Otherwise, if the -output option was not
specified, bugpoint runs the test program with the C backend (which is
assumed to generate good code) to generate a reference output. Once
bugpoint has a reference output for the test program, it tries
executing it with the selected code generator. If the
selected code generator crashes, bugpoint starts the crash debugger on the code generator. Otherwise, if the
resulting output differs from the reference output, it assumes the difference
resulted from a code generator failure, and starts the code generator debugger.
Finally, if the output of the selected code generator matches the reference
output, bugpoint runs the test program after all of the LLVM passes
have been applied to it. If its output differs from the reference output, it
assumes the difference resulted from a failure in one of the LLVM passes, and
enters the miscompilation
debugger. Otherwise, there is no problem bugpoint can debug.
Next, bugpoint tries removing functions from the test program, to
reduce its size. Usually it is able to reduce a test program to a single
function, when debugging intraprocedural optimizations. Once the number of
functions has been reduced, it attempts to delete various edges in the control
flow graph, to reduce the size of the function as much as possible. Finally,
bugpoint deletes any individual LLVM instructions whose absence does
not eliminate the failure. At the end, bugpoint should tell you what
passes crash, give you a bytecode file, and give you instructions on how to
reproduce the failure with opt, analyze, or llc.
The code generator debugger attempts to narrow down the amount of code that
is being miscompiled by the selected code generator. To
do this, it takes the test program and partitions it into two pieces: one piece
which it compiles with the C backend (into a shared object), and one piece which
it runs with either the JIT or the static LLC compiler. It uses several
techniques to reduce the amount of code pushed through the LLVM code generator,
to reduce the potential scope of the problem. After it is finished, it emits
two bytecode files (called "test" [to be compiled with the code generator] and
"safe" [to be compiled with the C backend], respectively), and instructions for
reproducing the problem. The code generator debugger assumes that the C backend
produces good code.
bugpoint <bugpoint args> -args -- <program args>
The "--" right after the -args option tells
bugpoint to consider any options starting with - to be
part of the -args option, not as options to bugpoint
itself.
bugpoint <bugpoint args> -tool-args -- <tool args>
The "--" right after the -tool-args option tells
bugpoint to consider any options starting with - to be
part of the -tool-args option, not as options to
bugpoint itself. (See -args, above.)
bugpoint -load <plugin> -help
Design Philosophy
bugpoint is designed to be a useful tool without requiring any
hooks into the LLVM infrastructure at all. It works with any and all LLVM
passes and code generators, and does not need to "know" how they work. Because
of this, it may appear to do stupid things or miss obvious
simplifications. bugpoint is also designed to trade off programmer
time for computer time in the compiler-debugging process; consequently, it may
take a long period of (unattended) time to reduce a test case, but we feel it
is still worth it. Note that bugpoint is generally very quick unless
debugging a miscompilation where each test of the program (which requires
executing it) takes a long time.Automatic Debugger Selection
bugpoint reads each .bc or .ll file
specified on the command line and links them together into a single module,
called the test program. If any LLVM passes are
specified on the command line, it runs these passes on the test program. If
any of the passes crash, or if they produce malformed output (which causes the
verifier to abort),
bugpoint starts the crash debugger.Crash debugger
If an optimizer or code generator crashes, bugpoint will try as hard as
it can to reduce the list of passes (for optimizer crashes) and the size of the
test program. First, bugpoint figures out which combination of
optimizer passes triggers the bug. This is useful when debugging a problem
exposed by gccas, for example, because it runs over 38 passes.Code generator debugger
Miscompilation debugger
The miscompilation debugger works similarly to the code generator
debugger. It works by splitting the test program into two pieces, running the
optimizations specified on one piece, linking the two pieces back together,
and then executing the result.
It attempts to narrow down the list of passes to the one (or few) which are
causing the miscompilation, then reduce the portion of the test program which is
being miscompiled. The miscompilation debugger assumes that the selected
code generator is working properly.Advice for using bugpoint
bugpoint can be a remarkably useful tool, but it sometimes works in
non-obvious ways. Here are some hints and tips:
bugpoint ..... |& tee bugpoint.log
to get a copy of bugpoint's output in the file
bugpoint.log, as well as on your terminal.
OPTIONS
Load <library> into the test program whenever it is run.
This is useful if you are debugging programs which depend on non-LLVM
libraries (such as the X or curses libraries) to run.
Pass all arguments specified after -args to the
test program whenever it runs. Note that if any of
the <program args> start with a '-', you should use:
Pass all arguments specified after -tool-args to the
LLVM tool under test (llc, lli, etc.) whenever it runs.
You should use this option in the following way:
Assume a non-zero exit code or core dump from the test program is
a failure. Defaults to true.
Do not run the specified passes to clean up and reduce the size of the
test program. By default, bugpoint uses these passes internally
when attempting to reduce test programs. If you're trying to find
a bug in one of these passes, bugpoint may crash.
Print a summary of command line options.
Open <filename> and redirect the standard input of the
test program, whenever it runs, to come from that file.
Load the dynamic object <plugin> into bugpoint
itself. This object should register new
optimization passes. Once loaded, the object will add new command line
options to enable various optimizations. To see the new complete list
of optimizations, use the -help and -load options together:
EXIT STATUS
If bugpoint succeeds in finding a problem, it will exit with 0.
Otherwise, if an error occurs, it will exit with a non-zero value.
Maintained by the LLVM Team.