removed as a no-op. if (Mask[0] == 2 && Mask[1] == 3 && Mask[2] == 0 && Mask[3] == 1) { int DMask[] = {0, 1, 2, 3}; int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2; DMask[DOffset + 0] = DOffset + 1; DMask[DOffset + 1] = DOffset + 0; V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V); DCI.AddToWorklist(V.getNode()); V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V, getV4X86ShuffleImm8ForMask(DMask, DAG)); DCI.AddToWorklist(V.getNode()); return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V); } // Look for shuffle patterns which can be implemented as a single unpack. // FIXME: This doesn't handle the location of the PSHUFD generically, and // only works when we have a PSHUFD followed by two half-shuffles. if (Mask[0] == Mask[1] && Mask[2] == Mask[3] && (V.getOpcode() == X86ISD::PSHUFLW || V.getOpcode() == X86ISD::PSHUFHW) && V.getOpcode() != N.getOpcode() && V.hasOneUse()) { SDValue D = V.getOperand(0); while (D.getOpcode() == ISD::BITCAST && D.hasOneUse()) D = D.getOperand(0); if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) { SmallVector VMask = getPSHUFShuffleMask(V); SmallVector DMask = getPSHUFShuffleMask(D); int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; int WordMask[8]; for (int i = 0; i < 4; ++i) { WordMask[i + NOffset] = Mask[i] + NOffset; WordMask[i + VOffset] = VMask[i] + VOffset; } // Map the word mask through the DWord mask. int MappedMask[8]; for (int i = 0; i < 8; ++i) MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2; const int UnpackLoMask[] = {0, 0, 1, 1, 2, 2, 3, 3}; const int UnpackHiMask[] = {4, 4, 5, 5, 6, 6, 7, 7}; if (std::equal(std::begin(MappedMask), std::end(MappedMask), std::begin(UnpackLoMask)) || std::equal(std::begin(MappedMask), std::end(MappedMask), std::begin(UnpackHiMask))) { // We can replace all three shuffles with an unpack. V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, D.getOperand(0)); DCI.AddToWorklist(V.getNode()); return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, MVT::v8i16, V, V); } } } break; case X86ISD::PSHUFD: if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI)) return NewN; break; } return SDValue(); } /// \brief Try to combine a shuffle into a target-specific add-sub node. /// /// We combine this directly on the abstract vector shuffle nodes so it is /// easier to generically match. We also insert dummy vector shuffle nodes for /// the operands which explicitly discard the lanes which are unused by this /// operation to try to flow through the rest of the combiner the fact that /// they're unused. static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); EVT VT = N->getValueType(0); // We only handle target-independent shuffles. // FIXME: It would be easy and harmless to use the target shuffle mask // extraction tool to support more. if (N->getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); auto *SVN = cast(N); ArrayRef Mask = SVN->getMask(); SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); // We require the first shuffle operand to be the SUB node, and the second to // be the ADD node. // FIXME: We should support the commuted patterns. if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD) return SDValue(); // If there are other uses of these operations we can't fold them. if (!V1->hasOneUse() || !V2->hasOneUse()) return SDValue(); // Ensure that both operations have the same operands. Note that we can // commute the FADD operands. SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1); if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) && (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS)) return SDValue(); // We're looking for blends between FADD and FSUB nodes. We insist on these // nodes being lined up in a specific expected pattern. if (!(isShuffleEquivalent(Mask, 0, 3) || isShuffleEquivalent(Mask, 0, 5, 2, 7) || isShuffleEquivalent(Mask, 0, 9, 2, 11, 4, 13, 6, 15))) return SDValue(); // Only specific types are legal at this point, assert so we notice if and // when these change. assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 || VT == MVT::v4f64) && "Unknown vector type encountered!"); return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS); } /// PerformShuffleCombine - Performs several different shuffle combines. static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc dl(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); // Don't create instructions with illegal types after legalize types has run. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) return SDValue(); // If we have legalized the vector types, look for blends of FADD and FSUB // nodes that we can fuse into an ADDSUB node. if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3()) if (SDValue AddSub = combineShuffleToAddSub(N, DAG)) return AddSub; // Combine 256-bit vector shuffles. This is only profitable when in AVX mode if (Subtarget->hasFp256() && VT.is256BitVector() && N->getOpcode() == ISD::VECTOR_SHUFFLE) return PerformShuffleCombine256(N, DAG, DCI, Subtarget); // During Type Legalization, when promoting illegal vector types, // the backend might introduce new shuffle dag nodes and bitcasts. // // This code performs the following transformation: // fold: (shuffle (bitcast (BINOP A, B)), Undef, ) -> // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, ) // // We do this only if both the bitcast and the BINOP dag nodes have // one use. Also, perform this transformation only if the new binary // operation is legal. This is to avoid introducing dag nodes that // potentially need to be further expanded (or custom lowered) into a // less optimal sequence of dag nodes. if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() && N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() && N0.getOpcode() == ISD::BITCAST) { SDValue BC0 = N0.getOperand(0); EVT SVT = BC0.getValueType(); unsigned Opcode = BC0.getOpcode(); unsigned NumElts = VT.getVectorNumElements(); if (BC0.hasOneUse() && SVT.isVector() && SVT.getVectorNumElements() * 2 == NumElts && TLI.isOperationLegal(Opcode, VT)) { bool CanFold = false; switch (Opcode) { default : break; case ISD::ADD : case ISD::FADD : case ISD::SUB : case ISD::FSUB : case ISD::MUL : case ISD::FMUL : CanFold = true; } unsigned SVTNumElts = SVT.getVectorNumElements(); ShuffleVectorSDNode *SVOp = cast(N); for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i) CanFold = SVOp->getMaskElt(i) == (int)(i * 2); for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i) CanFold = SVOp->getMaskElt(i) < 0; if (CanFold) { SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0)); SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1)); SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01); return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]); } } } // Only handle 128 wide vector from here on. if (!VT.is128BitVector()) return SDValue(); // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are // consecutive, non-overlapping, and in the right order. SmallVector Elts; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true); if (LD.getNode()) return LD; if (isTargetShuffle(N->getOpcode())) { SDValue Shuffle = PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget); if (Shuffle.getNode()) return Shuffle; // Try recursively combining arbitrary sequences of x86 shuffle // instructions into higher-order shuffles. We do this after combining // specific PSHUF instruction sequences into their minimal form so that we // can evaluate how many specialized shuffle instructions are involved in // a particular chain. SmallVector NonceMask; // Just a placeholder. NonceMask.push_back(0); if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask, /*Depth*/ 1, /*HasPSHUFB*/ false, DAG, DCI, Subtarget)) return SDValue(); // This routine will use CombineTo to replace N. } return SDValue(); } /// PerformTruncateCombine - Converts truncate operation to /// a sequence of vector shuffle operations. /// It is possible when we truncate 256-bit vector to 128-bit vector static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { return SDValue(); } /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target /// specific shuffle of a load can be folded into a single element load. /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but /// shuffles have been custom lowered so we need to handle those here. static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue InVec = N->getOperand(0); SDValue EltNo = N->getOperand(1); if (!isa(EltNo)) return SDValue(); EVT OriginalVT = InVec.getValueType(); if (InVec.getOpcode() == ISD::BITCAST) { // Don't duplicate a load with other uses. if (!InVec.hasOneUse()) return SDValue(); EVT BCVT = InVec.getOperand(0).getValueType(); if (BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements()) return SDValue(); InVec = InVec.getOperand(0); } EVT CurrentVT = InVec.getValueType(); if (!isTargetShuffle(InVec.getOpcode())) return SDValue(); // Don't duplicate a load with other uses. if (!InVec.hasOneUse()) return SDValue(); SmallVector ShuffleMask; bool UnaryShuffle; if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), ShuffleMask, UnaryShuffle)) return SDValue(); // Select the input vector, guarding against out of range extract vector. unsigned NumElems = CurrentVT.getVectorNumElements(); int Elt = cast(EltNo)->getZExtValue(); int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); // If inputs to shuffle are the same for both ops, then allow 2 uses unsigned AllowedUses = InVec.getNumOperands() > 1 && InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; if (LdNode.getOpcode() == ISD::BITCAST) { // Don't duplicate a load with other uses. if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) return SDValue(); AllowedUses = 1; // only allow 1 load use if we have a bitcast LdNode = LdNode.getOperand(0); } if (!ISD::isNormalLoad(LdNode.getNode())) return SDValue(); LoadSDNode *LN0 = cast(LdNode); if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) return SDValue(); EVT EltVT = N->getValueType(0); // If there's a bitcast before the shuffle, check if the load type and // alignment is valid. unsigned Align = LN0->getAlignment(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment( EltVT.getTypeForEVT(*DAG.getContext())); if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT)) return SDValue(); // All checks match so transform back to vector_shuffle so that DAG combiner // can finish the job SDLoc dl(N); // Create shuffle node taking into account the case that its a unary shuffle SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : InVec.getOperand(1); Shuffle = DAG.getVectorShuffle(CurrentVT, dl, InVec.getOperand(0), Shuffle, &ShuffleMask[0]); Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, EltNo); } /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index /// generation and convert it from being a bunch of shuffles and extracts /// into a somewhat faster sequence. For i686, the best sequence is apparently /// storing the value and loading scalars back, while for x64 we should /// use 64-bit extracts and shifts. static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI); if (NewOp.getNode()) return NewOp; SDValue InputVector = N->getOperand(0); // Detect whether we are trying to convert from mmx to i32 and the bitcast // from mmx to v2i32 has a single usage. if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST && InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx && InputVector.hasOneUse() && N->getValueType(0) == MVT::i32) return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), N->getValueType(0), InputVector.getNode()->getOperand(0)); // Only operate on vectors of 4 elements, where the alternative shuffling // gets to be more expensive. if (InputVector.getValueType() != MVT::v4i32) return SDValue(); // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a // single use which is a sign-extend or zero-extend, and all elements are // used. SmallVector Uses; unsigned ExtractedElements = 0; for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() != InputVector.getResNo()) return SDValue(); SDNode *Extract = *UI; if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); if (Extract->getValueType(0) != MVT::i32) return SDValue(); if (!Extract->hasOneUse()) return SDValue(); if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) return SDValue(); if (!isa(Extract->getOperand(1))) return SDValue(); // Record which element was extracted. ExtractedElements |= 1 << cast(Extract->getOperand(1))->getZExtValue(); Uses.push_back(Extract); } // If not all the elements were used, this may not be worthwhile. if (ExtractedElements != 15) return SDValue(); // Ok, we've now decided to do the transformation. // If 64-bit shifts are legal, use the extract-shift sequence, // otherwise bounce the vector off the cache. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Vals[4]; SDLoc dl(InputVector); if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) { SDValue Cst = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, InputVector); EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(); SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, DAG.getConstant(0, VecIdxTy)); SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, DAG.getConstant(1, VecIdxTy)); SDValue ShAmt = DAG.getConstant(32, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64)); Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf); Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt)); Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf); Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt)); } else { // Store the value to a temporary stack slot. SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, MachinePointerInfo(), false, false, 0); EVT ElementType = InputVector.getValueType().getVectorElementType(); unsigned EltSize = ElementType.getSizeInBits() / 8; // Replace each use (extract) with a load of the appropriate element. for (unsigned i = 0; i < 4; ++i) { uint64_t Offset = EltSize * i; SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), StackPtr, OffsetVal); // Load the scalar. Vals[i] = DAG.getLoad(ElementType, dl, Ch, ScalarAddr, MachinePointerInfo(), false, false, false, 0); } } // Replace the extracts for (SmallVectorImpl::iterator UI = Uses.begin(), UE = Uses.end(); UI != UE; ++UI) { SDNode *Extract = *UI; SDValue Idx = Extract->getOperand(1); uint64_t IdxVal = cast(Idx)->getZExtValue(); DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]); } // The replacement was made in place; don't return anything. return SDValue(); } /// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match. static std::pair matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const X86Subtarget *Subtarget) { if (!VT.isVector()) return std::make_pair(0, false); bool NeedSplit = false; switch (VT.getSimpleVT().SimpleTy) { default: return std::make_pair(0, false); case MVT::v4i64: case MVT::v2i64: if (!Subtarget->hasVLX()) return std::make_pair(0, false); break; case MVT::v64i8: case MVT::v32i16: if (!Subtarget->hasBWI()) return std::make_pair(0, false); break; case MVT::v16i32: case MVT::v8i64: if (!Subtarget->hasAVX512()) return std::make_pair(0, false); break; case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: if (!Subtarget->hasAVX2()) NeedSplit = true; if (!Subtarget->hasAVX()) return std::make_pair(0, false); break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: if (!Subtarget->hasSSE2()) return std::make_pair(0, false); } // SSE2 has only a small subset of the operations. bool hasUnsigned = Subtarget->hasSSE41() || (Subtarget->hasSSE2() && VT == MVT::v16i8); bool hasSigned = Subtarget->hasSSE41() || (Subtarget->hasSSE2() && VT == MVT::v8i16); ISD::CondCode CC = cast(Cond.getOperand(2))->get(); unsigned Opc = 0; // Check for x CC y ? x : y. if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { switch (CC) { default: break; case ISD::SETULT: case ISD::SETULE: Opc = hasUnsigned ? X86ISD::UMIN : 0; break; case ISD::SETUGT: case ISD::SETUGE: Opc = hasUnsigned ? X86ISD::UMAX : 0; break; case ISD::SETLT: case ISD::SETLE: Opc = hasSigned ? X86ISD::SMIN : 0; break; case ISD::SETGT: case ISD::SETGE: Opc = hasSigned ? X86ISD::SMAX : 0; break; } // Check for x CC y ? y : x -- a min/max with reversed arms. } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && DAG.isEqualTo(RHS, Cond.getOperand(0))) { switch (CC) { default: break; case ISD::SETULT: case ISD::SETULE: Opc = hasUnsigned ? X86ISD::UMAX : 0; break; case ISD::SETUGT: case ISD::SETUGE: Opc = hasUnsigned ? X86ISD::UMIN : 0; break; case ISD::SETLT: case ISD::SETLE: Opc = hasSigned ? X86ISD::SMAX : 0; break; case ISD::SETGT: case ISD::SETGE: Opc = hasSigned ? X86ISD::SMIN : 0; break; } } return std::make_pair(Opc, NeedSplit); } static SDValue transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDLoc dl(N); SDValue Cond = N->getOperand(0); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); if (Cond.getOpcode() == ISD::SIGN_EXTEND) { SDValue CondSrc = Cond->getOperand(0); if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG) Cond = CondSrc->getOperand(0); } if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) return SDValue(); // A vselect where all conditions and data are constants can be optimized into // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) && ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) return SDValue(); unsigned MaskValue = 0; if (!BUILD_VECTORtoBlendMask(cast(Cond), MaskValue)) return SDValue(); MVT VT = N->getSimpleValueType(0); unsigned NumElems = VT.getVectorNumElements(); SmallVector ShuffleMask(NumElems, -1); for (unsigned i = 0; i < NumElems; ++i) { // Be sure we emit undef where we can. if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF) ShuffleMask[i] = -1; else ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1); } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isShuffleMaskLegal(ShuffleMask, VT)) return SDValue(); return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]); } /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT /// nodes. static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); SDValue Cond = N->getOperand(0); // Get the LHS/RHS of the select. SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); EVT VT = LHS.getValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If we have SSE[12] support, try to form min/max nodes. SSE min/max // instructions match the semantics of the common C idiom xhasSSE2() || (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); unsigned Opcode = 0; // Check for x CC y ? x : y. if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { switch (CC) { default: break; case ISD::SETULT: // Converting this to a min would handle NaNs incorrectly, and swapping // the operands would cause it to handle comparisons between positive // and negative zero incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETOLE: // Converting this to a min would handle comparisons between positive // and negative zero incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) break; Opcode = X86ISD::FMIN; break; case ISD::SETULE: // Converting this to a min would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMIN; break; case ISD::SETOGE: // Converting this to a max would handle comparisons between positive // and negative zero incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) break; Opcode = X86ISD::FMAX; break; case ISD::SETUGT: // Converting this to a max would handle NaNs incorrectly, and swapping // the operands would cause it to handle comparisons between positive // and negative zero incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETUGE: // Converting this to a max would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMAX; break; } // Check for x CC y ? y : x -- a min/max with reversed arms. } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && DAG.isEqualTo(RHS, Cond.getOperand(0))) { switch (CC) { default: break; case ISD::SETOGE: // Converting this to a min would handle comparisons between positive // and negative zero incorrectly, and swapping the operands would // cause it to handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETUGT: // Converting this to a min would handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) break; Opcode = X86ISD::FMIN; break; case ISD::SETUGE: // Converting this to a min would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMIN; break; case ISD::SETULT: // Converting this to a max would handle NaNs incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; Opcode = X86ISD::FMAX; break; case ISD::SETOLE: // Converting this to a max would handle comparisons between positive // and negative zero incorrectly, and swapping the operands would // cause it to handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETULE: // Converting this to a max would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMAX; break; } } if (Opcode) return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); } EVT CondVT = Cond.getValueType(); if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() && CondVT.getVectorElementType() == MVT::i1) { // v16i8 (select v16i1, v16i8, v16i8) does not have a proper // lowering on KNL. In this case we convert it to // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. // The same situation for all 128 and 256-bit vectors of i8 and i16. // Since SKX these selects have a proper lowering. EVT OpVT = LHS.getValueType(); if ((OpVT.is128BitVector() || OpVT.is256BitVector()) && (OpVT.getVectorElementType() == MVT::i8 || OpVT.getVectorElementType() == MVT::i16) && !(Subtarget->hasBWI() && Subtarget->hasVLX())) { Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond); DCI.AddToWorklist(Cond.getNode()); return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS); } } // If this is a select between two integer constants, try to do some // optimizations. if (ConstantSDNode *TrueC = dyn_cast(LHS)) { if (ConstantSDNode *FalseC = dyn_cast(RHS)) // Don't do this for crazy integer types. if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { // If this is efficiently invertible, canonicalize the LHSC/RHSC values // so that TrueC (the true value) is larger than FalseC. bool NeedsCondInvert = false; if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && // Efficiently invertible. (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. isa(Cond.getOperand(1))))) { NeedsCondInvert = true; std::swap(TrueC, FalseC); } // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, DAG.getConstant(ShAmt, MVT::i8)); } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); return Cond; } } } } // Canonicalize max and min: // (x > y) ? x : y -> (x >= y) ? x : y // (x < y) ? x : y -> (x <= y) ? x : y // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates // the need for an extra compare // against zero. e.g. // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 // subl %esi, %edi // testl %edi, %edi // movl $0, %eax // cmovgl %edi, %eax // => // xorl %eax, %eax // subl %esi, $edi // cmovsl %eax, %edi if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); switch (CC) { default: break; case ISD::SETLT: case ISD::SETGT: { ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), Cond.getOperand(0), Cond.getOperand(1), NewCC); return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); } } } // Early exit check if (!TLI.isTypeLegal(VT)) return SDValue(); // Match VSELECTs into subs with unsigned saturation. if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); // Check if one of the arms of the VSELECT is a zero vector. If it's on the // left side invert the predicate to simplify logic below. SDValue Other; if (ISD::isBuildVectorAllZeros(LHS.getNode())) { Other = RHS; CC = ISD::getSetCCInverse(CC, true); } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { Other = LHS; } if (Other.getNode() && Other->getNumOperands() == 2 && DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); SDValue CondRHS = Cond->getOperand(1); // Look for a general sub with unsigned saturation first. // x >= y ? x-y : 0 --> subus x, y // x > y ? x-y : 0 --> subus x, y if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); if (auto *OpRHSBV = dyn_cast(OpRHS)) if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { if (auto *CondRHSBV = dyn_cast(CondRHS)) if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode()) // If the RHS is a constant we have to reverse the const // canonicalization. // x > C-1 ? x+-C : 0 --> subus x, C if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && CondRHSConst->getAPIntValue() == (-OpRHSConst->getAPIntValue() - 1)) return DAG.getNode( X86ISD::SUBUS, DL, VT, OpLHS, DAG.getConstant(-OpRHSConst->getAPIntValue(), VT)); // Another special case: If C was a sign bit, the sub has been // canonicalized into a xor. // FIXME: Would it be better to use computeKnownBits to determine // whether it's safe to decanonicalize the xor? // x s< 0 ? x^C : 0 --> subus x, C if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && ISD::isBuildVectorAllZeros(CondRHS.getNode()) && OpRHSConst->getAPIntValue().isSignBit()) // Note that we have to rebuild the RHS constant here to ensure we // don't rely on particular values of undef lanes. return DAG.getNode( X86ISD::SUBUS, DL, VT, OpLHS, DAG.getConstant(OpRHSConst->getAPIntValue(), VT)); } } } // Try to match a min/max vector operation. if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) { std::pair ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget); unsigned Opc = ret.first; bool NeedSplit = ret.second; if (Opc && NeedSplit) { unsigned NumElems = VT.getVectorNumElements(); // Extract the LHS vectors SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL); // Extract the RHS vectors SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL); // Create min/max for each subvector LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1); RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2); // Merge the result return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS); } else if (Opc) return DAG.getNode(Opc, DL, VT, LHS, RHS); } // Simplify vector selection if condition value type matches vselect // operand type if (N->getOpcode() == ISD::VSELECT && CondVT == VT) { assert(Cond.getValueType().isVector() && "vector select expects a vector selector!"); bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); // Try invert the condition if true value is not all 1s and false value // is not all 0s. if (!TValIsAllOnes && !FValIsAllZeros && // Check if the selector will be produced by CMPP*/PCMP* Cond.getOpcode() == ISD::SETCC && // Check if SETCC has already been promoted TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT) { bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); if (TValIsAllZeros || FValIsAllOnes) { SDValue CC = Cond.getOperand(2); ISD::CondCode NewCC = ISD::getSetCCInverse(cast(CC)->get(), Cond.getOperand(0).getValueType().isInteger()); Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC); std::swap(LHS, RHS); TValIsAllOnes = FValIsAllOnes; FValIsAllZeros = TValIsAllZeros; } } if (TValIsAllOnes || FValIsAllZeros) { SDValue Ret; if (TValIsAllOnes && FValIsAllZeros) Ret = Cond; else if (TValIsAllOnes) Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getNode(ISD::BITCAST, DL, CondVT, RHS)); else if (FValIsAllZeros) Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond, DAG.getNode(ISD::BITCAST, DL, CondVT, LHS)); return DAG.getNode(ISD::BITCAST, DL, VT, Ret); } } // If we know that this node is legal then we know that it is going to be // matched by one of the SSE/AVX BLEND instructions. These instructions only // depend on the highest bit in each word. Try to use SimplifyDemandedBits // to simplify previous instructions. if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && !DCI.isBeforeLegalize() && // We explicitly check against v8i16 and v16i16 because, although // they're marked as Custom, they might only be legal when Cond is a // build_vector of constants. This will be taken care in a later // condition. (TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 && VT != MVT::v8i16) && // Don't optimize vector of constants. Those are handled by // the generic code and all the bits must be properly set for // the generic optimizer. !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) { unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits(); // Don't optimize vector selects that map to mask-registers. if (BitWidth == 1) return SDValue(); assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), DCI.isBeforeLegalizeOps()); if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO)) { // If we changed the computation somewhere in the DAG, this change // will affect all users of Cond. // Make sure it is fine and update all the nodes so that we do not // use the generic VSELECT anymore. Otherwise, we may perform // wrong optimizations as we messed up with the actual expectation // for the vector boolean values. if (Cond != TLO.Old) { // Check all uses of that condition operand to check whether it will be // consumed by non-BLEND instructions, which may depend on all bits are // set properly. for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); I != E; ++I) if (I->getOpcode() != ISD::VSELECT) // TODO: Add other opcodes eventually lowered into BLEND. return SDValue(); // Update all the users of the condition, before committing the change, // so that the VSELECT optimizations that expect the correct vector // boolean value will not be triggered. for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); I != E; ++I) DAG.ReplaceAllUsesOfValueWith( SDValue(*I, 0), DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0), Cond, I->getOperand(1), I->getOperand(2))); DCI.CommitTargetLoweringOpt(TLO); return SDValue(); } // At this point, only Cond is changed. Change the condition // just for N to keep the opportunity to optimize all other // users their own way. DAG.ReplaceAllUsesOfValueWith( SDValue(N, 0), DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0), TLO.New, N->getOperand(1), N->getOperand(2))); return SDValue(); } } // We should generate an X86ISD::BLENDI from a vselect if its argument // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of // constants. This specific pattern gets generated when we split a // selector for a 512 bit vector in a machine without AVX512 (but with // 256-bit vectors), during legalization: // // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS) // // Iff we find this pattern and the build_vectors are built from // constants, we translate the vselect into a shuffle_vector that we // know will be matched by LowerVECTOR_SHUFFLEtoBlend. if ((N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SHRUNKBLEND) && !DCI.isBeforeLegalize()) { SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget); if (Shuffle.getNode()) return Shuffle; } return SDValue(); } // Check whether a boolean test is testing a boolean value generated by // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition // code. // // Simplify the following patterns: // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) // to (Op EFLAGS Cond) // // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) // to (Op EFLAGS !Cond) // // where Op could be BRCOND or CMOV. // static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { // Quit if not CMP and SUB with its value result used. if (Cmp.getOpcode() != X86ISD::CMP && (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) return SDValue(); // Quit if not used as a boolean value. if (CC != X86::COND_E && CC != X86::COND_NE) return SDValue(); // Check CMP operands. One of them should be 0 or 1 and the other should be // an SetCC or extended from it. SDValue Op1 = Cmp.getOperand(0); SDValue Op2 = Cmp.getOperand(1); SDValue SetCC; const ConstantSDNode* C = nullptr; bool needOppositeCond = (CC == X86::COND_E); bool checkAgainstTrue = false; // Is it a comparison against 1? if ((C = dyn_cast(Op1))) SetCC = Op2; else if ((C = dyn_cast(Op2))) SetCC = Op1; else // Quit if all operands are not constants. return SDValue(); if (C->getZExtValue() == 1) { needOppositeCond = !needOppositeCond; checkAgainstTrue = true; } else if (C->getZExtValue() != 0) // Quit if the constant is neither 0 or 1. return SDValue(); bool truncatedToBoolWithAnd = false; // Skip (zext $x), (trunc $x), or (and $x, 1) node. while (SetCC.getOpcode() == ISD::ZERO_EXTEND || SetCC.getOpcode() == ISD::TRUNCATE || SetCC.getOpcode() == ISD::AND) { if (SetCC.getOpcode() == ISD::AND) { int OpIdx = -1; ConstantSDNode *CS; if ((CS = dyn_cast(SetCC.getOperand(0))) && CS->getZExtValue() == 1) OpIdx = 1; if ((CS = dyn_cast(SetCC.getOperand(1))) && CS->getZExtValue() == 1) OpIdx = 0; if (OpIdx == -1) break; SetCC = SetCC.getOperand(OpIdx); truncatedToBoolWithAnd = true; } else SetCC = SetCC.getOperand(0); } switch (SetCC.getOpcode()) { case X86ISD::SETCC_CARRY: // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, // i.e. it's a comparison against true but the result of SETCC_CARRY is not // truncated to i1 using 'and'. if (checkAgainstTrue && !truncatedToBoolWithAnd) break; assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && "Invalid use of SETCC_CARRY!"); // FALL THROUGH case X86ISD::SETCC: // Set the condition code or opposite one if necessary. CC = X86::CondCode(SetCC.getConstantOperandVal(0)); if (needOppositeCond) CC = X86::GetOppositeBranchCondition(CC); return SetCC.getOperand(1); case X86ISD::CMOV: { // Check whether false/true value has canonical one, i.e. 0 or 1. ConstantSDNode *FVal = dyn_cast(SetCC.getOperand(0)); ConstantSDNode *TVal = dyn_cast(SetCC.getOperand(1)); // Quit if true value is not a constant. if (!TVal) return SDValue(); // Quit if false value is not a constant. if (!FVal) { SDValue Op = SetCC.getOperand(0); // Skip 'zext' or 'trunc' node. if (Op.getOpcode() == ISD::ZERO_EXTEND || Op.getOpcode() == ISD::TRUNCATE) Op = Op.getOperand(0); // A special case for rdrand/rdseed, where 0 is set if false cond is // found. if ((Op.getOpcode() != X86ISD::RDRAND && Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) return SDValue(); } // Quit if false value is not the constant 0 or 1. bool FValIsFalse = true; if (FVal && FVal->getZExtValue() != 0) { if (FVal->getZExtValue() != 1) return SDValue(); // If FVal is 1, opposite cond is needed. needOppositeCond = !needOppositeCond; FValIsFalse = false; } // Quit if TVal is not the constant opposite of FVal. if (FValIsFalse && TVal->getZExtValue() != 1) return SDValue(); if (!FValIsFalse && TVal->getZExtValue() != 0) return SDValue(); CC = X86::CondCode(SetCC.getConstantOperandVal(2)); if (needOppositeCond) CC = X86::GetOppositeBranchCondition(CC); return SetCC.getOperand(3); } } return SDValue(); } /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); // If the flag operand isn't dead, don't touch this CMOV. if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) return SDValue(); SDValue FalseOp = N->getOperand(0); SDValue TrueOp = N->getOperand(1); X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); SDValue Cond = N->getOperand(3); if (CC == X86::COND_E || CC == X86::COND_NE) { switch (Cond.getOpcode()) { default: break; case X86ISD::BSR: case X86ISD::BSF: // If operand of BSR / BSF are proven never zero, then ZF cannot be set. if (DAG.isKnownNeverZero(Cond.getOperand(0))) return (CC == X86::COND_E) ? FalseOp : TrueOp; } } SDValue Flags; Flags = checkBoolTestSetCCCombine(Cond, CC); if (Flags.getNode() && // Extra check as FCMOV only supports a subset of X86 cond. (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { SDValue Ops[] = { FalseOp, TrueOp, DAG.getConstant(CC, MVT::i8), Flags }; return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); } // If this is a select between two integer constants, try to do some // optimizations. Note that the operands are ordered the opposite of SELECT // operands. if (ConstantSDNode *TrueC = dyn_cast(TrueOp)) { if (ConstantSDNode *FalseC = dyn_cast(FalseOp)) { // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is // larger than FalseC (the false value). if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueC, FalseC); std::swap(TrueOp, FalseOp); } // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. // This is efficient for any integer data type (including i8/i16) and // shift amount. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, DAG.getConstant(ShAmt, MVT::i8)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient // for any integer data type, including i8/i16. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } } } } // Handle these cases: // (select (x != c), e, c) -> select (x != c), e, x), // (select (x == c), c, e) -> select (x == c), x, e) // where the c is an integer constant, and the "select" is the combination // of CMOV and CMP. // // The rationale for this change is that the conditional-move from a constant // needs two instructions, however, conditional-move from a register needs // only one instruction. // // CAVEAT: By replacing a constant with a symbolic value, it may obscure // some instruction-combining opportunities. This opt needs to be // postponed as late as possible. // if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { // the DCI.xxxx conditions are provided to postpone the optimization as // late as possible. ConstantSDNode *CmpAgainst = nullptr; if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && (CmpAgainst = dyn_cast(Cond.getOperand(1))) && !isa(Cond.getOperand(0))) { if (CC == X86::COND_NE && CmpAgainst == dyn_cast(FalseOp)) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueOp, FalseOp); } if (CC == X86::COND_E && CmpAgainst == dyn_cast(TrueOp)) { SDValue Ops[] = { FalseOp, Cond.getOperand(0), DAG.getConstant(CC, MVT::i8), Cond }; return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops); } } } return SDValue(); } static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: return SDValue(); // SSE/AVX/AVX2 blend intrinsics. case Intrinsic::x86_avx2_pblendvb: case Intrinsic::x86_avx2_pblendw: case Intrinsic::x86_avx2_pblendd_128: case Intrinsic::x86_avx2_pblendd_256: // Don't try to simplify this intrinsic if we don't have AVX2. if (!Subtarget->hasAVX2()) return SDValue(); // FALL-THROUGH case Intrinsic::x86_avx_blend_pd_256: case Intrinsic::x86_avx_blend_ps_256: case Intrinsic::x86_avx_blendv_pd_256: case Intrinsic::x86_avx_blendv_ps_256: // Don't try to simplify this intrinsic if we don't have AVX. if (!Subtarget->hasAVX()) return SDValue(); // FALL-THROUGH case Intrinsic::x86_sse41_pblendw: case Intrinsic::x86_sse41_blendpd: case Intrinsic::x86_sse41_blendps: case Intrinsic::x86_sse41_blendvps: case Intrinsic::x86_sse41_blendvpd: case Intrinsic::x86_sse41_pblendvb: { SDValue Op0 = N->getOperand(1); SDValue Op1 = N->getOperand(2); SDValue Mask = N->getOperand(3); // Don't try to simplify this intrinsic if we don't have SSE4.1. if (!Subtarget->hasSSE41()) return SDValue(); // fold (blend A, A, Mask) -> A if (Op0 == Op1) return Op0; // fold (blend A, B, allZeros) -> A if (ISD::isBuildVectorAllZeros(Mask.getNode())) return Op0; // fold (blend A, B, allOnes) -> B if (ISD::isBuildVectorAllOnes(Mask.getNode())) return Op1; // Simplify the case where the mask is a constant i32 value. if (ConstantSDNode *C = dyn_cast(Mask)) { if (C->isNullValue()) return Op0; if (C->isAllOnesValue()) return Op1; } return SDValue(); } // Packed SSE2/AVX2 arithmetic shift immediate intrinsics. case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx2_psra_d: { SDValue Op0 = N->getOperand(1); SDValue Op1 = N->getOperand(2); EVT VT = Op0.getValueType(); assert(VT.isVector() && "Expected a vector type!"); if (isa(Op1)) Op1 = Op1.getOperand(0); if (!isa(Op1)) return SDValue(); EVT SVT = VT.getVectorElementType(); unsigned SVTBits = SVT.getSizeInBits(); ConstantSDNode *CND = cast(Op1); const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue()); uint64_t ShAmt = C.getZExtValue(); // Don't try to convert this shift into a ISD::SRA if the shift // count is bigger than or equal to the element size. if (ShAmt >= SVTBits) return SDValue(); // Trivial case: if the shift count is zero, then fold this // into the first operand. if (ShAmt == 0) return Op0; // Replace this packed shift intrinsic with a target independent // shift dag node. SDValue Splat = DAG.getConstant(C, VT); return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat); } } } /// PerformMulCombine - Optimize a single multiply with constant into two /// in order to implement it with two cheaper instructions, e.g. /// LEA + SHL, LEA + LEA. static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i64) return SDValue(); ConstantSDNode *C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); uint64_t MulAmt = C->getZExtValue(); if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) return SDValue(); uint64_t MulAmt1 = 0; uint64_t MulAmt2 = 0; if ((MulAmt % 9) == 0) { MulAmt1 = 9; MulAmt2 = MulAmt / 9; } else if ((MulAmt % 5) == 0) { MulAmt1 = 5; MulAmt2 = MulAmt / 5; } else if ((MulAmt % 3) == 0) { MulAmt1 = 3; MulAmt2 = MulAmt / 3; } if (MulAmt2 && (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ SDLoc DL(N); if (isPowerOf2_64(MulAmt2) && !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) // If second multiplifer is pow2, issue it first. We want the multiply by // 3, 5, or 9 to be folded into the addressing mode unless the lone use // is an add. std::swap(MulAmt1, MulAmt2); SDValue NewMul; if (isPowerOf2_64(MulAmt1)) NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), DAG.getConstant(MulAmt1, VT)); if (isPowerOf2_64(MulAmt2)) NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, DAG.getConstant(MulAmt2, VT)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, NewMul, false); } return SDValue(); } static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); EVT VT = N0.getValueType(); // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) // since the result of setcc_c is all zero's or all ones. if (VT.isInteger() && !VT.isVector() && N1C && N0.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY || ((N00.getOpcode() == ISD::ANY_EXTEND || N00.getOpcode() == ISD::ZERO_EXTEND) && N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { APInt Mask = cast(N0.getOperand(1))->getAPIntValue(); APInt ShAmt = N1C->getAPIntValue(); Mask = Mask.shl(ShAmt); if (Mask != 0) return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, DAG.getConstant(Mask, VT)); } } // Hardware support for vector shifts is sparse which makes us scalarize the // vector operations in many cases. Also, on sandybridge ADD is faster than // shl. // (shl V, 1) -> add V,V if (auto *N1BV = dyn_cast(N1)) if (auto *N1SplatC = N1BV->getConstantSplatNode()) { assert(N0.getValueType().isVector() && "Invalid vector shift type"); // We shift all of the values by one. In many cases we do not have // hardware support for this operation. This is better expressed as an ADD // of two values. if (N1SplatC->getZExtValue() == 1) return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); } return SDValue(); } /// \brief Returns a vector of 0s if the node in input is a vector logical /// shift by a constant amount which is known to be bigger than or equal /// to the vector element size in bits. static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && (!Subtarget->hasInt256() || (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) return SDValue(); SDValue Amt = N->getOperand(1); SDLoc DL(N); if (auto *AmtBV = dyn_cast(Amt)) if (auto *AmtSplat = AmtBV->getConstantSplatNode()) { APInt ShiftAmt = AmtSplat->getAPIntValue(); unsigned MaxAmount = VT.getVectorElementType().getSizeInBits(); // SSE2/AVX2 logical shifts always return a vector of 0s // if the shift amount is bigger than or equal to // the element size. The constant shift amount will be // encoded as a 8-bit immediate. if (ShiftAmt.trunc(8).uge(MaxAmount)) return getZeroVector(VT, Subtarget, DAG, DL); } return SDValue(); } /// PerformShiftCombine - Combine shifts. static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (N->getOpcode() == ISD::SHL) { SDValue V = PerformSHLCombine(N, DAG); if (V.getNode()) return V; } if (N->getOpcode() != ISD::SRA) { // Try to fold this logical shift into a zero vector. SDValue V = performShiftToAllZeros(N, DAG, Subtarget); if (V.getNode()) return V; } return SDValue(); } // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) // where both setccs reference the same FP CMP, and rewrite for CMPEQSS // and friends. Likewise for OR -> CMPNEQSS. static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { unsigned opcode; // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but // we're requiring SSE2 for both. if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue CMP0 = N0->getOperand(1); SDValue CMP1 = N1->getOperand(1); SDLoc DL(N); // The SETCCs should both refer to the same CMP. if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) return SDValue(); SDValue CMP00 = CMP0->getOperand(0); SDValue CMP01 = CMP0->getOperand(1); EVT VT = CMP00.getValueType(); if (VT == MVT::f32 || VT == MVT::f64) { bool ExpectingFlags = false; // Check for any users that want flags: for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); !ExpectingFlags && UI != UE; ++UI) switch (UI->getOpcode()) { default: case ISD::BR_CC: case ISD::BRCOND: case ISD::SELECT: ExpectingFlags = true; break; case ISD::CopyToReg: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: break; } if (!ExpectingFlags) { enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { X86::CondCode tmp = cc0; cc0 = cc1; cc1 = tmp; } if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { // FIXME: need symbolic constants for these magic numbers. // See X86ATTInstPrinter.cpp:printSSECC(). unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; if (Subtarget->hasAVX512()) { SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00, CMP01, DAG.getConstant(x86cc, MVT::i8)); if (N->getValueType(0) != MVT::i1) return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), FSetCC); return FSetCC; } SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, CMP00.getValueType(), CMP00, CMP01, DAG.getConstant(x86cc, MVT::i8)); bool is64BitFP = (CMP00.getValueType() == MVT::f64); MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; if (is64BitFP && !Subtarget->is64Bit()) { // On a 32-bit target, we cannot bitcast the 64-bit float to a // 64-bit integer, since that's not a legal type. Since // OnesOrZeroesF is all ones of all zeroes, we don't need all the // bits, but can do this little dance to extract the lowest 32 bits // and work with those going forward. SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, OnesOrZeroesF); SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, Vector64); OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Vector32, DAG.getIntPtrConstant(0)); IntVT = MVT::i32; } SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF); SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, DAG.getConstant(1, IntVT)); SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed); return OneBitOfTruth; } } } } return SDValue(); } /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector /// so it can be folded inside ANDNP. static bool CanFoldXORWithAllOnes(const SDNode *N) { EVT VT = N->getValueType(0); // Match direct AllOnes for 128 and 256-bit vectors if (ISD::isBuildVectorAllOnes(N)) return true; // Look through a bit convert. if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0).getNode(); // Sometimes the operand may come from a insert_subvector building a 256-bit // allones vector if (VT.is256BitVector() && N->getOpcode() == ISD::INSERT_SUBVECTOR) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && V1.getOperand(0).getOpcode() == ISD::UNDEF && ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && ISD::isBuildVectorAllOnes(V2.getNode())) return true; } return false; } // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized // register. In most cases we actually compare or select YMM-sized registers // and mixing the two types creates horrible code. This method optimizes // some of the transition sequences. static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.is256BitVector()) return SDValue(); assert((N->getOpcode() == ISD::ANY_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); SDValue Narrow = N->getOperand(0); EVT NarrowVT = Narrow->getValueType(0); if (!NarrowVT.is128BitVector()) return SDValue(); if (Narrow->getOpcode() != ISD::XOR && Narrow->getOpcode() != ISD::AND && Narrow->getOpcode() != ISD::OR) return SDValue(); SDValue N0 = Narrow->getOperand(0); SDValue N1 = Narrow->getOperand(1); SDLoc DL(Narrow); // The Left side has to be a trunc. if (N0.getOpcode() != ISD::TRUNCATE) return SDValue(); // The type of the truncated inputs. EVT WideVT = N0->getOperand(0)->getValueType(0); if (WideVT != VT) return SDValue(); // The right side has to be a 'trunc' or a constant vector. bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; ConstantSDNode *RHSConstSplat = nullptr; if (auto *RHSBV = dyn_cast(N1)) RHSConstSplat = RHSBV->getConstantSplatNode(); if (!RHSTrunc && !RHSConstSplat) return SDValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) return SDValue(); // Set N0 and N1 to hold the inputs to the new wide operation. N0 = N0->getOperand(0); if (RHSConstSplat) { N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(), SDValue(RHSConstSplat, 0)); SmallVector C(WideVT.getVectorNumElements(), N1); N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C); } else if (RHSTrunc) { N1 = N1->getOperand(0); } // Generate the wide operation. SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); unsigned Opcode = N->getOpcode(); switch (Opcode) { case ISD::ANY_EXTEND: return Op; case ISD::ZERO_EXTEND: { unsigned InBits = NarrowVT.getScalarType().getSizeInBits(); APInt Mask = APInt::getAllOnesValue(InBits); Mask = Mask.zext(VT.getScalarType().getSizeInBits()); return DAG.getNode(ISD::AND, DL, VT, Op, DAG.getConstant(Mask, VT)); } case ISD::SIGN_EXTEND: return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, DAG.getValueType(NarrowVT)); default: llvm_unreachable("Unexpected opcode"); } } static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); if (R.getNode()) return R; // Create BEXTR instructions // BEXTR is ((X >> imm) & (2**size-1)) if (VT == MVT::i32 || VT == MVT::i64) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // Check for BEXTR. if ((Subtarget->hasBMI() || Subtarget->hasTBM()) && (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) { ConstantSDNode *MaskNode = dyn_cast(N1); ConstantSDNode *ShiftNode = dyn_cast(N0.getOperand(1)); if (MaskNode && ShiftNode) { uint64_t Mask = MaskNode->getZExtValue(); uint64_t Shift = ShiftNode->getZExtValue(); if (isMask_64(Mask)) { uint64_t MaskSize = CountPopulation_64(Mask); if (Shift + MaskSize <= VT.getSizeInBits()) return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0), DAG.getConstant(Shift | (MaskSize << 8), VT)); } } } // BEXTR return SDValue(); } // Want to form ANDNP nodes: // 1) In the hopes of then easily combining them with OR and AND nodes // to form PBLEND/PSIGN. // 2) To match ANDN packed intrinsics if (VT != MVT::v2i64 && VT != MVT::v4i64) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // Check LHS for vnot if (N0.getOpcode() == ISD::XOR && //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); // Check RHS for vnot if (N1.getOpcode() == ISD::XOR && //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); return SDValue(); } static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); if (R.getNode()) return R; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); // look for psign/blend if (VT == MVT::v2i64 || VT == MVT::v4i64) { if (!Subtarget->hasSSSE3() || (VT == MVT::v4i64 && !Subtarget->hasInt256())) return SDValue(); // Canonicalize pandn to RHS if (N0.getOpcode() == X86ISD::ANDNP) std::swap(N0, N1); // or (and (m, y), (pandn m, x)) if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { SDValue Mask = N1.getOperand(0); SDValue X = N1.getOperand(1); SDValue Y; if (N0.getOperand(0) == Mask) Y = N0.getOperand(1); if (N0.getOperand(1) == Mask) Y = N0.getOperand(0); // Check to see if the mask appeared in both the AND and ANDNP and if (!Y.getNode()) return SDValue(); // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. // Look through mask bitcast. if (Mask.getOpcode() == ISD::BITCAST) Mask = Mask.getOperand(0); if (X.getOpcode() == ISD::BITCAST) X = X.getOperand(0); if (Y.getOpcode() == ISD::BITCAST) Y = Y.getOperand(0); EVT MaskVT = Mask.getValueType(); // Validate that the Mask operand is a vector sra node. // FIXME: what to do for bytes, since there is a psignb/pblendvb, but // there is no psrai.b unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); unsigned SraAmt = ~0; if (Mask.getOpcode() == ISD::SRA) { if (auto *AmtBV = dyn_cast(Mask.getOperand(1))) if (auto *AmtConst = AmtBV->getConstantSplatNode()) SraAmt = AmtConst->getZExtValue(); } else if (Mask.getOpcode() == X86ISD::VSRAI) { SDValue SraC = Mask.getOperand(1); SraAmt = cast(SraC)->getZExtValue(); } if ((SraAmt + 1) != EltBits) return SDValue(); SDLoc DL(N); // Now we know we at least have a plendvb with the mask val. See if // we can form a psignb/w/d. // psign = x.type == y.type == mask.type && y = sub(0, x); if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && "Unsupported VT for PSIGN"); Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); return DAG.getNode(ISD::BITCAST, DL, VT, Mask); } // PBLENDVB only available on SSE 4.1 if (!Subtarget->hasSSE41()) return SDValue(); EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X); Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y); Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask); Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); return DAG.getNode(ISD::BITCAST, DL, VT, Mask); } } if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) return SDValue(); // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) MachineFunction &MF = DAG.getMachineFunction(); bool OptForSize = MF.getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); // SHLD/SHRD instructions have lower register pressure, but on some // platforms they have higher latency than the equivalent // series of shifts/or that would otherwise be generated. // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions // have higher latencies and we are not optimizing for size. if (!OptForSize && Subtarget->isSHLDSlow()) return SDValue(); if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) return SDValue(); if (!N0.hasOneUse() || !N1.hasOneUse()) return SDValue(); SDValue ShAmt0 = N0.getOperand(1); if (ShAmt0.getValueType() != MVT::i8) return SDValue(); SDValue ShAmt1 = N1.getOperand(1); if (ShAmt1.getValueType() != MVT::i8) return SDValue(); if (ShAmt0.getOpcode() == ISD::TRUNCATE) ShAmt0 = ShAmt0.getOperand(0); if (ShAmt1.getOpcode() == ISD::TRUNCATE) ShAmt1 = ShAmt1.getOperand(0); SDLoc DL(N); unsigned Opc = X86ISD::SHLD; SDValue Op0 = N0.getOperand(0); SDValue Op1 = N1.getOperand(0); if (ShAmt0.getOpcode() == ISD::SUB) { Opc = X86ISD::SHRD; std::swap(Op0, Op1); std::swap(ShAmt0, ShAmt1); } unsigned Bits = VT.getSizeInBits(); if (ShAmt1.getOpcode() == ISD::SUB) { SDValue Sum = ShAmt1.getOperand(0); if (ConstantSDNode *SumC = dyn_cast(Sum)) { SDValue ShAmt1Op1 = ShAmt1.getOperand(1); if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) ShAmt1Op1 = ShAmt1Op1.getOperand(0); if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) return DAG.getNode(Opc, DL, VT, Op0, Op1, DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } } else if (ConstantSDNode *ShAmt1C = dyn_cast(ShAmt1)) { ConstantSDNode *ShAmt0C = dyn_cast(ShAmt0); if (ShAmt0C && ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) return DAG.getNode(Opc, DL, VT, N0.getOperand(0), N1.getOperand(0), DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } return SDValue(); } // Generate NEG and CMOV for integer abs. static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); // Since X86 does not have CMOV for 8-bit integer, we don't convert // 8-bit integer abs to NEG and CMOV. if (VT.isInteger() && VT.getSizeInBits() == 8) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) // and change it to SUB and CMOV. if (VT.isInteger() && N->getOpcode() == ISD::XOR && N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) if (ConstantSDNode *Y1C = dyn_cast(N1.getOperand(1))) if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { // Generate SUB & CMOV. SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), DAG.getConstant(0, VT), N0.getOperand(0)); SDValue Ops[] = { N0.getOperand(0), Neg, DAG.getConstant(X86::COND_GE, MVT::i8), SDValue(Neg.getNode(), 1) }; return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops); } return SDValue(); } // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); if (Subtarget->hasCMov()) { SDValue RV = performIntegerAbsCombine(N, DAG); if (RV.getNode()) return RV; } return SDValue(); } /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { LoadSDNode *Ld = cast(N); EVT RegVT = Ld->getValueType(0); EVT MemVT = Ld->getMemoryVT(); SDLoc dl(Ld); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // For chips with slow 32-byte unaligned loads, break the 32-byte operation // into two 16-byte operations. ISD::LoadExtType Ext = Ld->getExtensionType(); unsigned Alignment = Ld->getAlignment(); bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8; if (RegVT.is256BitVector() && Subtarget->isUnalignedMem32Slow() && !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) { unsigned NumElems = RegVT.getVectorNumElements(); if (NumElems < 2) return SDValue(); SDValue Ptr = Ld->getBasePtr(); SDValue Increment = DAG.getConstant(16, TLI.getPointerTy()); EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), NumElems/2); SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), std::min(16U, Alignment)); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Load1.getValue(1), Load2.getValue(1)); SDValue NewVec = DAG.getUNDEF(RegVT); NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); return DCI.CombineTo(N, NewVec, TF, true); } return SDValue(); } /// PerformMLOADCombine - Resolve extending loads static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { MaskedLoadSDNode *Mld = cast(N); if (Mld->getExtensionType() != ISD::SEXTLOAD) return SDValue(); EVT VT = Mld->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); EVT LdVT = Mld->getMemoryVT(); SDLoc dl(Mld); assert(LdVT != VT && "Cannot extend to the same type"); unsigned ToSz = VT.getVectorElementType().getSizeInBits(); unsigned FromSz = LdVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two assert (isPowerOf2_32(NumElems * FromSz * ToSz) && "Unexpected size for extending masked load"); unsigned SizeRatio = ToSz / FromSz; assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), LdVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); // Convert Src0 value SDValue WideSrc0 = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mld->getSrc0()); if (Mld->getSrc0().getOpcode() != ISD::UNDEF) { SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. assert (DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && "WideVecVT should be legal"); WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); } // Prepare the new mask SDValue NewMask; SDValue Mask = Mld->getMask(); if (Mask.getValueType() == VT) { // Mask and original value have the same type NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask); SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) ShuffleVec[i] = NumElems*SizeRatio; NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, DAG.getConstant(0, WideVecVT), &ShuffleVec[0]); } else { assert(Mask.getValueType().getVectorElementType() == MVT::i1); unsigned WidenNumElts = NumElems*SizeRatio; unsigned MaskNumElts = VT.getVectorNumElements(); EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, WidenNumElts); unsigned NumConcat = WidenNumElts / MaskNumElts; SmallVector Ops(NumConcat); SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType()); Ops[0] = Mask; for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = ZeroVal; NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); } SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(), Mld->getBasePtr(), NewMask, WideSrc0, Mld->getMemoryVT(), Mld->getMemOperand(), ISD::NON_EXTLOAD); SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd); return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true); } /// PerformMSTORECombine - Resolve truncating stores static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MaskedStoreSDNode *Mst = cast(N); if (!Mst->isTruncatingStore()) return SDValue(); EVT VT = Mst->getValue().getValueType(); unsigned NumElems = VT.getVectorNumElements(); EVT StVT = Mst->getMemoryVT(); SDLoc dl(Mst); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromSz = VT.getVectorElementType().getSizeInBits(); unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two assert (isPowerOf2_32(NumElems * FromSz * ToSz) && "Unexpected size for truncating masked store"); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. assert (((NumElems * FromSz) % ToSz) == 0 && "Unexpected ratio for truncating masked store"); unsigned SizeRatio = FromSz / ToSz; assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mst->getValue()); SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. assert (DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && "WideVecVT should be legal"); SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); SDValue NewMask; SDValue Mask = Mst->getMask(); if (Mask.getValueType() == VT) { // Mask and original value have the same type NewMask = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Mask); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) ShuffleVec[i] = NumElems*SizeRatio; NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, DAG.getConstant(0, WideVecVT), &ShuffleVec[0]); } else { assert(Mask.getValueType().getVectorElementType() == MVT::i1); unsigned WidenNumElts = NumElems*SizeRatio; unsigned MaskNumElts = VT.getVectorNumElements(); EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, WidenNumElts); unsigned NumConcat = WidenNumElts / MaskNumElts; SmallVector Ops(NumConcat); SDValue ZeroVal = DAG.getConstant(0, Mask.getValueType()); Ops[0] = Mask; for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = ZeroVal; NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); } return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, Mst->getBasePtr(), NewMask, StVT, Mst->getMemOperand(), false); } /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { StoreSDNode *St = cast(N); EVT VT = St->getValue().getValueType(); EVT StVT = St->getMemoryVT(); SDLoc dl(St); SDValue StoredVal = St->getOperand(1); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If we are saving a concatenation of two XMM registers and 32-byte stores // are slow, such as on Sandy Bridge, perform two 16-byte stores. unsigned Alignment = St->getAlignment(); bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8; if (VT.is256BitVector() && Subtarget->isUnalignedMem32Slow() && StVT == VT && !IsAligned) { unsigned NumElems = VT.getVectorNumElements(); if (NumElems < 2) return SDValue(); SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); SDValue Stride = DAG.getConstant(16, TLI.getPointerTy()); SDValue Ptr0 = St->getBasePtr(); SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), Alignment); SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), std::min(16U, Alignment)); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); } // Optimize trunc store (of multiple scalars) to shuffle and store. // First, pack all of the elements in one place. Next, store to memory // in fewer chunks. if (St->isTruncatingStore() && VT.isVector()) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned NumElems = VT.getVectorNumElements(); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromSz = VT.getVectorElementType().getSizeInBits(); unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. if (0 != (NumElems * FromSz) % ToSz) return SDValue(); unsigned SizeRatio = FromSz / ToSz; assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue()); SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); // At this point all of the data is stored at the bottom of the // register. We now need to save it to mem. // Find the largest store unit MVT StoreType = MVT::i8; for (MVT Tp : MVT::integer_valuetypes()) { if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) StoreType = Tp; } // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && (64 <= NumElems * ToSz)) StoreType = MVT::f64; // Bitcast the original vector into a vector of store-size units EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff); SmallVector Chains; SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, TLI.getPointerTy()); SDValue Ptr = St->getBasePtr(); // Perform one or more big stores into memory. for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, StoreType, ShuffWide, DAG.getIntPtrConstant(i)); SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); Chains.push_back(Ch); } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); } // Turn load->store of MMX types into GPR load/stores. This avoids clobbering // the FP state in cases where an emms may be missing. // A preferable solution to the general problem is to figure out the right // places to insert EMMS. This qualifies as a quick hack. // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. if (VT.getSizeInBits() != 64) return SDValue(); const Function *F = DAG.getMachineFunction().getFunction(); bool NoImplicitFloatOps = F->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps && Subtarget->hasSSE2(); if ((VT.isVector() || (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && isa(St->getValue()) && !cast(St->getValue())->isVolatile() && St->getChain().hasOneUse() && !St->isVolatile()) { SDNode* LdVal = St->getValue().getNode(); LoadSDNode *Ld = nullptr; int TokenFactorIndex = -1; SmallVector Ops; SDNode* ChainVal = St->getChain().getNode(); // Must be a store of a load. We currently handle two cases: the load // is a direct child, and it's under an intervening TokenFactor. It is // possible to dig deeper under nested TokenFactors. if (ChainVal == LdVal) Ld = cast(St->getChain()); else if (St->getValue().hasOneUse() && ChainVal->getOpcode() == ISD::TokenFactor) { for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { if (ChainVal->getOperand(i).getNode() == LdVal) { TokenFactorIndex = i; Ld = cast(St->getValue()); } else Ops.push_back(ChainVal->getOperand(i)); } } if (!Ld || !ISD::isNormalLoad(Ld)) return SDValue(); // If this is not the MMX case, i.e. we are just turning i64 load/store // into f64 load/store, avoid the transformation if there are multiple // uses of the loaded value. if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) return SDValue(); SDLoc LdDL(Ld); SDLoc StDL(N); // If we are a 64-bit capable x86, lower to a single movq load/store pair. // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store // pair instead. if (Subtarget->is64Bit() || F64IsLegal) { EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); SDValue NewChain = NewLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(NewChain); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); } return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); } // Otherwise, lower to two pairs of 32-bit loads / stores. SDValue LoAddr = Ld->getBasePtr(); SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, DAG.getConstant(4, MVT::i32)); SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, Ld->getPointerInfo().getWithOffset(4), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), MinAlign(Ld->getAlignment(), 4)); SDValue NewChain = LoLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(LoLd); Ops.push_back(HiLd); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); } LoAddr = St->getBasePtr(); HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, DAG.getConstant(4, MVT::i32)); SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, St->getPointerInfo().getWithOffset(4), St->isVolatile(), St->isNonTemporal(), MinAlign(St->getAlignment(), 4)); return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); } return SDValue(); } /// Return 'true' if this vector operation is "horizontal" /// and return the operands for the horizontal operation in LHS and RHS. A /// horizontal operation performs the binary operation on successive elements /// of its first operand, then on successive elements of its second operand, /// returning the resulting values in a vector. For example, if /// A = < float a0, float a1, float a2, float a3 > /// and /// B = < float b0, float b1, float b2, float b3 > /// then the result of doing a horizontal operation on A and B is /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form /// A horizontal-op B, for some already available A and B, and if so then LHS is /// set to A, RHS to B, and the routine returns 'true'. /// Note that the binary operation should have the property that if one of the /// operands is UNDEF then the result is UNDEF. static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { // Look for the following pattern: if // A = < float a0, float a1, float a2, float a3 > // B = < float b0, float b1, float b2, float b3 > // and // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > // which is A horizontal-op B. // At least one of the operands should be a vector shuffle. if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && RHS.getOpcode() != ISD::VECTOR_SHUFFLE) return false; MVT VT = LHS.getSimpleValueType(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for horizontal add/sub"); // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to // operate independently on 128-bit lanes. unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts / NumLanes; assert((NumLaneElts % 2 == 0) && "Vector type should have an even number of elements in each lane"); unsigned HalfLaneElts = NumLaneElts/2; // View LHS in the form // LHS = VECTOR_SHUFFLE A, B, LMask // If LHS is not a shuffle then pretend it is the shuffle // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> // NOTE: in what follows a default initialized SDValue represents an UNDEF of // type VT. SDValue A, B; SmallVector LMask(NumElts); if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) A = LHS.getOperand(0); if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) B = LHS.getOperand(1); ArrayRef Mask = cast(LHS.getNode())->getMask(); std::copy(Mask.begin(), Mask.end(), LMask.begin()); } else { if (LHS.getOpcode() != ISD::UNDEF) A = LHS; for (unsigned i = 0; i != NumElts; ++i) LMask[i] = i; } // Likewise, view RHS in the form // RHS = VECTOR_SHUFFLE C, D, RMask SDValue C, D; SmallVector RMask(NumElts); if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) C = RHS.getOperand(0); if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) D = RHS.getOperand(1); ArrayRef Mask = cast(RHS.getNode())->getMask(); std::copy(Mask.begin(), Mask.end(), RMask.begin()); } else { if (RHS.getOpcode() != ISD::UNDEF) C = RHS; for (unsigned i = 0; i != NumElts; ++i) RMask[i] = i; } // Check that the shuffles are both shuffling the same vectors. if (!(A == C && B == D) && !(A == D && B == C)) return false; // If everything is UNDEF then bail out: it would be better to fold to UNDEF. if (!A.getNode() && !B.getNode()) return false; // If A and B occur in reverse order in RHS, then "swap" them (which means // rewriting the mask). if (A != C) CommuteVectorShuffleMask(RMask, NumElts); // At this point LHS and RHS are equivalent to // LHS = VECTOR_SHUFFLE A, B, LMask // RHS = VECTOR_SHUFFLE A, B, RMask // Check that the masks correspond to performing a horizontal operation. for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { int LIdx = LMask[i+l], RIdx = RMask[i+l]; // Ignore any UNDEF components. if (LIdx < 0 || RIdx < 0 || (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) continue; // Check that successive elements are being operated on. If not, this is // not a horizontal operation. unsigned Src = (i/HalfLaneElts); // each lane is split between srcs int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; if (!(LIdx == Index && RIdx == Index + 1) && !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) return false; } } LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. return true; } /// Do target-specific dag combines on floating point adds. static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, true)) return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS); return SDValue(); } /// Do target-specific dag combines on floating point subs. static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Try to synthesize horizontal subs from subs of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, false)) return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS); return SDValue(); } /// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes. static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); // F[X]OR(0.0, x) -> x // F[X]OR(x, 0.0) -> x if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); return SDValue(); } /// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes. static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); // Only perform optimizations if UnsafeMath is used. if (!DAG.getTarget().Options.UnsafeFPMath) return SDValue(); // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes // into FMINC and FMAXC, which are Commutative operations. unsigned NewOp = 0; switch (N->getOpcode()) { default: llvm_unreachable("unknown opcode"); case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; } return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), N->getOperand(0), N->getOperand(1)); } /// Do target-specific dag combines on X86ISD::FAND nodes. static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { // FAND(0.0, x) -> 0.0 // FAND(x, 0.0) -> 0.0 if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); return SDValue(); } /// Do target-specific dag combines on X86ISD::FANDN nodes static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) { // FANDN(x, 0.0) -> 0.0 // FANDN(0.0, x) -> x if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); return SDValue(); } static SDValue PerformBTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { // BT ignores high bits in the bit index operand. SDValue Op1 = N->getOperand(1); if (Op1.hasOneUse()) { unsigned BitWidth = Op1.getValueSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } return SDValue(); } static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { SDValue Op = N->getOperand(0); if (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); EVT VT = N->getValueType(0), OpVT = Op.getValueType(); if (Op.getOpcode() == X86ISD::VZEXT_LOAD && VT.getVectorElementType().getSizeInBits() == OpVT.getVectorElementType().getSizeInBits()) { return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); } return SDValue(); } static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT ExtraVT = cast(N1)->getVT(); SDLoc dl(N); // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the // both SSE and AVX2 since there is no sign-extended shift right // operation on a vector with 64-bit elements. //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND)) { SDValue N00 = N0.getOperand(0); // EXTLOAD has a better solution on AVX2, // it may be replaced with X86ISD::VSEXT node. if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) if (!ISD::isNormalLoad(N00.getNode())) return SDValue(); if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, N00, N1); return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); } } return SDValue(); } static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // (i8,i32 sext (sdivrem (i8 x, i8 y)) -> // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y) // This exposes the sext to the sdivrem lowering, so that it directly extends // from AH (which we otherwise need to do contortions to access). if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 && N0.getValueType() == MVT::i8 && VT == MVT::i32) { SDLoc dl(N); SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, dl, NodeTys, N0.getOperand(0), N0.getOperand(1)); DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); return R.getValue(1); } if (!DCI.isBeforeLegalizeOps()) return SDValue(); if (!Subtarget->hasFp256()) return SDValue(); if (VT.isVector() && VT.getSizeInBits() == 256) { SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); if (R.getNode()) return R; } return SDValue(); } static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget* Subtarget) { SDLoc dl(N); EVT VT = N->getValueType(0); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); EVT ScalarVT = VT.getScalarType(); if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || (!Subtarget->hasFMA() && !Subtarget->hasFMA4())) return SDValue(); SDValue A = N->getOperand(0); SDValue B = N->getOperand(1); SDValue C = N->getOperand(2); bool NegA = (A.getOpcode() == ISD::FNEG); bool NegB = (B.getOpcode() == ISD::FNEG); bool NegC = (C.getOpcode() == ISD::FNEG); // Negative multiplication when NegA xor NegB bool NegMul = (NegA != NegB); if (NegA) A = A.getOperand(0); if (NegB) B = B.getOperand(0); if (NegC) C = C.getOperand(0); unsigned Opcode; if (!NegMul) Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; else Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; return DAG.getNode(Opcode, dl, VT, A, B, C); } static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> // (and (i32 x86isd::setcc_carry), 1) // This eliminates the zext. This transformation is necessary because // ISD::SETCC is always legalized to i8. SDLoc dl(N); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(N0.getOperand(1)); if (!C || C->getZExtValue() != 1) return SDValue(); return DAG.getNode(ISD::AND, dl, VT, DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, N00.getOperand(0), N00.getOperand(1)), DAG.getConstant(1, VT)); } } if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY) { return DAG.getNode(ISD::AND, dl, VT, DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, N00.getOperand(0), N00.getOperand(1)), DAG.getConstant(1, VT)); } } if (VT.is256BitVector()) { SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); if (R.getNode()) return R; } // (i8,i32 zext (udivrem (i8 x, i8 y)) -> // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y) // This exposes the zext to the udivrem lowering, so that it directly extends // from AH (which we otherwise need to do contortions to access). if (N0.getOpcode() == ISD::UDIVREM && N0.getResNo() == 1 && N0.getValueType() == MVT::i8 && (VT == MVT::i32 || VT == MVT::i64)) { SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys, N0.getOperand(0), N0.getOperand(1)); DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); return R.getValue(1); } return SDValue(); } // Optimize x == -y --> x+y == 0 // x != -y --> x+y != 0 static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget* Subtarget) { ISD::CondCode CC = cast(N->getOperand(2))->get(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) if (ConstantSDNode *C = dyn_cast(LHS.getOperand(0))) if (C->getAPIntValue() == 0 && LHS.hasOneUse()) { SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), LHS.getValueType(), RHS, LHS.getOperand(1)); return DAG.getSetCC(SDLoc(N), N->getValueType(0), addV, DAG.getConstant(0, addV.getValueType()), CC); } if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) if (ConstantSDNode *C = dyn_cast(RHS.getOperand(0))) if (C->getAPIntValue() == 0 && RHS.hasOneUse()) { SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N), RHS.getValueType(), LHS, RHS.getOperand(1)); return DAG.getSetCC(SDLoc(N), N->getValueType(0), addV, DAG.getConstant(0, addV.getValueType()), CC); } if (VT.getScalarType() == MVT::i1) { bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) && (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode()); if (!IsSEXT0 && !IsVZero0) return SDValue(); bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) && (RHS.getOperand(0).getValueType().getScalarType() == MVT::i1); bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); if (!IsSEXT1 && !IsVZero1) return SDValue(); if (IsSEXT0 && IsVZero1) { assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type"); if (CC == ISD::SETEQ) return DAG.getNOT(DL, LHS.getOperand(0), VT); return LHS.getOperand(0); } if (IsSEXT1 && IsVZero0) { assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type"); if (CC == ISD::SETEQ) return DAG.getNOT(DL, RHS.getOperand(0), VT); return RHS.getOperand(0); } } return SDValue(); } static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDLoc dl(N); MVT VT = N->getOperand(1)->getSimpleValueType(0); assert((VT == MVT::v4f32 || VT == MVT::v4i32) && "X86insertps is only defined for v4x32"); SDValue Ld = N->getOperand(1); if (MayFoldLoad(Ld)) { // Extract the countS bits from the immediate so we can get the proper // address when narrowing the vector load to a specific element. // When the second source op is a memory address, interps doesn't use // countS and just gets an f32 from that address. unsigned DestIndex = cast(N->getOperand(2))->getZExtValue() >> 6; Ld = NarrowVectorLoadToElement(cast(Ld), DestIndex, DAG); } else return SDValue(); // Create this as a scalar to vector to match the instruction pattern. SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld); // countS bits are ignored when loading from memory on insertps, which // means we don't need to explicitly set them to 0. return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0), LoadScalarToVector, N->getOperand(2)); } // Helper function of PerformSETCCCombine. It is to materialize "setb reg" // as "sbb reg,reg", since it can be extended without zext and produces // an all-ones bit which is more useful than 0/1 in some cases. static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG, MVT VT) { if (VT == MVT::i8) return DAG.getNode(ISD::AND, DL, VT, DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS), DAG.getConstant(1, VT)); assert (VT == MVT::i1 && "Unexpected type for SECCC node"); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS)); } // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); SDValue EFLAGS = N->getOperand(1); if (CC == X86::COND_A) { // Try to convert COND_A into COND_B in an attempt to facilitate // materializing "setb reg". // // Do not flip "e > c", where "c" is a constant, because Cmp instruction // cannot take an immediate as its first operand. // if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && EFLAGS.getValueType().isInteger() && !isa(EFLAGS.getOperand(1))) { SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(), EFLAGS.getOperand(1), EFLAGS.getOperand(0)); SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0)); } } // Materialize "setb reg" as "sbb reg,reg", since it can be extended without // a zext and produces an all-ones bit which is more useful than 0/1 in some // cases. if (CC == X86::COND_B) return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0)); SDValue Flags; Flags = checkBoolTestSetCCCombine(EFLAGS, CC); if (Flags.getNode()) { SDValue Cond = DAG.getConstant(CC, MVT::i8); return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); } return SDValue(); } // Optimize branch condition evaluation. // static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); SDValue Chain = N->getOperand(0); SDValue Dest = N->getOperand(1); SDValue EFLAGS = N->getOperand(3); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); SDValue Flags; Flags = checkBoolTestSetCCCombine(EFLAGS, CC); if (Flags.getNode()) { SDValue Cond = DAG.getConstant(CC, MVT::i8); return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, Flags); } return SDValue(); } static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, SelectionDAG &DAG) { // Take advantage of vector comparisons producing 0 or -1 in each lane to // optimize away operation when it's from a constant. // // The general transformation is: // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> // AND(VECTOR_CMP(x,y), constant2) // constant2 = UNARYOP(constant) // Early exit if this isn't a vector operation, the operand of the // unary operation isn't a bitwise AND, or if the sizes of the operations // aren't the same. EVT VT = N->getValueType(0); if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) return SDValue(); // Now check that the other operand of the AND is a constant. We could // make the transformation for non-constant splats as well, but it's unclear // that would be a benefit as it would not eliminate any operations, just // perform one more step in scalar code before moving to the vector unit. if (BuildVectorSDNode *BV = dyn_cast(N->getOperand(0)->getOperand(1))) { // Bail out if the vector isn't a constant. if (!BV->isConstant()) return SDValue(); // Everything checks out. Build up the new and improved node. SDLoc DL(N); EVT IntVT = BV->getValueType(0); // Create a new constant of the appropriate type for the transformed // DAG. SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); // The AND node needs bitcasts to/from an integer vector type around it. SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, N->getOperand(0)->getOperand(0), MaskConst); SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); return Res; } return SDValue(); } static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, const X86TargetLowering *XTLI) { // First try to optimize away the conversion entirely when it's // conditionally from a constant. Vectors only. SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG); if (Res != SDValue()) return Res; // Now move on to more general possibilities. SDValue Op0 = N->getOperand(0); EVT InVT = Op0->getValueType(0); // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32)) if (InVT == MVT::v8i8 || InVT == MVT::v4i8) { SDLoc dl(N); MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); } // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have // a 32-bit target where SSE doesn't support i64->FP operations. if (Op0.getOpcode() == ISD::LOAD) { LoadSDNode *Ld = cast(Op0.getNode()); EVT VT = Ld->getValueType(0); if (!Ld->isVolatile() && !N->getValueType(0).isVector() && ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && !XTLI->getSubtarget()->is64Bit() && VT == MVT::i64) { SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), Ld->getChain(), Op0, DAG); DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); return FILDChain; } } return SDValue(); } // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, X86TargetLowering::DAGCombinerInfo &DCI) { // If the LHS and RHS of the ADC node are zero, then it can't overflow and // the result is either zero or one (depending on the input carry bit). // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. if (X86::isZeroNode(N->getOperand(0)) && X86::isZeroNode(N->getOperand(1)) && // We don't have a good way to replace an EFLAGS use, so only do this when // dead right now. SDValue(N, 1).use_empty()) { SDLoc DL(N); EVT VT = N->getValueType(0); SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, DAG.getConstant(X86::COND_B,MVT::i8), N->getOperand(2)), DAG.getConstant(1, VT)); return DCI.CombineTo(N, Res1, CarryOut); } return SDValue(); } // fold (add Y, (sete X, 0)) -> adc 0, Y // (add Y, (setne X, 0)) -> sbb -1, Y // (sub (sete X, 0), Y) -> sbb 0, Y // (sub (setne X, 0), Y) -> adc -1, Y static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); // Look through ZExts. SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) return SDValue(); SDValue SetCC = Ext.getOperand(0); if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) return SDValue(); X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); if (CC != X86::COND_E && CC != X86::COND_NE) return SDValue(); SDValue Cmp = SetCC.getOperand(1); if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || !X86::isZeroNode(Cmp.getOperand(1)) || !Cmp.getOperand(0).getValueType().isInteger()) return SDValue(); SDValue CmpOp0 = Cmp.getOperand(0); SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); if (CC == X86::COND_NE) return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, DL, OtherVal.getValueType(), OtherVal, DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, DL, OtherVal.getValueType(), OtherVal, DAG.getConstant(0, OtherVal.getValueType()), NewCmp); } /// PerformADDCombine - Do target-specific dag combines on integer adds. static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1); return OptimizeConditionalInDecrement(N, DAG); } static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // X86 can't encode an immediate LHS of a sub. See if we can push the // negation into a preceding instruction. if (ConstantSDNode *C = dyn_cast(Op0)) { // If the RHS of the sub is a XOR with one use and a constant, invert the // immediate. Then add one to the LHS of the sub so we can turn // X-Y -> X+~Y+1, saving one register. if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && isa(Op1.getOperand(1))) { APInt XorC = cast(Op1.getOperand(1))->getAPIntValue(); EVT VT = Op0.getValueType(); SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, Op1.getOperand(0), DAG.getConstant(~XorC, VT)); return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, DAG.getConstant(C->getAPIntValue()+1, VT)); } } // Try to synthesize horizontal adds from adds of shuffles. EVT VT = N->getValueType(0); if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1); return OptimizeConditionalInDecrement(N, DAG); } /// performVZEXTCombine - Performs build vector combines static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); MVT VT = N->getSimpleValueType(0); SDValue Op = N->getOperand(0); MVT OpVT = Op.getSimpleValueType(); MVT OpEltVT = OpVT.getVectorElementType(); unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements(); // (vzext (bitcast (vzext (x)) -> (vzext x) SDValue V = Op; while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); if (V != Op && V.getOpcode() == X86ISD::VZEXT) { MVT InnerVT = V.getSimpleValueType(); MVT InnerEltVT = InnerVT.getVectorElementType(); // If the element sizes match exactly, we can just do one larger vzext. This // is always an exact type match as vzext operates on integer types. if (OpEltVT == InnerEltVT) { assert(OpVT == InnerVT && "Types must match for vzext!"); return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0)); } // The only other way we can combine them is if only a single element of the // inner vzext is used in the input to the outer vzext. if (InnerEltVT.getSizeInBits() < InputBits) return SDValue(); // In this case, the inner vzext is completely dead because we're going to // only look at bits inside of the low element. Just do the outer vzext on // a bitcast of the input to the inner. return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getNode(ISD::BITCAST, DL, OpVT, V)); } // Check if we can bypass extracting and re-inserting an element of an input // vector. Essentialy: // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) if (V.getOpcode() == ISD::SCALAR_TO_VECTOR && V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) { SDValue ExtractedV = V.getOperand(0); SDValue OrigV = ExtractedV.getOperand(0); if (auto *ExtractIdx = dyn_cast(ExtractedV.getOperand(1))) if (ExtractIdx->getZExtValue() == 0) { MVT OrigVT = OrigV.getSimpleValueType(); // Extract a subvector if necessary... if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) { int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits(); OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(), OrigVT.getVectorNumElements() / Ratio); OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV, DAG.getIntPtrConstant(0)); } Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV); return DAG.getNode(X86ISD::VZEXT, DL, VT, Op); } } return SDValue(); } SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case ISD::EXTRACT_VECTOR_ELT: return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); case ISD::VSELECT: case ISD::SELECT: case X86ISD::SHRUNKBLEND: return PerformSELECTCombine(N, DAG, DCI, Subtarget); case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget); case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget); case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget); case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); case ISD::MUL: return PerformMulCombine(N, DAG, DCI); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget); case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget); case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget); case ISD::MLOAD: return PerformMLOADCombine(N, DAG, DCI, Subtarget); case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); case ISD::MSTORE: return PerformMSTORECombine(N, DAG, Subtarget); case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this); case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget); case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget); case X86ISD::FXOR: case X86ISD::FOR: return PerformFORCombine(N, DAG); case X86ISD::FMIN: case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG); case X86ISD::FAND: return PerformFANDCombine(N, DAG); case X86ISD::FANDN: return PerformFANDNCombine(N, DAG); case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget); case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget); case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget); case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget); case X86ISD::SHUFP: // Handle all target specific shuffles case X86ISD::PALIGNR: case X86ISD::UNPCKH: case X86ISD::UNPCKL: case X86ISD::MOVHLPS: case X86ISD::MOVLHPS: case X86ISD::PSHUFB: case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::VPERMILPI: case X86ISD::VPERM2X128: case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget); case ISD::INTRINSIC_WO_CHAIN: return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget); case X86ISD::INSERTPS: { if (getTargetMachine().getOptLevel() > CodeGenOpt::None) return PerformINSERTPSCombine(N, DAG, Subtarget); break; } case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget); } return SDValue(); } /// isTypeDesirableForOp - Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 /// instruction encodings are longer and some i16 instructions are slow. bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { if (!isTypeLegal(VT)) return false; if (VT != MVT::i16) return true; switch (Opc) { default: return true; case ISD::LOAD: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::SHL: case ISD::SRL: case ISD::SUB: case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: return false; } } /// IsDesirableToPromoteOp - This method query the target whether it is /// beneficial for dag combiner to promote the specified node. If true, it /// should return the desired promotion type by reference. bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { EVT VT = Op.getValueType(); if (VT != MVT::i16) return false; bool Promote = false; bool Commute = false; switch (Op.getOpcode()) { default: break; case ISD::LOAD: { LoadSDNode *LD = cast(Op); // If the non-extending load has a single use and it's not live out, then it // might be folded. if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& Op.hasOneUse()*/) { for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) { // The only case where we'd want to promote LOAD (rather then it being // promoted as an operand is when it's only use is liveout. if (UI->getOpcode() != ISD::CopyToReg) return false; } } Promote = true; break; } case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Promote = true; break; case ISD::SHL: case ISD::SRL: { SDValue N0 = Op.getOperand(0); // Look out for (store (shl (load), x)). if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) return false; Promote = true; break; } case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: Commute = true; // fallthrough case ISD::SUB: { SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); if (!Commute && MayFoldLoad(N1)) return false; // Avoid disabling potential load folding opportunities. if (MayFoldLoad(N0) && (!isa(N1) || MayFoldIntoStore(Op))) return false; if (MayFoldLoad(N1) && (!isa(N0) || MayFoldIntoStore(Op))) return false; Promote = true; } } PVT = MVT::i32; return Promote; } //===----------------------------------------------------------------------===// // X86 Inline Assembly Support //===----------------------------------------------------------------------===// namespace { // Helper to match a string separated by whitespace. bool matchAsmImpl(StringRef s, ArrayRef args) { s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace. for (unsigned i = 0, e = args.size(); i != e; ++i) { StringRef piece(*args[i]); if (!s.startswith(piece)) // Check if the piece matches. return false; s = s.substr(piece.size()); StringRef::size_type pos = s.find_first_not_of(" \t"); if (pos == 0) // We matched a prefix. return false; s = s.substr(pos); } return s.empty(); } const VariadicFunction1 matchAsm={}; } static bool clobbersFlagRegisters(const SmallVector &AsmPieces) { if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { if (AsmPieces.size() == 3) return true; else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) return true; } } return false; } bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { InlineAsm *IA = cast(CI->getCalledValue()); std::string AsmStr = IA->getAsmString(); IntegerType *Ty = dyn_cast(CI->getType()); if (!Ty || Ty->getBitWidth() % 16 != 0) return false; // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" SmallVector AsmPieces; SplitString(AsmStr, AsmPieces, ";\n"); switch (AsmPieces.size()) { default: return false; case 1: // FIXME: this should verify that we are targeting a 486 or better. If not, // we will turn this bswap into something that will be lowered to logical // ops instead of emitting the bswap asm. For now, we don't support 486 or // lower so don't worry about this. // bswap $0 if (matchAsm(AsmPieces[0], "bswap", "$0") || matchAsm(AsmPieces[0], "bswapl", "$0") || matchAsm(AsmPieces[0], "bswapq", "$0") || matchAsm(AsmPieces[0], "bswap", "${0:q}") || matchAsm(AsmPieces[0], "bswapl", "${0:q}") || matchAsm(AsmPieces[0], "bswapq", "${0:q}")) { // No need to check constraints, nothing other than the equivalent of // "=r,0" would be valid here. return IntrinsicLowering::LowerToByteSwap(CI); } // rorw $$8, ${0:w} --> llvm.bswap.i16 if (CI->getType()->isIntegerTy(16) && IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") || matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) { AsmPieces.clear(); const std::string &ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (clobbersFlagRegisters(AsmPieces)) return IntrinsicLowering::LowerToByteSwap(CI); } break; case 3: if (CI->getType()->isIntegerTy(32) && IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") && matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") && matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) { AsmPieces.clear(); const std::string &ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (clobbersFlagRegisters(AsmPieces)) return IntrinsicLowering::LowerToByteSwap(CI); } if (CI->getType()->isIntegerTy(64)) { InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); if (Constraints.size() >= 2 && Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 if (matchAsm(AsmPieces[0], "bswap", "%eax") && matchAsm(AsmPieces[1], "bswap", "%edx") && matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx")) return IntrinsicLowering::LowerToByteSwap(CI); } } break; } return false; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. X86TargetLowering::ConstraintType X86TargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'R': case 'q': case 'Q': case 'f': case 't': case 'u': case 'y': case 'x': case 'Y': case 'l': return C_RegisterClass; case 'a': case 'b': case 'c': case 'd': case 'S': case 'D': case 'A': return C_Register; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'G': case 'C': case 'e': case 'Z': return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight X86TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); case 'R': case 'q': case 'Q': case 'a': case 'b': case 'c': case 'd': case 'S': case 'D': case 'A': if (CallOperandVal->getType()->isIntegerTy()) weight = CW_SpecificReg; break; case 'f': case 't': case 'u': if (type->isFloatingPointTy()) weight = CW_SpecificReg; break; case 'y': if (type->isX86_MMXTy() && Subtarget->hasMMX()) weight = CW_SpecificReg; break; case 'x': case 'Y': if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) weight = CW_Register; break; case 'I': if (ConstantInt *C = dyn_cast(info.CallOperandVal)) { if (C->getZExtValue() <= 31) weight = CW_Constant; } break; case 'J': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 63) weight = CW_Constant; } break; case 'K': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) weight = CW_Constant; } break; case 'L': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) weight = CW_Constant; } break; case 'M': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 3) weight = CW_Constant; } break; case 'N': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 0xff) weight = CW_Constant; } break; case 'G': case 'C': if (dyn_cast(CallOperandVal)) { weight = CW_Constant; } break; case 'e': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if ((C->getSExtValue() >= -0x80000000LL) && (C->getSExtValue() <= 0x7fffffffLL)) weight = CW_Constant; } break; case 'Z': if (ConstantInt *C = dyn_cast(CallOperandVal)) { if (C->getZExtValue() <= 0xffffffff) weight = CW_Constant; } break; } return weight; } /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. const char *X86TargetLowering:: LowerXConstraint(EVT ConstraintVT) const { // FP X constraints get lowered to SSE1/2 registers if available, otherwise // 'f' like normal targets. if (ConstraintVT.isFloatingPoint()) { if (Subtarget->hasSSE2()) return "Y"; if (Subtarget->hasSSE1()) return "x"; } return TargetLowering::LowerXConstraint(ConstraintVT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result; // Only support length 1 constraints for now. if (Constraint.length() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'I': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 31) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'J': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 63) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'K': if (ConstantSDNode *C = dyn_cast(Op)) { if (isInt<8>(C->getSExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'L': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff || (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) { Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType()); break; } } return; case 'M': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 3) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'N': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 255) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'O': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 127) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'e': { // 32-bit signed value if (ConstantSDNode *C = dyn_cast(Op)) { if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getSExtValue())) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); break; } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. } return; } case 'Z': { // 32-bit unsigned value if (ConstantSDNode *C = dyn_cast(Op)) { if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getZExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. return; } case 'i': { // Literal immediates are always ok. if (ConstantSDNode *CST = dyn_cast(Op)) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); break; } // In any sort of PIC mode addresses need to be computed at runtime by // adding in a register or some sort of table lookup. These can't // be used as immediates. if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) return; // If we are in non-pic codegen mode, we allow the address of a global (with // an optional displacement) to be used with 'i'. GlobalAddressSDNode *GA = nullptr; int64_t Offset = 0; // Match either (GA), (GA+C), (GA+C1+C2), etc. while (1) { if ((GA = dyn_cast(Op))) { Offset += GA->getOffset(); break; } else if (Op.getOpcode() == ISD::ADD) { if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Offset += C->getZExtValue(); Op = Op.getOperand(0); continue; } } else if (Op.getOpcode() == ISD::SUB) { if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Offset += -C->getZExtValue(); Op = Op.getOperand(0); continue; } } // Otherwise, this isn't something we can handle, reject it. return; } const GlobalValue *GV = GA->getGlobal(); // If we require an extra load to get this address, as in PIC mode, we // can't accept it. if (isGlobalStubReference( Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()))) return; Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), GA->getValueType(0), Offset); break; } } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } std::pair X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { // First, see if this is a constraint that directly corresponds to an LLVM // register class. if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; // TODO: Slight differences here in allocation order and leaving // RIP in the class. Do they matter any more here than they do // in the normal allocation? case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. if (Subtarget->is64Bit()) { if (VT == MVT::i32 || VT == MVT::f32) return std::make_pair(0U, &X86::GR32RegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16RegClass); if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8RegClass); if (VT == MVT::i64 || VT == MVT::f64) return std::make_pair(0U, &X86::GR64RegClass); break; } // 32-bit fallthrough case 'Q': // Q_REGS if (VT == MVT::i32 || VT == MVT::f32) return std::make_pair(0U, &X86::GR32_ABCDRegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16_ABCDRegClass); if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); if (VT == MVT::i64) return std::make_pair(0U, &X86::GR64_ABCDRegClass); break; case 'r': // GENERAL_REGS case 'l': // INDEX_REGS if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8RegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16RegClass); if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) return std::make_pair(0U, &X86::GR32RegClass); return std::make_pair(0U, &X86::GR64RegClass); case 'R': // LEGACY_REGS if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8_NOREXRegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16_NOREXRegClass); if (VT == MVT::i32 || !Subtarget->is64Bit()) return std::make_pair(0U, &X86::GR32_NOREXRegClass); return std::make_pair(0U, &X86::GR64_NOREXRegClass); case 'f': // FP Stack registers. // If SSE is enabled for this VT, use f80 to ensure the isel moves the // value to the correct fpstack register class. if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, &X86::RFP32RegClass); if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, &X86::RFP64RegClass); return std::make_pair(0U, &X86::RFP80RegClass); case 'y': // MMX_REGS if MMX allowed. if (!Subtarget->hasMMX()) break; return std::make_pair(0U, &X86::VR64RegClass); case 'Y': // SSE_REGS if SSE2 allowed if (!Subtarget->hasSSE2()) break; // FALL THROUGH. case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed if (!Subtarget->hasSSE1()) break; switch (VT.SimpleTy) { default: break; // Scalar SSE types. case MVT::f32: case MVT::i32: return std::make_pair(0U, &X86::FR32RegClass); case MVT::f64: case MVT::i64: return std::make_pair(0U, &X86::FR64RegClass); // Vector types. case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: return std::make_pair(0U, &X86::VR128RegClass); // AVX types. case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: case MVT::v4f64: return std::make_pair(0U, &X86::VR256RegClass); case MVT::v8f64: case MVT::v16f32: case MVT::v16i32: case MVT::v8i64: return std::make_pair(0U, &X86::VR512RegClass); } break; } } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair Res; Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); // Not found as a standard register? if (!Res.second) { // Map st(0) -> st(7) -> ST0 if (Constraint.size() == 7 && Constraint[0] == '{' && tolower(Constraint[1]) == 's' && tolower(Constraint[2]) == 't' && Constraint[3] == '(' && (Constraint[4] >= '0' && Constraint[4] <= '7') && Constraint[5] == ')' && Constraint[6] == '}') { Res.first = X86::FP0+Constraint[4]-'0'; Res.second = &X86::RFP80RegClass; return Res; } // GCC allows "st(0)" to be called just plain "st". if (StringRef("{st}").equals_lower(Constraint)) { Res.first = X86::FP0; Res.second = &X86::RFP80RegClass; return Res; } // flags -> EFLAGS if (StringRef("{flags}").equals_lower(Constraint)) { Res.first = X86::EFLAGS; Res.second = &X86::CCRRegClass; return Res; } // 'A' means EAX + EDX. if (Constraint == "A") { Res.first = X86::EAX; Res.second = &X86::GR32_ADRegClass; return Res; } return Res; } // Otherwise, check to see if this is a register class of the wrong value // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to // turn into {ax},{dx}. if (Res.second->hasType(VT)) return Res; // Correct type already, nothing to do. // All of the single-register GCC register classes map their values onto // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we // really want an 8-bit or 32-bit register, map to the appropriate register // class and return the appropriate register. if (Res.second == &X86::GR16RegClass) { if (VT == MVT::i8 || VT == MVT::i1) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::AL; break; case X86::DX: DestReg = X86::DL; break; case X86::CX: DestReg = X86::CL; break; case X86::BX: DestReg = X86::BL; break; } if (DestReg) { Res.first = DestReg; Res.second = &X86::GR8RegClass; } } else if (VT == MVT::i32 || VT == MVT::f32) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::EAX; break; case X86::DX: DestReg = X86::EDX; break; case X86::CX: DestReg = X86::ECX; break; case X86::BX: DestReg = X86::EBX; break; case X86::SI: DestReg = X86::ESI; break; case X86::DI: DestReg = X86::EDI; break; case X86::BP: DestReg = X86::EBP; break; case X86::SP: DestReg = X86::ESP; break; } if (DestReg) { Res.first = DestReg; Res.second = &X86::GR32RegClass; } } else if (VT == MVT::i64 || VT == MVT::f64) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::RAX; break; case X86::DX: DestReg = X86::RDX; break; case X86::CX: DestReg = X86::RCX; break; case X86::BX: DestReg = X86::RBX; break; case X86::SI: DestReg = X86::RSI; break; case X86::DI: DestReg = X86::RDI; break; case X86::BP: DestReg = X86::RBP; break; case X86::SP: DestReg = X86::RSP; break; } if (DestReg) { Res.first = DestReg; Res.second = &X86::GR64RegClass; } } } else if (Res.second == &X86::FR32RegClass || Res.second == &X86::FR64RegClass || Res.second == &X86::VR128RegClass || Res.second == &X86::VR256RegClass || Res.second == &X86::FR32XRegClass || Res.second == &X86::FR64XRegClass || Res.second == &X86::VR128XRegClass || Res.second == &X86::VR256XRegClass || Res.second == &X86::VR512RegClass) { // Handle references to XMM physical registers that got mapped into the // wrong class. This can happen with constraints like {xmm0} where the // target independent register mapper will just pick the first match it can // find, ignoring the required type. if (VT == MVT::f32 || VT == MVT::i32) Res.second = &X86::FR32RegClass; else if (VT == MVT::f64 || VT == MVT::i64) Res.second = &X86::FR64RegClass; else if (X86::VR128RegClass.hasType(VT)) Res.second = &X86::VR128RegClass; else if (X86::VR256RegClass.hasType(VT)) Res.second = &X86::VR256RegClass; else if (X86::VR512RegClass.hasType(VT)) Res.second = &X86::VR512RegClass; } return Res; } int X86TargetLowering::getScalingFactorCost(const AddrMode &AM, Type *Ty) const { // Scaling factors are not free at all. // An indexed folded instruction, i.e., inst (reg1, reg2, scale), // will take 2 allocations in the out of order engine instead of 1 // for plain addressing mode, i.e. inst (reg1). // E.g., // vaddps (%rsi,%drx), %ymm0, %ymm1 // Requires two allocations (one for the load, one for the computation) // whereas: // vaddps (%rsi), %ymm0, %ymm1 // Requires just 1 allocation, i.e., freeing allocations for other operations // and having less micro operations to execute. // // For some X86 architectures, this is even worse because for instance for // stores, the complex addressing mode forces the instruction to use the // "load" ports instead of the dedicated "store" port. // E.g., on Haswell: // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3. // vmovaps %ymm1, (%r8) can use port 2, 3, or 7. if (isLegalAddressingMode(AM, Ty)) // Scale represents reg2 * scale, thus account for 1 // as soon as we use a second register. return AM.Scale != 0; return -1; } bool X86TargetLowering::isTargetFTOL() const { return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit(); }