//===-- NEONPreAllocPass.cpp - Allocate adjacent NEON registers--*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "neon-prealloc" #include "ARM.h" #include "ARMInstrInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" using namespace llvm; namespace { class NEONPreAllocPass : public MachineFunctionPass { const TargetInstrInfo *TII; MachineRegisterInfo *MRI; public: static char ID; NEONPreAllocPass() : MachineFunctionPass(ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "NEON register pre-allocation pass"; } private: bool FormsRegSequence(MachineInstr *MI, unsigned FirstOpnd, unsigned NumRegs, unsigned Offset, unsigned Stride) const; bool PreAllocNEONRegisters(MachineBasicBlock &MBB); }; char NEONPreAllocPass::ID = 0; } static bool isNEONMultiRegOp(int Opcode, unsigned &FirstOpnd, unsigned &NumRegs, unsigned &Offset, unsigned &Stride) { // Default to unit stride with no offset. Stride = 1; Offset = 0; switch (Opcode) { default: break; case ARM::VLD1q8: case ARM::VLD1q16: case ARM::VLD1q32: case ARM::VLD1q64: case ARM::VLD2d8: case ARM::VLD2d16: case ARM::VLD2d32: case ARM::VLD2LNd8: case ARM::VLD2LNd16: case ARM::VLD2LNd32: FirstOpnd = 0; NumRegs = 2; return true; case ARM::VLD2q8: case ARM::VLD2q16: case ARM::VLD2q32: FirstOpnd = 0; NumRegs = 4; return true; case ARM::VLD2LNq16: case ARM::VLD2LNq32: FirstOpnd = 0; NumRegs = 2; Offset = 0; Stride = 2; return true; case ARM::VLD2LNq16odd: case ARM::VLD2LNq32odd: FirstOpnd = 0; NumRegs = 2; Offset = 1; Stride = 2; return true; case ARM::VLD3d8: case ARM::VLD3d16: case ARM::VLD3d32: case ARM::VLD1d64T: case ARM::VLD3LNd8: case ARM::VLD3LNd16: case ARM::VLD3LNd32: FirstOpnd = 0; NumRegs = 3; return true; case ARM::VLD3q8_UPD: case ARM::VLD3q16_UPD: case ARM::VLD3q32_UPD: FirstOpnd = 0; NumRegs = 3; Offset = 0; Stride = 2; return true; case ARM::VLD3q8odd_UPD: case ARM::VLD3q16odd_UPD: case ARM::VLD3q32odd_UPD: FirstOpnd = 0; NumRegs = 3; Offset = 1; Stride = 2; return true; case ARM::VLD3LNq16: case ARM::VLD3LNq32: FirstOpnd = 0; NumRegs = 3; Offset = 0; Stride = 2; return true; case ARM::VLD3LNq16odd: case ARM::VLD3LNq32odd: FirstOpnd = 0; NumRegs = 3; Offset = 1; Stride = 2; return true; case ARM::VLD4d8: case ARM::VLD4d16: case ARM::VLD4d32: case ARM::VLD1d64Q: case ARM::VLD4LNd8: case ARM::VLD4LNd16: case ARM::VLD4LNd32: FirstOpnd = 0; NumRegs = 4; return true; case ARM::VLD4q8_UPD: case ARM::VLD4q16_UPD: case ARM::VLD4q32_UPD: FirstOpnd = 0; NumRegs = 4; Offset = 0; Stride = 2; return true; case ARM::VLD4q8odd_UPD: case ARM::VLD4q16odd_UPD: case ARM::VLD4q32odd_UPD: FirstOpnd = 0; NumRegs = 4; Offset = 1; Stride = 2; return true; case ARM::VLD4LNq16: case ARM::VLD4LNq32: FirstOpnd = 0; NumRegs = 4; Offset = 0; Stride = 2; return true; case ARM::VLD4LNq16odd: case ARM::VLD4LNq32odd: FirstOpnd = 0; NumRegs = 4; Offset = 1; Stride = 2; return true; case ARM::VST1q8: case ARM::VST1q16: case ARM::VST1q32: case ARM::VST1q64: case ARM::VST2d8: case ARM::VST2d16: case ARM::VST2d32: case ARM::VST2LNd8: case ARM::VST2LNd16: case ARM::VST2LNd32: FirstOpnd = 2; NumRegs = 2; return true; case ARM::VST2q8: case ARM::VST2q16: case ARM::VST2q32: FirstOpnd = 2; NumRegs = 4; return true; case ARM::VST2LNq16: case ARM::VST2LNq32: FirstOpnd = 2; NumRegs = 2; Offset = 0; Stride = 2; return true; case ARM::VST2LNq16odd: case ARM::VST2LNq32odd: FirstOpnd = 2; NumRegs = 2; Offset = 1; Stride = 2; return true; case ARM::VST3LNd8: case ARM::VST3LNd16: case ARM::VST3LNd32: FirstOpnd = 2; NumRegs = 3; return true; case ARM::VST3LNq16: case ARM::VST3LNq32: FirstOpnd = 2; NumRegs = 3; Offset = 0; Stride = 2; return true; case ARM::VST3LNq16odd: case ARM::VST3LNq32odd: FirstOpnd = 2; NumRegs = 3; Offset = 1; Stride = 2; return true; case ARM::VST4LNd8: case ARM::VST4LNd16: case ARM::VST4LNd32: FirstOpnd = 2; NumRegs = 4; return true; case ARM::VST4LNq16: case ARM::VST4LNq32: FirstOpnd = 2; NumRegs = 4; Offset = 0; Stride = 2; return true; case ARM::VST4LNq16odd: case ARM::VST4LNq32odd: FirstOpnd = 2; NumRegs = 4; Offset = 1; Stride = 2; return true; case ARM::VTBL2: FirstOpnd = 1; NumRegs = 2; return true; case ARM::VTBL3: FirstOpnd = 1; NumRegs = 3; return true; case ARM::VTBL4: FirstOpnd = 1; NumRegs = 4; return true; case ARM::VTBX2: FirstOpnd = 2; NumRegs = 2; return true; case ARM::VTBX3: FirstOpnd = 2; NumRegs = 3; return true; case ARM::VTBX4: FirstOpnd = 2; NumRegs = 4; return true; } return false; } bool NEONPreAllocPass::FormsRegSequence(MachineInstr *MI, unsigned FirstOpnd, unsigned NumRegs, unsigned Offset, unsigned Stride) const { MachineOperand &FMO = MI->getOperand(FirstOpnd); assert(FMO.isReg() && FMO.getSubReg() == 0 && "unexpected operand"); unsigned VirtReg = FMO.getReg(); (void)VirtReg; assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "expected a virtual register"); unsigned LastSubIdx = 0; if (FMO.isDef()) { MachineInstr *RegSeq = 0; for (unsigned R = 0; R < NumRegs; ++R) { const MachineOperand &MO = MI->getOperand(FirstOpnd + R); assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand"); unsigned VirtReg = MO.getReg(); assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "expected a virtual register"); // Feeding into a REG_SEQUENCE. if (!MRI->hasOneNonDBGUse(VirtReg)) return false; MachineInstr *UseMI = &*MRI->use_nodbg_begin(VirtReg); if (!UseMI->isRegSequence()) return false; if (RegSeq && RegSeq != UseMI) return false; unsigned OpIdx = 1 + (Offset + R * Stride) * 2; if (UseMI->getOperand(OpIdx).getReg() != VirtReg) llvm_unreachable("Malformed REG_SEQUENCE instruction!"); unsigned SubIdx = UseMI->getOperand(OpIdx + 1).getImm(); if (LastSubIdx) { if (LastSubIdx != SubIdx-Stride) return false; } else { // Must start from dsub_0 or qsub_0. if (SubIdx != (ARM::dsub_0+Offset) && SubIdx != (ARM::qsub_0+Offset)) return false; } RegSeq = UseMI; LastSubIdx = SubIdx; } // In the case of vld3, etc., make sure the trailing operand of // REG_SEQUENCE is an undef. if (NumRegs == 3) { unsigned OpIdx = 1 + (Offset + 3 * Stride) * 2; const MachineOperand &MO = RegSeq->getOperand(OpIdx); unsigned VirtReg = MO.getReg(); MachineInstr *DefMI = MRI->getVRegDef(VirtReg); if (!DefMI || !DefMI->isImplicitDef()) return false; } return true; } unsigned LastSrcReg = 0; SmallVector SubIds; for (unsigned R = 0; R < NumRegs; ++R) { const MachineOperand &MO = MI->getOperand(FirstOpnd + R); assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand"); unsigned VirtReg = MO.getReg(); assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "expected a virtual register"); // Extracting from a Q or QQ register. MachineInstr *DefMI = MRI->getVRegDef(VirtReg); if (!DefMI || !DefMI->isCopy() || !DefMI->getOperand(1).getSubReg()) return false; VirtReg = DefMI->getOperand(1).getReg(); if (LastSrcReg && LastSrcReg != VirtReg) return false; LastSrcReg = VirtReg; const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); if (RC != ARM::QPRRegisterClass && RC != ARM::QQPRRegisterClass && RC != ARM::QQQQPRRegisterClass) return false; unsigned SubIdx = DefMI->getOperand(1).getSubReg(); if (LastSubIdx) { if (LastSubIdx != SubIdx-Stride) return false; } else { // Must start from dsub_0 or qsub_0. if (SubIdx != (ARM::dsub_0+Offset) && SubIdx != (ARM::qsub_0+Offset)) return false; } SubIds.push_back(SubIdx); LastSubIdx = SubIdx; } // FIXME: Update the uses of EXTRACT_SUBREG from REG_SEQUENCE is // currently required for correctness. e.g. // %reg1041 = REG_SEQUENCE %reg1040, 5, %reg1035, 6 // %reg1042 = EXTRACT_SUBREG %reg1041, 6 // %reg1043 = EXTRACT_SUBREG %reg1041, 5 // VST1q16 %reg1025, 0, %reg1043, %reg1042, // reg1042 and reg1043 should be replaced with reg1041:6 and reg1041:5 // respectively. // We need to change how we model uses of REG_SEQUENCE. for (unsigned R = 0; R < NumRegs; ++R) { MachineOperand &MO = MI->getOperand(FirstOpnd + R); unsigned OldReg = MO.getReg(); MachineInstr *DefMI = MRI->getVRegDef(OldReg); assert(DefMI->isCopy()); MO.setReg(LastSrcReg); MO.setSubReg(SubIds[R]); MO.setIsKill(false); // Delete the EXTRACT_SUBREG if its result is now dead. if (MRI->use_empty(OldReg)) DefMI->eraseFromParent(); } return true; } bool NEONPreAllocPass::PreAllocNEONRegisters(MachineBasicBlock &MBB) { bool Modified = false; MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); for (; MBBI != E; ++MBBI) { MachineInstr *MI = &*MBBI; unsigned FirstOpnd, NumRegs, Offset, Stride; if (!isNEONMultiRegOp(MI->getOpcode(), FirstOpnd, NumRegs, Offset, Stride)) continue; if (FormsRegSequence(MI, FirstOpnd, NumRegs, Offset, Stride)) continue; MachineBasicBlock::iterator NextI = llvm::next(MBBI); for (unsigned R = 0; R < NumRegs; ++R) { MachineOperand &MO = MI->getOperand(FirstOpnd + R); assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand"); unsigned VirtReg = MO.getReg(); assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "expected a virtual register"); // For now, just assign a fixed set of adjacent registers. // This leaves plenty of room for future improvements. static const unsigned NEONDRegs[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, ARM::D4, ARM::D5, ARM::D6, ARM::D7 }; MO.setReg(NEONDRegs[Offset + R * Stride]); if (MO.isUse()) { // Insert a copy from VirtReg. BuildMI(MBB, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY),MO.getReg()) .addReg(VirtReg, getKillRegState(MO.isKill())); MO.setIsKill(); } else if (MO.isDef() && !MO.isDead()) { // Add a copy to VirtReg. BuildMI(MBB, NextI, DebugLoc(), TII->get(TargetOpcode::COPY), VirtReg) .addReg(MO.getReg()); } } } return Modified; } bool NEONPreAllocPass::runOnMachineFunction(MachineFunction &MF) { TII = MF.getTarget().getInstrInfo(); MRI = &MF.getRegInfo(); bool Modified = false; for (MachineFunction::iterator MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; Modified |= PreAllocNEONRegisters(MBB); } return Modified; } /// createNEONPreAllocPass - returns an instance of the NEON register /// pre-allocation pass. FunctionPass *llvm::createNEONPreAllocPass() { return new NEONPreAllocPass(); }