//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a useful analysis step to figure out what numbered // slots values in a program will land in (keeping track of per plane // information as required. // // This is used primarily for when writing a file to disk, either in bytecode // or source format. // //===----------------------------------------------------------------------===// #include "llvm/SlotCalculator.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/Module.h" #include "llvm/iOther.h" #include "llvm/Constant.h" #include "llvm/DerivedTypes.h" #include "llvm/SymbolTable.h" #include "Support/PostOrderIterator.h" #include "Support/STLExtras.h" #include using namespace llvm; #if 0 #define SC_DEBUG(X) std::cerr << X #else #define SC_DEBUG(X) #endif SlotCalculator::SlotCalculator(const Module *M, bool IgnoreNamed) { IgnoreNamedNodes = IgnoreNamed; TheModule = M; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // SC_DEBUG("Inserting primitive types:\n"); for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::PrimitiveID)i)); insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true); } if (M == 0) return; // Empty table... processModule(); } SlotCalculator::SlotCalculator(const Function *M, bool IgnoreNamed) { IgnoreNamedNodes = IgnoreNamed; TheModule = M ? M->getParent() : 0; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // SC_DEBUG("Inserting primitive types:\n"); for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::PrimitiveID)i)); insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true); } if (TheModule == 0) return; // Empty table... processModule(); // Process module level stuff incorporateFunction(M); // Start out in incorporated state } // processModule - Process all of the module level function declarations and // types that are available. // void SlotCalculator::processModule() { SC_DEBUG("begin processModule!\n"); // Add all of the global variables to the value table... // for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend(); I != E; ++I) getOrCreateSlot(I); // Scavenge the types out of the functions, then add the functions themselves // to the value table... // for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) getOrCreateSlot(I); // Add all of the module level constants used as initializers // for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend(); I != E; ++I) if (I->hasInitializer()) getOrCreateSlot(I->getInitializer()); // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... // if (!IgnoreNamedNodes) { SC_DEBUG("Inserting SymbolTable values:\n"); processSymbolTable(&TheModule->getSymbolTable()); } SC_DEBUG("end processModule!\n"); } // processSymbolTable - Insert all of the values in the specified symbol table // into the values table... // void SlotCalculator::processSymbolTable(const SymbolTable *ST) { for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) getOrCreateSlot(TI->second); } void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) { for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) if (isa(TI->second)) getOrCreateSlot(TI->second); } void SlotCalculator::incorporateFunction(const Function *F) { assert(ModuleLevel.size() == 0 && "Module already incorporated!"); SC_DEBUG("begin processFunction!\n"); // Save the Table state before we process the function... for (unsigned i = 0; i < Table.size(); ++i) ModuleLevel.push_back(Table[i].size()); SC_DEBUG("Inserting function arguments\n"); // Iterate over function arguments, adding them to the value table... for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) getOrCreateSlot(I); // Iterate over all of the instructions in the function, looking for constant // values that are referenced. Add these to the value pools before any // nonconstant values. This will be turned into the constant pool for the // bytecode writer. // if (!IgnoreNamedNodes) { // Assembly writer does not need this! SC_DEBUG("Inserting function constants:\n"; for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E; ++I) { std::cerr << " " << *I->getType() << " " << *I << "\n"; }); // Emit all of the constants that are being used by the instructions in the // function... for_each(constant_begin(F), constant_end(F), bind_obj(this, &SlotCalculator::getOrCreateSlot)); // If there is a symbol table, it is possible that the user has names for // constants that are not being used. In this case, we will have problems // if we don't emit the constants now, because otherwise we will get // symboltable references to constants not in the output. Scan for these // constants now. // processSymbolTableConstants(&F->getSymbolTable()); } SC_DEBUG("Inserting Labels:\n"); // Iterate over basic blocks, adding them to the value table... for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) getOrCreateSlot(I); SC_DEBUG("Inserting Instructions:\n"); // Add all of the instructions to the type planes... for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { getOrCreateSlot(I); if (const VANextInst *VAN = dyn_cast(I)) getOrCreateSlot(VAN->getArgType()); } if (!IgnoreNamedNodes) { SC_DEBUG("Inserting SymbolTable values:\n"); processSymbolTable(&F->getSymbolTable()); } SC_DEBUG("end processFunction!\n"); } void SlotCalculator::purgeFunction() { assert(ModuleLevel.size() != 0 && "Module not incorporated!"); unsigned NumModuleTypes = ModuleLevel.size(); SC_DEBUG("begin purgeFunction!\n"); // First, remove values from existing type planes for (unsigned i = 0; i < NumModuleTypes; ++i) { unsigned ModuleSize = ModuleLevel[i]; // Size of plane before function came TypePlane &CurPlane = Table[i]; //SC_DEBUG("Processing Plane " <::iterator NI = NodeMap.find(CurPlane.back()); assert(NI != NodeMap.end() && "Node not in nodemap?"); NodeMap.erase(NI); // Erase from nodemap CurPlane.pop_back(); // Shrink plane } } // We don't need this state anymore, free it up. ModuleLevel.clear(); // Next, remove any type planes defined by the function... while (NumModuleTypes != Table.size()) { TypePlane &Plane = Table.back(); SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " << Plane.size() << "\n"); while (Plane.size()) { NodeMap.erase(NodeMap.find(Plane.back())); // Erase from nodemap Plane.pop_back(); // Shrink plane } Table.pop_back(); // Nuke the plane, we don't like it. } SC_DEBUG("end purgeFunction!\n"); } int SlotCalculator::getSlot(const Value *D) const { std::map::const_iterator I = NodeMap.find(D); if (I == NodeMap.end()) return -1; return (int)I->second; } int SlotCalculator::getOrCreateSlot(const Value *V) { int SlotNo = getSlot(V); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; if (!isa(V)) if (const Constant *C = dyn_cast(V)) { // This makes sure that if a constant has uses (for example an array of // const ints), that they are inserted also. // for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) getOrCreateSlot(*I); } return insertValue(V); } int SlotCalculator::insertValue(const Value *D, bool dontIgnore) { assert(D && "Can't insert a null value!"); assert(getSlot(D) == -1 && "Value is already in the table!"); // If this node does not contribute to a plane, or if the node has a // name and we don't want names, then ignore the silly node... Note that types // do need slot numbers so that we can keep track of where other values land. // if (!dontIgnore) // Don't ignore nonignorables! if (D->getType() == Type::VoidTy || // Ignore void type nodes (IgnoreNamedNodes && // Ignore named and constants (D->hasName() || isa(D)) && !isa(D))) { SC_DEBUG("ignored value " << *D << "\n"); return -1; // We do need types unconditionally though } // If it's a type, make sure that all subtypes of the type are included... if (const Type *TheTy = dyn_cast(D)) { // Insert the current type before any subtypes. This is important because // recursive types elements are inserted in a bottom up order. Changing // this here can break things. For example: // // global { \2 * } { { \2 }* null } // int ResultSlot = doInsertValue(TheTy); SC_DEBUG(" Inserted type: " << TheTy->getDescription() << " slot=" << ResultSlot << "\n"); // Loop over any contained types in the definition... in post // order. // for (po_iterator I = po_begin(TheTy), E = po_end(TheTy); I != E; ++I) { if (*I != TheTy) { const Type *SubTy = *I; // If we haven't seen this sub type before, add it to our type table! if (getSlot(SubTy) == -1) { SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n"); int Slot = doInsertValue(SubTy); SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() << " slot=" << Slot << "\n"); } } } return ResultSlot; } // Okay, everything is happy, actually insert the silly value now... return doInsertValue(D); } // doInsertValue - This is a small helper function to be called only // be insertValue. // int SlotCalculator::doInsertValue(const Value *D) { const Type *Typ = D->getType(); unsigned Ty; // Used for debugging DefSlot=-1 assertion... //if (Typ == Type::TypeTy) // cerr << "Inserting type '" << cast(D)->getDescription() << "'!\n"; if (Typ->isDerivedType()) { int ValSlot = getSlot(Typ); if (ValSlot == -1) { // Have we already entered this type? // Nope, this is the first we have seen the type, process it. ValSlot = insertValue(Typ, true); assert(ValSlot != -1 && "ProcessType returned -1 for a type?"); } Ty = (unsigned)ValSlot; } else { Ty = Typ->getPrimitiveID(); } if (Table.size() <= Ty) // Make sure we have the type plane allocated... Table.resize(Ty+1, TypePlane()); // If this is the first value to get inserted into the type plane, make sure // to insert the implicit null value... if (Table[Ty].empty() && Ty >= Type::FirstDerivedTyID && !IgnoreNamedNodes) { Value *ZeroInitializer = Constant::getNullValue(Typ); // If we are pushing zeroinit, it will be handled below. if (D != ZeroInitializer) { Table[Ty].push_back(ZeroInitializer); NodeMap[ZeroInitializer] = 0; } } // Insert node into table and NodeMap... unsigned DestSlot = NodeMap[D] = Table[Ty].size(); Table[Ty].push_back(D); SC_DEBUG(" Inserting value [" << Ty << "] = " << D << " slot=" << DestSlot << " ["); // G = Global, C = Constant, T = Type, F = Function, o = other SC_DEBUG((isa(D) ? "G" : (isa(D) ? "C" : (isa(D) ? "T" : (isa(D) ? "F" : "o"))))); SC_DEBUG("]\n"); return (int)DestSlot; }