; Test that we can evaluate the exit values of various expression types. Since ; these loops all have predictable exit values we can replace the use outside ; of the loop with a closed-form computation, making the loop dead. ; ; RUN: llvm-as < %s | opt -indvars -adce -simplifycfg | llvm-dis | not grep br int %polynomial_constant() { br label %Loop Loop: %A1 = phi int [0, %0], [%A2, %Loop] %B1 = phi int [0, %0], [%B2, %Loop] %A2 = add int %A1, 1 %B2 = add int %B1, %A1 %C = seteq int %A1, 1000 br bool %C, label %Out, label %Loop Out: ret int %B2 } int %NSquare(int %N) { br label %Loop Loop: %X = phi int [0, %0], [%X2, %Loop] %X2 = add int %X, 1 %c = seteq int %X, %N br bool %c, label %Out, label %Loop Out: %Y = mul int %X, %X ret int %Y } int %NSquareOver2(int %N) { br label %Loop Loop: %X = phi int [0, %0], [%X2, %Loop] %Y = phi int [15, %0], [%Y2, %Loop] ;; include offset of 15 for yuks %Y2 = add int %Y, %X %X2 = add int %X, 1 %c = seteq int %X, %N br bool %c, label %Out, label %Loop Out: ret int %Y2 } int %strength_reduced() { br label %Loop Loop: %A1 = phi int [0, %0], [%A2, %Loop] %B1 = phi int [0, %0], [%B2, %Loop] %A2 = add int %A1, 1 %B2 = add int %B1, %A1 %C = seteq int %A1, 1000 br bool %C, label %Out, label %Loop Out: ret int %B2 } int %chrec_equals() { entry: br label %no_exit no_exit: %i0 = phi int [ 0, %entry ], [ %i1, %no_exit ] %ISq = mul int %i0, %i0 %i1 = add int %i0, 1 %tmp.1 = setne int %ISq, 10000 ; while (I*I != 1000) br bool %tmp.1, label %no_exit, label %loopexit loopexit: ret int %i1 } ;; We should recognize B1 as being a recurrence, allowing us to compute the ;; trip count and eliminate the loop. short %cast_chrec_test() { br label %Loop Loop: %A1 = phi int [0, %0], [%A2, %Loop] %B1 = cast int %A1 to short %A2 = add int %A1, 1 %C = seteq short %B1, 1000 br bool %C, label %Out, label %Loop Out: ret short %B1 }