//===-- DAGBuilder.cpp - Turn an LLVM BasicBlock into a DAG for selection -===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file turns an LLVM BasicBlock into a target independent SelectionDAG in // preparation for target specific optimizations and instruction selection. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/InstVisitor.h" #include using namespace llvm; namespace llvm { struct SelectionDAGBuilder : public InstVisitor { // DAG - the current dag we are building. SelectionDAG &DAG; // SDTB - The target-specific builder interface, which indicates how to expand // extremely target-specific aspects of the representation, such as function // calls and arguments. SelectionDAGTargetBuilder &SDTB; // BB - The current machine basic block we are working on. MachineBasicBlock *BB; // CurRoot - The root built for the current basic block. SelectionDAGNode *CurRoot; SelectionDAGBuilder(SelectionDAG &dag, SelectionDAGTargetBuilder &sdtb) : DAG(dag), SDTB(sdtb), BB(0), CurRoot(0) {} void visitBB(BasicBlock &bb); // Visitation methods for instructions: Create the appropriate DAG nodes for // the instruction. void visitAdd(BinaryOperator &BO); void visitSub(BinaryOperator &BO); void visitMul(BinaryOperator &BO); void visitAnd(BinaryOperator &BO); void visitOr (BinaryOperator &BO); void visitXor(BinaryOperator &BO); void visitSetEQ(BinaryOperator &BO); void visitLoad(LoadInst &LI); void visitCall(CallInst &CI); void visitBr(BranchInst &BI); void visitRet(ReturnInst &RI); void visitInstruction(Instruction &I) { std::cerr << "DAGBuilder: Cannot instruction select: " << I; abort(); } private: SelectionDAGNode *getNodeFor(Value *V); SelectionDAGNode *getNodeFor(Value &V) { return getNodeFor(&V); } SelectionDAGNode *addSeqNode(SelectionDAGNode *N); }; } // end llvm namespace /// addSeqNode - The same as addNode, but the node is also included in the /// sequence nodes for this block. This method should be called for any /// instructions which have a specified sequence they must be evaluated in. /// SelectionDAGNode *SelectionDAGBuilder::addSeqNode(SelectionDAGNode *N) { DAG.addNode(N); // First, add the node to the selection DAG if (!CurRoot) CurRoot = N; else { // Create and add a new chain node for the existing root and this node... CurRoot = DAG.addNode(new SelectionDAGNode(ISD::ChainNode, MVT::isVoid, BB, CurRoot, N)); } return N; } /// getNodeFor - This method returns the SelectionDAGNode for the specified LLVM /// value, creating a node as necessary. /// SelectionDAGNode *SelectionDAGBuilder::getNodeFor(Value *V) { // If we already have the entry, return it. SelectionDAGNode*& Entry = DAG.ValueMap[V]; if (Entry) return Entry; // Otherwise, we need to create a node to return now... start by figuring out // which type the node will be... MVT::ValueType ValueType = DAG.getValueType(V->getType()); if (Instruction *I = dyn_cast(V)) // Instructions will be filled in later. For now, just create and return a // dummy node. return Entry = new SelectionDAGNode(ISD::ProtoNode, ValueType); if (Constant *C = dyn_cast(V)) { if (ConstantBool *CB = dyn_cast(C)) { Entry = new SelectionDAGNode(ISD::Constant, ValueType); Entry->addValue(new ReducedValue_Constant_i1(CB->getValue())); } else if (ConstantInt *CI = dyn_cast(C)) { Entry = new SelectionDAGNode(ISD::Constant, ValueType); switch (ValueType) { case MVT::i8: Entry->addValue(new ReducedValue_Constant_i8(CI->getRawValue())); break; case MVT::i16: Entry->addValue(new ReducedValue_Constant_i16(CI->getRawValue())); break; case MVT::i32: Entry->addValue(new ReducedValue_Constant_i32(CI->getRawValue())); break; case MVT::i64: Entry->addValue(new ReducedValue_Constant_i64(CI->getRawValue())); break; default: assert(0 && "Invalid ValueType for an integer constant!"); } } else if (ConstantFP *CFP = dyn_cast(C)) { Entry = new SelectionDAGNode(ISD::Constant, ValueType); if (ValueType == MVT::f32) Entry->addValue(new ReducedValue_Constant_f32(CFP->getValue())); else Entry->addValue(new ReducedValue_Constant_f64(CFP->getValue())); } if (Entry) return Entry; } else if (BasicBlock *BB = dyn_cast(V)) { Entry = new SelectionDAGNode(ISD::BasicBlock, ValueType); Entry->addValue(new ReducedValue_BasicBlock_i32(DAG.BlockMap[BB])); return Entry; } std::cerr << "Unhandled LLVM value in DAG Builder!: " << *V << "\n"; abort(); return 0; } // visitBB - This method is used to visit a basic block in the program. It // manages the CurRoot instance variable so that all of the visit(Instruction) // methods can be written to assume that there is only one basic block being // constructed. // void SelectionDAGBuilder::visitBB(BasicBlock &bb) { BB = DAG.BlockMap[&bb]; // Update BB instance var // Save the current global DAG... SelectionDAGNode *OldRoot = CurRoot; CurRoot = 0; visit(bb.begin(), bb.end()); // Visit all of the instructions... if (OldRoot) { if (!CurRoot) CurRoot = OldRoot; // This block had no root of its own.. else { // The previous basic block AND this basic block had roots, insert a // block chain node now... CurRoot = DAG.addNode(new SelectionDAGNode(ISD::BlockChainNode, MVT::isVoid, BB, OldRoot, CurRoot)); } } } //===----------------------------------------------------------------------===// // ...Visitation Methods... //===----------------------------------------------------------------------===// void SelectionDAGBuilder::visitAdd(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::Plus, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitSub(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::Minus, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitMul(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::Times, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitAnd(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::And, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitOr(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::Or, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitXor(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::Xor, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitSetEQ(BinaryOperator &BO) { getNodeFor(BO)->setNode(ISD::SetEQ, BB, getNodeFor(BO.getOperand(0)), getNodeFor(BO.getOperand(1))); } void SelectionDAGBuilder::visitRet(ReturnInst &RI) { if (RI.getNumOperands()) { // Value return addSeqNode(new SelectionDAGNode(ISD::Ret, MVT::isVoid, BB, getNodeFor(RI.getOperand(0)))); } else { // Void return addSeqNode(new SelectionDAGNode(ISD::RetVoid, MVT::isVoid, BB)); } } void SelectionDAGBuilder::visitBr(BranchInst &BI) { if (BI.isUnconditional()) addSeqNode(new SelectionDAGNode(ISD::Br, MVT::isVoid, BB, getNodeFor(BI.getOperand(0)))); else addSeqNode(new SelectionDAGNode(ISD::BrCond, MVT::isVoid, BB, getNodeFor(BI.getCondition()), getNodeFor(BI.getSuccessor(0)), getNodeFor(BI.getSuccessor(1)))); } void SelectionDAGBuilder::visitLoad(LoadInst &LI) { // FIXME: this won't prevent reordering of loads! getNodeFor(LI)->setNode(ISD::Load, BB, getNodeFor(LI.getOperand(0))); } void SelectionDAGBuilder::visitCall(CallInst &CI) { SDTB.expandCall(DAG, CI); } // SelectionDAG constructor - Just use the SelectionDAGBuilder to do all of the // dirty work... SelectionDAG::SelectionDAG(MachineFunction &f, const TargetMachine &tm, SelectionDAGTargetBuilder &SDTB) : F(f), TM(tm) { switch (TM.getTargetData().getPointerSize()) { default: assert(0 && "Unknown pointer size!"); abort(); case 1: PointerType = MVT::i8; break; case 2: PointerType = MVT::i16; break; case 3: PointerType = MVT::i32; break; case 4: PointerType = MVT::i64; break; } // Create all of the machine basic blocks for the function... building the // BlockMap. This map is used for PHI node conversion. const Function &Fn = *F.getFunction(); for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) F.getBasicBlockList().push_back(BlockMap[I] = new MachineBasicBlock(I)); SDTB.expandArguments(*this); SelectionDAGBuilder SDB(*this, SDTB); for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) SDB.visitBB(const_cast(*I)); Root = SDB.CurRoot; }