//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the abstract interface that implements execution support // for LLVM. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTION_ENGINE_H #define LLVM_EXECUTION_ENGINE_H #include #include #include #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/ValueMap.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/Mutex.h" #include "llvm/Target/TargetMachine.h" namespace llvm { struct GenericValue; class Constant; class ExecutionEngine; class Function; class GlobalVariable; class GlobalValue; class JITEventListener; class JITMemoryManager; class MachineCodeInfo; class Module; class MutexGuard; class TargetData; class Type; /// \brief Helper class for helping synchronize access to the global address map /// table. class ExecutionEngineState { public: struct AddressMapConfig : public ValueMapConfig { typedef ExecutionEngineState *ExtraData; static sys::Mutex *getMutex(ExecutionEngineState *EES); static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old); static void onRAUW(ExecutionEngineState *, const GlobalValue *, const GlobalValue *); }; typedef ValueMap GlobalAddressMapTy; private: ExecutionEngine ⅇ /// GlobalAddressMap - A mapping between LLVM global values and their /// actualized version... GlobalAddressMapTy GlobalAddressMap; /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap, /// used to convert raw addresses into the LLVM global value that is emitted /// at the address. This map is not computed unless getGlobalValueAtAddress /// is called at some point. std::map > GlobalAddressReverseMap; public: ExecutionEngineState(ExecutionEngine &EE); GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) { return GlobalAddressMap; } std::map > & getGlobalAddressReverseMap(const MutexGuard &) { return GlobalAddressReverseMap; } /// \brief Erase an entry from the mapping table. /// /// \returns The address that \arg ToUnmap was happed to. void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap); }; /// \brief Abstract interface for implementation execution of LLVM modules, /// designed to support both interpreter and just-in-time (JIT) compiler /// implementations. class ExecutionEngine { /// The state object holding the global address mapping, which must be /// accessed synchronously. // // FIXME: There is no particular need the entire map needs to be // synchronized. Wouldn't a reader-writer design be better here? ExecutionEngineState EEState; /// The target data for the platform for which execution is being performed. const TargetData *TD; /// Whether lazy JIT compilation is enabled. bool CompilingLazily; /// Whether JIT compilation of external global variables is allowed. bool GVCompilationDisabled; /// Whether the JIT should perform lookups of external symbols (e.g., /// using dlsym). bool SymbolSearchingDisabled; friend class EngineBuilder; // To allow access to JITCtor and InterpCtor. protected: /// The list of Modules that we are JIT'ing from. We use a SmallVector to /// optimize for the case where there is only one module. SmallVector Modules; void setTargetData(const TargetData *td) { TD = td; } /// getMemoryforGV - Allocate memory for a global variable. virtual char *getMemoryForGV(const GlobalVariable *GV); // To avoid having libexecutionengine depend on the JIT and interpreter // libraries, the execution engine implementations set these functions to ctor // pointers at startup time if they are linked in. static ExecutionEngine *(*JITCtor)( Module *M, std::string *ErrorStr, JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode, CodeModel::Model CMM, StringRef MArch, StringRef MCPU, const SmallVectorImpl& MAttrs); static ExecutionEngine *(*MCJITCtor)( Module *M, std::string *ErrorStr, JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode, CodeModel::Model CMM, StringRef MArch, StringRef MCPU, const SmallVectorImpl& MAttrs); static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr); /// LazyFunctionCreator - If an unknown function is needed, this function /// pointer is invoked to create it. If this returns null, the JIT will /// abort. void *(*LazyFunctionCreator)(const std::string &); /// ExceptionTableRegister - If Exception Handling is set, the JIT will /// register dwarf tables with this function. typedef void (*EERegisterFn)(void*); EERegisterFn ExceptionTableRegister; EERegisterFn ExceptionTableDeregister; /// This maps functions to their exception tables frames. DenseMap AllExceptionTables; public: /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and /// JITEmitter classes. It must be held while changing the internal state of /// any of those classes. sys::Mutex lock; //===--------------------------------------------------------------------===// // ExecutionEngine Startup //===--------------------------------------------------------------------===// virtual ~ExecutionEngine(); /// create - This is the factory method for creating an execution engine which /// is appropriate for the current machine. This takes ownership of the /// module. /// /// \param GVsWithCode - Allocating globals with code breaks /// freeMachineCodeForFunction and is probably unsafe and bad for performance. /// However, we have clients who depend on this behavior, so we must support /// it. Eventually, when we're willing to break some backwards compatability, /// this flag should be flipped to false, so that by default /// freeMachineCodeForFunction works. static ExecutionEngine *create(Module *M, bool ForceInterpreter = false, std::string *ErrorStr = 0, CodeGenOpt::Level OptLevel = CodeGenOpt::Default, bool GVsWithCode = true); /// createJIT - This is the factory method for creating a JIT for the current /// machine, it does not fall back to the interpreter. This takes ownership /// of the Module and JITMemoryManager if successful. /// /// Clients should make sure to initialize targets prior to calling this /// function. static ExecutionEngine *createJIT(Module *M, std::string *ErrorStr = 0, JITMemoryManager *JMM = 0, CodeGenOpt::Level OptLevel = CodeGenOpt::Default, bool GVsWithCode = true, CodeModel::Model CMM = CodeModel::Default); /// addModule - Add a Module to the list of modules that we can JIT from. /// Note that this takes ownership of the Module: when the ExecutionEngine is /// destroyed, it destroys the Module as well. virtual void addModule(Module *M) { Modules.push_back(M); } //===--------------------------------------------------------------------===// const TargetData *getTargetData() const { return TD; } /// removeModule - Remove a Module from the list of modules. Returns true if /// M is found. virtual bool removeModule(Module *M); /// FindFunctionNamed - Search all of the active modules to find the one that /// defines FnName. This is very slow operation and shouldn't be used for /// general code. Function *FindFunctionNamed(const char *FnName); /// runFunction - Execute the specified function with the specified arguments, /// and return the result. virtual GenericValue runFunction(Function *F, const std::vector &ArgValues) = 0; /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a program. /// /// \param isDtors - Run the destructors instead of constructors. void runStaticConstructorsDestructors(bool isDtors); /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a particular module. /// /// \param isDtors - Run the destructors instead of constructors. void runStaticConstructorsDestructors(Module *module, bool isDtors); /// runFunctionAsMain - This is a helper function which wraps runFunction to /// handle the common task of starting up main with the specified argc, argv, /// and envp parameters. int runFunctionAsMain(Function *Fn, const std::vector &argv, const char * const * envp); /// addGlobalMapping - Tell the execution engine that the specified global is /// at the specified location. This is used internally as functions are JIT'd /// and as global variables are laid out in memory. It can and should also be /// used by clients of the EE that want to have an LLVM global overlay /// existing data in memory. Mappings are automatically removed when their /// GlobalValue is destroyed. void addGlobalMapping(const GlobalValue *GV, void *Addr); /// clearAllGlobalMappings - Clear all global mappings and start over again, /// for use in dynamic compilation scenarios to move globals. void clearAllGlobalMappings(); /// clearGlobalMappingsFromModule - Clear all global mappings that came from a /// particular module, because it has been removed from the JIT. void clearGlobalMappingsFromModule(Module *M); /// updateGlobalMapping - Replace an existing mapping for GV with a new /// address. This updates both maps as required. If "Addr" is null, the /// entry for the global is removed from the mappings. This returns the old /// value of the pointer, or null if it was not in the map. void *updateGlobalMapping(const GlobalValue *GV, void *Addr); /// getPointerToGlobalIfAvailable - This returns the address of the specified /// global value if it is has already been codegen'd, otherwise it returns /// null. void *getPointerToGlobalIfAvailable(const GlobalValue *GV); /// getPointerToGlobal - This returns the address of the specified global /// value. This may involve code generation if it's a function. void *getPointerToGlobal(const GlobalValue *GV); /// getPointerToFunction - The different EE's represent function bodies in /// different ways. They should each implement this to say what a function /// pointer should look like. When F is destroyed, the ExecutionEngine will /// remove its global mapping and free any machine code. Be sure no threads /// are running inside F when that happens. virtual void *getPointerToFunction(Function *F) = 0; /// getPointerToBasicBlock - The different EE's represent basic blocks in /// different ways. Return the representation for a blockaddress of the /// specified block. virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0; /// getPointerToFunctionOrStub - If the specified function has been /// code-gen'd, return a pointer to the function. If not, compile it, or use /// a stub to implement lazy compilation if available. See /// getPointerToFunction for the requirements on destroying F. virtual void *getPointerToFunctionOrStub(Function *F) { // Default implementation, just codegen the function. return getPointerToFunction(F); } // The JIT overrides a version that actually does this. virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { } /// getGlobalValueAtAddress - Return the LLVM global value object that starts /// at the specified address. /// const GlobalValue *getGlobalValueAtAddress(void *Addr); /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. /// Ptr is the address of the memory at which to store Val, cast to /// GenericValue *. It is not a pointer to a GenericValue containing the /// address at which to store Val. void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, const Type *Ty); void InitializeMemory(const Constant *Init, void *Addr); /// recompileAndRelinkFunction - This method is used to force a function which /// has already been compiled to be compiled again, possibly after it has been /// modified. Then the entry to the old copy is overwritten with a branch to /// the new copy. If there was no old copy, this acts just like /// VM::getPointerToFunction(). virtual void *recompileAndRelinkFunction(Function *F) = 0; /// freeMachineCodeForFunction - Release memory in the ExecutionEngine /// corresponding to the machine code emitted to execute this function, useful /// for garbage-collecting generated code. virtual void freeMachineCodeForFunction(Function *F) = 0; /// getOrEmitGlobalVariable - Return the address of the specified global /// variable, possibly emitting it to memory if needed. This is used by the /// Emitter. virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) { return getPointerToGlobal((GlobalValue*)GV); } /// Registers a listener to be called back on various events within /// the JIT. See JITEventListener.h for more details. Does not /// take ownership of the argument. The argument may be NULL, in /// which case these functions do nothing. virtual void RegisterJITEventListener(JITEventListener *) {} virtual void UnregisterJITEventListener(JITEventListener *) {} /// DisableLazyCompilation - When lazy compilation is off (the default), the /// JIT will eagerly compile every function reachable from the argument to /// getPointerToFunction. If lazy compilation is turned on, the JIT will only /// compile the one function and emit stubs to compile the rest when they're /// first called. If lazy compilation is turned off again while some lazy /// stubs are still around, and one of those stubs is called, the program will /// abort. /// /// In order to safely compile lazily in a threaded program, the user must /// ensure that 1) only one thread at a time can call any particular lazy /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a /// lazy stub. See http://llvm.org/PR5184 for details. void DisableLazyCompilation(bool Disabled = true) { CompilingLazily = !Disabled; } bool isCompilingLazily() const { return CompilingLazily; } // Deprecated in favor of isCompilingLazily (to reduce double-negatives). // Remove this in LLVM 2.8. bool isLazyCompilationDisabled() const { return !CompilingLazily; } /// DisableGVCompilation - If called, the JIT will abort if it's asked to /// allocate space and populate a GlobalVariable that is not internal to /// the module. void DisableGVCompilation(bool Disabled = true) { GVCompilationDisabled = Disabled; } bool isGVCompilationDisabled() const { return GVCompilationDisabled; } /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to /// resolve symbols in a custom way. void DisableSymbolSearching(bool Disabled = true) { SymbolSearchingDisabled = Disabled; } bool isSymbolSearchingDisabled() const { return SymbolSearchingDisabled; } /// InstallLazyFunctionCreator - If an unknown function is needed, the /// specified function pointer is invoked to create it. If it returns null, /// the JIT will abort. void InstallLazyFunctionCreator(void* (*P)(const std::string &)) { LazyFunctionCreator = P; } /// InstallExceptionTableRegister - The JIT will use the given function /// to register the exception tables it generates. void InstallExceptionTableRegister(EERegisterFn F) { ExceptionTableRegister = F; } void InstallExceptionTableDeregister(EERegisterFn F) { ExceptionTableDeregister = F; } /// RegisterTable - Registers the given pointer as an exception table. It /// uses the ExceptionTableRegister function. void RegisterTable(const Function *fn, void* res) { if (ExceptionTableRegister) { ExceptionTableRegister(res); AllExceptionTables[fn] = res; } } /// DeregisterTable - Deregisters the exception frame previously registered for the given function. void DeregisterTable(const Function *Fn) { if (ExceptionTableDeregister) { DenseMap::iterator frame = AllExceptionTables.find(Fn); if(frame != AllExceptionTables.end()) { ExceptionTableDeregister(frame->second); AllExceptionTables.erase(frame); } } } /// DeregisterAllTables - Deregisters all previously registered pointers to an /// exception tables. It uses the ExceptionTableoDeregister function. void DeregisterAllTables(); protected: explicit ExecutionEngine(Module *M); void emitGlobals(); void EmitGlobalVariable(const GlobalVariable *GV); GenericValue getConstantValue(const Constant *C); void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, const Type *Ty); }; namespace EngineKind { // These are actually bitmasks that get or-ed together. enum Kind { JIT = 0x1, Interpreter = 0x2 }; const static Kind Either = (Kind)(JIT | Interpreter); } /// EngineBuilder - Builder class for ExecutionEngines. Use this by /// stack-allocating a builder, chaining the various set* methods, and /// terminating it with a .create() call. class EngineBuilder { private: Module *M; EngineKind::Kind WhichEngine; std::string *ErrorStr; CodeGenOpt::Level OptLevel; JITMemoryManager *JMM; bool AllocateGVsWithCode; CodeModel::Model CMModel; std::string MArch; std::string MCPU; SmallVector MAttrs; bool UseMCJIT; /// InitEngine - Does the common initialization of default options. void InitEngine() { WhichEngine = EngineKind::Either; ErrorStr = NULL; OptLevel = CodeGenOpt::Default; JMM = NULL; AllocateGVsWithCode = false; CMModel = CodeModel::Default; UseMCJIT = false; } public: /// EngineBuilder - Constructor for EngineBuilder. If create() is called and /// is successful, the created engine takes ownership of the module. EngineBuilder(Module *m) : M(m) { InitEngine(); } /// setEngineKind - Controls whether the user wants the interpreter, the JIT, /// or whichever engine works. This option defaults to EngineKind::Either. EngineBuilder &setEngineKind(EngineKind::Kind w) { WhichEngine = w; return *this; } /// setJITMemoryManager - Sets the memory manager to use. This allows /// clients to customize their memory allocation policies. If create() is /// called and is successful, the created engine takes ownership of the /// memory manager. This option defaults to NULL. EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) { JMM = jmm; return *this; } /// setErrorStr - Set the error string to write to on error. This option /// defaults to NULL. EngineBuilder &setErrorStr(std::string *e) { ErrorStr = e; return *this; } /// setOptLevel - Set the optimization level for the JIT. This option /// defaults to CodeGenOpt::Default. EngineBuilder &setOptLevel(CodeGenOpt::Level l) { OptLevel = l; return *this; } /// setCodeModel - Set the CodeModel that the ExecutionEngine target /// data is using. Defaults to target specific default "CodeModel::Default". EngineBuilder &setCodeModel(CodeModel::Model M) { CMModel = M; return *this; } /// setAllocateGVsWithCode - Sets whether global values should be allocated /// into the same buffer as code. For most applications this should be set /// to false. Allocating globals with code breaks freeMachineCodeForFunction /// and is probably unsafe and bad for performance. However, we have clients /// who depend on this behavior, so we must support it. This option defaults /// to false so that users of the new API can safely use the new memory /// manager and free machine code. EngineBuilder &setAllocateGVsWithCode(bool a) { AllocateGVsWithCode = a; return *this; } /// setMArch - Override the architecture set by the Module's triple. EngineBuilder &setMArch(StringRef march) { MArch.assign(march.begin(), march.end()); return *this; } /// setMCPU - Target a specific cpu type. EngineBuilder &setMCPU(StringRef mcpu) { MCPU.assign(mcpu.begin(), mcpu.end()); return *this; } /// setUseMCJIT - Set whether the MC-JIT implementation should be used /// (experimental). void setUseMCJIT(bool Value) { UseMCJIT = Value; } /// setMAttrs - Set cpu-specific attributes. template EngineBuilder &setMAttrs(const StringSequence &mattrs) { MAttrs.clear(); MAttrs.append(mattrs.begin(), mattrs.end()); return *this; } ExecutionEngine *create(); }; } // End llvm namespace #endif