//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion on machine instructions. We // attempt to remove as much code from the body of a loop as possible. // // This pass does not attempt to throttle itself to limit register pressure. // The register allocation phases are expected to perform rematerialization // to recover when register pressure is high. // // This pass is not intended to be a replacement or a complete alternative // for the LLVM-IR-level LICM pass. It is only designed to hoist simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-licm" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetInstrItineraries.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static cl::opt TrackRegPressure("rp-aware-machine-licm", cl::desc("Register pressure aware machine LICM"), cl::init(false), cl::Hidden); STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed"); STATISTIC(NumPostRAHoisted, "Number of machine instructions hoisted out of loops post regalloc"); namespace { class MachineLICM : public MachineFunctionPass { bool PreRegAlloc; const TargetMachine *TM; const TargetInstrInfo *TII; const TargetLowering *TLI; const TargetRegisterInfo *TRI; const MachineFrameInfo *MFI; MachineRegisterInfo *MRI; const InstrItineraryData *InstrItins; // Various analyses that we use... AliasAnalysis *AA; // Alias analysis info. MachineLoopInfo *MLI; // Current MachineLoopInfo MachineDominatorTree *DT; // Machine dominator tree for the cur loop // State that is updated as we process loops bool Changed; // True if a loop is changed. bool FirstInLoop; // True if it's the first LICM in the loop. MachineLoop *CurLoop; // The current loop we are working on. MachineBasicBlock *CurPreheader; // The preheader for CurLoop. BitVector AllocatableSet; // Track 'estimated' register pressure. SmallVector RegPressure; SmallVector RegLimit; // For each opcode, keep a list of potential CSE instructions. DenseMap > CSEMap; public: static char ID; // Pass identification, replacement for typeid MachineLICM() : MachineFunctionPass(ID), PreRegAlloc(true) {} explicit MachineLICM(bool PreRA) : MachineFunctionPass(ID), PreRegAlloc(PreRA) {} virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "Machine Instruction LICM"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { RegPressure.clear(); RegLimit.clear(); CSEMap.clear(); } private: /// CandidateInfo - Keep track of information about hoisting candidates. struct CandidateInfo { MachineInstr *MI; unsigned Def; int FI; CandidateInfo(MachineInstr *mi, unsigned def, int fi) : MI(mi), Def(def), FI(fi) {} }; /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop /// invariants out to the preheader. void HoistRegionPostRA(); /// HoistPostRA - When an instruction is found to only use loop invariant /// operands that is safe to hoist, this instruction is called to do the /// dirty work. void HoistPostRA(MachineInstr *MI, unsigned Def); /// ProcessMI - Examine the instruction for potentai LICM candidate. Also /// gather register def and frame object update information. void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs, SmallSet &StoredFIs, SmallVector &Candidates); /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the /// current loop. void AddToLiveIns(unsigned Reg); /// IsLICMCandidate - Returns true if the instruction may be a suitable /// candidate for LICM. e.g. If the instruction is a call, then it's /// obviously not safe to hoist it. bool IsLICMCandidate(MachineInstr &I); /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of /// the loop, physical registers aren't accessed (explicitly or implicitly), /// and the instruction is hoistable. /// bool IsLoopInvariantInst(MachineInstr &I); /// ComputeOperandLatency - Compute operand latency between a def of 'Reg' /// and an use in the current loop. int ComputeOperandLatency(MachineInstr &MI, unsigned DefIdx, unsigned Reg); /// IsProfitableToHoist - Return true if it is potentially profitable to /// hoist the given loop invariant. bool IsProfitableToHoist(MachineInstr &MI); /// HoistRegion - Walk the specified region of the CFG (defined by all /// blocks dominated by the specified block, and that are in the current /// loop) in depth first order w.r.t the DominatorTree. This allows us to /// visit definitions before uses, allowing us to hoist a loop body in one /// pass without iteration. /// void HoistRegion(MachineDomTreeNode *N); /// InitRegPressure - Find all virtual register references that are livein /// to the block to initialize the starting "register pressure". Note this /// does not count live through (livein but not used) registers. void InitRegPressure(MachineBasicBlock *BB); /// UpdateRegPressureBefore / UpdateRegPressureAfter - Update estimate of /// register pressure before and after executing a specifi instruction. void UpdateRegPressureBefore(const MachineInstr *MI); void UpdateRegPressureAfter(const MachineInstr *MI); /// isLoadFromConstantMemory - Return true if the given instruction is a /// load from constant memory. bool isLoadFromConstantMemory(MachineInstr *MI); /// ExtractHoistableLoad - Unfold a load from the given machineinstr if /// the load itself could be hoisted. Return the unfolded and hoistable /// load, or null if the load couldn't be unfolded or if it wouldn't /// be hoistable. MachineInstr *ExtractHoistableLoad(MachineInstr *MI); /// LookForDuplicate - Find an instruction amount PrevMIs that is a /// duplicate of MI. Return this instruction if it's found. const MachineInstr *LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs); /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on /// the preheader that compute the same value. If it's found, do a RAU on /// with the definition of the existing instruction rather than hoisting /// the instruction to the preheader. bool EliminateCSE(MachineInstr *MI, DenseMap >::iterator &CI); /// Hoist - When an instruction is found to only use loop invariant operands /// that is safe to hoist, this instruction is called to do the dirty work. /// void Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); /// InitCSEMap - Initialize the CSE map with instructions that are in the /// current loop preheader that may become duplicates of instructions that /// are hoisted out of the loop. void InitCSEMap(MachineBasicBlock *BB); /// getCurPreheader - Get the preheader for the current loop, splitting /// a critical edge if needed. MachineBasicBlock *getCurPreheader(); }; } // end anonymous namespace char MachineLICM::ID = 0; INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", "Machine Loop Invariant Code Motion", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(MachineLICM, "machinelicm", "Machine Loop Invariant Code Motion", false, false) FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) { return new MachineLICM(PreRegAlloc); } /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most /// loop that has a unique predecessor. static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { // Check whether this loop even has a unique predecessor. if (!CurLoop->getLoopPredecessor()) return false; // Ok, now check to see if any of its outer loops do. for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) if (L->getLoopPredecessor()) return false; // None of them did, so this is the outermost with a unique predecessor. return true; } bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { if (PreRegAlloc) DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n"); else DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n"); Changed = FirstInLoop = false; TM = &MF.getTarget(); TII = TM->getInstrInfo(); TLI = TM->getTargetLowering(); TRI = TM->getRegisterInfo(); MFI = MF.getFrameInfo(); MRI = &MF.getRegInfo(); InstrItins = TM->getInstrItineraryData(); AllocatableSet = TRI->getAllocatableSet(MF); if (PreRegAlloc) { // Estimate register pressure during pre-regalloc pass. unsigned NumRC = TRI->getNumRegClasses(); RegPressure.resize(NumRC); RegLimit.resize(NumRC); std::fill(RegPressure.begin(), RegPressure.end(), 0); for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), E = TRI->regclass_end(); I != E; ++I) RegLimit[(*I)->getID()] = TLI->getRegPressureLimit(*I, MF); } // Get our Loop information... MLI = &getAnalysis(); DT = &getAnalysis(); AA = &getAnalysis(); SmallVector Worklist(MLI->begin(), MLI->end()); while (!Worklist.empty()) { CurLoop = Worklist.pop_back_val(); CurPreheader = 0; // If this is done before regalloc, only visit outer-most preheader-sporting // loops. if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { Worklist.append(CurLoop->begin(), CurLoop->end()); continue; } if (!PreRegAlloc) HoistRegionPostRA(); else { // CSEMap is initialized for loop header when the first instruction is // being hoisted. MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); FirstInLoop = true; HoistRegion(N); CSEMap.clear(); } } return Changed; } /// InstructionStoresToFI - Return true if instruction stores to the /// specified frame. static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), oe = MI->memoperands_end(); o != oe; ++o) { if (!(*o)->isStore() || !(*o)->getValue()) continue; if (const FixedStackPseudoSourceValue *Value = dyn_cast((*o)->getValue())) { if (Value->getFrameIndex() == FI) return true; } } return false; } /// ProcessMI - Examine the instruction for potentai LICM candidate. Also /// gather register def and frame object update information. void MachineLICM::ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs, SmallSet &StoredFIs, SmallVector &Candidates) { bool RuledOut = false; bool HasNonInvariantUse = false; unsigned Def = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isFI()) { // Remember if the instruction stores to the frame index. int FI = MO.getIndex(); if (!StoredFIs.count(FI) && MFI->isSpillSlotObjectIndex(FI) && InstructionStoresToFI(MI, FI)) StoredFIs.insert(FI); HasNonInvariantUse = true; continue; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Not expecting virtual register!"); if (!MO.isDef()) { if (Reg && PhysRegDefs[Reg]) // If it's using a non-loop-invariant register, then it's obviously not // safe to hoist. HasNonInvariantUse = true; continue; } if (MO.isImplicit()) { ++PhysRegDefs[Reg]; for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) ++PhysRegDefs[*AS]; if (!MO.isDead()) // Non-dead implicit def? This cannot be hoisted. RuledOut = true; // No need to check if a dead implicit def is also defined by // another instruction. continue; } // FIXME: For now, avoid instructions with multiple defs, unless // it's a dead implicit def. if (Def) RuledOut = true; else Def = Reg; // If we have already seen another instruction that defines the same // register, then this is not safe. if (++PhysRegDefs[Reg] > 1) // MI defined register is seen defined by another instruction in // the loop, it cannot be a LICM candidate. RuledOut = true; for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) if (++PhysRegDefs[*AS] > 1) RuledOut = true; } // Only consider reloads for now and remats which do not have register // operands. FIXME: Consider unfold load folding instructions. if (Def && !RuledOut) { int FI = INT_MIN; if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) Candidates.push_back(CandidateInfo(MI, Def, FI)); } } /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop /// invariants out to the preheader. void MachineLICM::HoistRegionPostRA() { unsigned NumRegs = TRI->getNumRegs(); unsigned *PhysRegDefs = new unsigned[NumRegs]; std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0); SmallVector Candidates; SmallSet StoredFIs; // Walk the entire region, count number of defs for each register, and // collect potential LICM candidates. const std::vector Blocks = CurLoop->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *BB = Blocks[i]; // Conservatively treat live-in's as an external def. // FIXME: That means a reload that're reused in successor block(s) will not // be LICM'ed. for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), E = BB->livein_end(); I != E; ++I) { unsigned Reg = *I; ++PhysRegDefs[Reg]; for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) ++PhysRegDefs[*AS]; } for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ++MII) { MachineInstr *MI = &*MII; ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates); } } // Now evaluate whether the potential candidates qualify. // 1. Check if the candidate defined register is defined by another // instruction in the loop. // 2. If the candidate is a load from stack slot (always true for now), // check if the slot is stored anywhere in the loop. for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { if (Candidates[i].FI != INT_MIN && StoredFIs.count(Candidates[i].FI)) continue; if (PhysRegDefs[Candidates[i].Def] == 1) { bool Safe = true; MachineInstr *MI = Candidates[i].MI; for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg() || MO.isDef() || !MO.getReg()) continue; if (PhysRegDefs[MO.getReg()]) { // If it's using a non-loop-invariant register, then it's obviously // not safe to hoist. Safe = false; break; } } if (Safe) HoistPostRA(MI, Candidates[i].Def); } } delete[] PhysRegDefs; } /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current /// loop, and make sure it is not killed by any instructions in the loop. void MachineLICM::AddToLiveIns(unsigned Reg) { const std::vector Blocks = CurLoop->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *BB = Blocks[i]; if (!BB->isLiveIn(Reg)) BB->addLiveIn(Reg); for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ++MII) { MachineInstr *MI = &*MII; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) MO.setIsKill(false); } } } } /// HoistPostRA - When an instruction is found to only use loop invariant /// operands that is safe to hoist, this instruction is called to do the /// dirty work. void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { MachineBasicBlock *Preheader = getCurPreheader(); if (!Preheader) return; // Now move the instructions to the predecessor, inserting it before any // terminator instructions. DEBUG({ dbgs() << "Hoisting " << *MI; if (Preheader->getBasicBlock()) dbgs() << " to MachineBasicBlock " << Preheader->getName(); if (MI->getParent()->getBasicBlock()) dbgs() << " from MachineBasicBlock " << MI->getParent()->getName(); dbgs() << "\n"; }); // Splice the instruction to the preheader. MachineBasicBlock *MBB = MI->getParent(); Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); // Add register to livein list to all the BBs in the current loop since a // loop invariant must be kept live throughout the whole loop. This is // important to ensure later passes do not scavenge the def register. AddToLiveIns(Def); ++NumPostRAHoisted; Changed = true; } /// HoistRegion - Walk the specified region of the CFG (defined by all blocks /// dominated by the specified block, and that are in the current loop) in depth /// first order w.r.t the DominatorTree. This allows us to visit definitions /// before uses, allowing us to hoist a loop body in one pass without iteration. /// void MachineLICM::HoistRegion(MachineDomTreeNode *N) { assert(N != 0 && "Null dominator tree node?"); MachineBasicBlock *BB = N->getBlock(); // If this subregion is not in the top level loop at all, exit. if (!CurLoop->contains(BB)) return; MachineBasicBlock *Preheader = getCurPreheader(); if (Preheader) { if (TrackRegPressure) InitRegPressure(BB); for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ) { MachineBasicBlock::iterator NextMII = MII; ++NextMII; MachineInstr *MI = &*MII; if (TrackRegPressure) UpdateRegPressureBefore(MI); Hoist(MI, Preheader); if (TrackRegPressure) UpdateRegPressureAfter(MI); MII = NextMII; } } // Don't hoist things out of a large switch statement. This often causes // code to be hoisted that wasn't going to be executed, and increases // register pressure in a situation where it's likely to matter. if (BB->succ_size() < 25) { const std::vector &Children = N->getChildren(); for (unsigned I = 0, E = Children.size(); I != E; ++I) HoistRegion(Children[I]); } } /// InitRegPressure - Find all virtual register references that are livein to /// the block to initialize the starting "register pressure". Note this does /// not count live through (livein but not used) registers. void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { SmallSet Seen; std::fill(RegPressure.begin(), RegPressure.end(), 0); for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ++MII) { MachineInstr *MI = &*MII; for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (!Seen.insert(Reg)) continue; // Must be a livein. const TargetRegisterClass *RC = MRI->getRegClass(Reg); EVT VT = *RC->vt_begin(); unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); } } } /// UpdateRegPressureBefore / UpdateRegPressureAfter - Update estimate of /// register pressure before and after executing a specifi instruction. void MachineLICM::UpdateRegPressureBefore(const MachineInstr *MI) { if (MI->isImplicitDef() || MI->isPHI()) return; for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isImplicit() || !MO.isUse() || !MO.isKill()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; const TargetRegisterClass *RC = MRI->getRegClass(Reg); EVT VT = *RC->vt_begin(); unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); unsigned RCCost = TLI->getRepRegClassCostFor(VT); assert(RCCost <= RegPressure[RCId]); RegPressure[RCId] -= RCCost; } } void MachineLICM::UpdateRegPressureAfter(const MachineInstr *MI) { if (MI->isImplicitDef() || MI->isPHI()) return; for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isImplicit() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; const TargetRegisterClass *RC = MRI->getRegClass(Reg); EVT VT = *RC->vt_begin(); unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); unsigned RCCost = TLI->getRepRegClassCostFor(VT); RegPressure[RCId] += RCCost; } } /// IsLICMCandidate - Returns true if the instruction may be a suitable /// candidate for LICM. e.g. If the instruction is a call, then it's obviously /// not safe to hoist it. bool MachineLICM::IsLICMCandidate(MachineInstr &I) { // Check if it's safe to move the instruction. bool DontMoveAcrossStore = true; if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) return false; return true; } /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of the /// loop, physical registers aren't accessed explicitly, and there are no side /// effects that aren't captured by the operands or other flags. /// bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { if (!IsLICMCandidate(I)) return false; // The instruction is loop invariant if all of its operands are. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { const MachineOperand &MO = I.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Don't hoist an instruction that uses or defines a physical register. if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI->def_empty(Reg)) return false; if (AllocatableSet.test(Reg)) return false; // Check for a def among the register's aliases too. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (!MRI->def_empty(AliasReg)) return false; if (AllocatableSet.test(AliasReg)) return false; } // Otherwise it's safe to move. continue; } else if (!MO.isDead()) { // A def that isn't dead. We can't move it. return false; } else if (CurLoop->getHeader()->isLiveIn(Reg)) { // If the reg is live into the loop, we can't hoist an instruction // which would clobber it. return false; } } if (!MO.isUse()) continue; assert(MRI->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (CurLoop->contains(MRI->getVRegDef(Reg))) return false; } // If we got this far, the instruction is loop invariant! return true; } /// HasPHIUses - Return true if the specified register has any PHI use. static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *MRI) { for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), UE = MRI->use_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; if (UseMI->isPHI()) return true; } return false; } /// isLoadFromConstantMemory - Return true if the given instruction is a /// load from constant memory. Machine LICM will hoist these even if they are /// not re-materializable. bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) { if (!MI->getDesc().mayLoad()) return false; if (!MI->hasOneMemOperand()) return false; MachineMemOperand *MMO = *MI->memoperands_begin(); if (MMO->isVolatile()) return false; if (!MMO->getValue()) return false; const PseudoSourceValue *PSV = dyn_cast(MMO->getValue()); if (PSV) { MachineFunction &MF = *MI->getParent()->getParent(); return PSV->isConstant(MF.getFrameInfo()); } else { return AA->pointsToConstantMemory(MMO->getValue()); } } /// ComputeOperandLatency - Compute operand latency between a def of 'Reg' /// and an use in the current loop. int MachineLICM::ComputeOperandLatency(MachineInstr &MI, unsigned DefIdx, unsigned Reg) { if (MRI->use_nodbg_empty(Reg)) // No use? Return arbitrary large number! return 300; int Latency = -1; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E; ++I) { MachineInstr *UseMI = &*I; if (!CurLoop->contains(UseMI->getParent())) continue; for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = UseMI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (MOReg != Reg) continue; int UseCycle = TII->getOperandLatency(InstrItins, &MI, DefIdx, UseMI, i); Latency = std::max(Latency, UseCycle); } if (Latency != -1) break; } if (Latency == -1) Latency = InstrItins->getOperandCycle(MI.getDesc().getSchedClass(), DefIdx); return Latency; } /// IsProfitableToHoist - Return true if it is potentially profitable to hoist /// the given loop invariant. bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { if (MI.isImplicitDef()) return true; // FIXME: For now, only hoist re-materilizable instructions. LICM will // increase register pressure. We want to make sure it doesn't increase // spilling. // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting // these tend to help performance in low register pressure situation. The // trade off is it may cause spill in high pressure situation. It will end up // adding a store in the loop preheader. But the reload is no more expensive. // The side benefit is these loads are frequently CSE'ed. if (!TrackRegPressure || MI.getDesc().isAsCheapAsAMove()) { if (!TII->isTriviallyReMaterializable(&MI, AA) && !isLoadFromConstantMemory(&MI)) return false; } else { // In low register pressure situation, we can be more aggressive about // hoisting. Also, favors hoisting long latency instructions even in // moderately high pressure situation. int Delta = 0; for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = MO.getReg(); if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; const TargetRegisterClass *RC = MRI->getRegClass(Reg); EVT VT = *RC->vt_begin(); unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); unsigned RCCost = TLI->getRepRegClassCostFor(VT); if (MO.isUse()) { if (RegPressure[RCId] >= RegLimit[RCId]) { // Hoisting this instruction may actually reduce register pressure // in the loop. int Pressure = RegPressure[RCId] - RCCost; assert(Pressure >= 0); Delta -= (int)RegLimit[RCId] - Pressure; } } else { if (InstrItins && !InstrItins->isEmpty()) { int Cycle = ComputeOperandLatency(MI, i, Reg); if (Cycle > 3) // FIXME: Target specific high latency limit? return true; } if (RegPressure[RCId] >= RegLimit[RCId]) Delta += RCCost; else { int Pressure = RegPressure[RCId] + RCCost; if (Pressure > (int)RegLimit[RCId]) Delta += Pressure - RegLimit[RCId]; } } } if (Delta >= 0) return true; // High register pressure situation, only hoist if the instruction is going to // be remat'ed. if (!TII->isTriviallyReMaterializable(&MI, AA) && !isLoadFromConstantMemory(&MI)) return false; } // If result(s) of this instruction is used by PHIs, then don't hoist it. // The presence of joins makes it difficult for current register allocator // implementation to perform remat. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; if (HasPHIUses(MO.getReg(), MRI)) return false; } return true; } MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { // Don't unfold simple loads. if (MI->getDesc().canFoldAsLoad()) return 0; // If not, we may be able to unfold a load and hoist that. // First test whether the instruction is loading from an amenable // memory location. if (!isLoadFromConstantMemory(MI)) return 0; // Next determine the register class for a temporary register. unsigned LoadRegIndex; unsigned NewOpc = TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), /*UnfoldLoad=*/true, /*UnfoldStore=*/false, &LoadRegIndex); if (NewOpc == 0) return 0; const TargetInstrDesc &TID = TII->get(NewOpc); if (TID.getNumDefs() != 1) return 0; const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI); // Ok, we're unfolding. Create a temporary register and do the unfold. unsigned Reg = MRI->createVirtualRegister(RC); MachineFunction &MF = *MI->getParent()->getParent(); SmallVector NewMIs; bool Success = TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad=*/true, /*UnfoldStore=*/false, NewMIs); (void)Success; assert(Success && "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " "succeeded!"); assert(NewMIs.size() == 2 && "Unfolded a load into multiple instructions!"); MachineBasicBlock *MBB = MI->getParent(); MBB->insert(MI, NewMIs[0]); MBB->insert(MI, NewMIs[1]); // If unfolding produced a load that wasn't loop-invariant or profitable to // hoist, discard the new instructions and bail. if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { NewMIs[0]->eraseFromParent(); NewMIs[1]->eraseFromParent(); return 0; } // Otherwise we successfully unfolded a load that we can hoist. MI->eraseFromParent(); return NewMIs[0]; } void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { const MachineInstr *MI = &*I; // FIXME: For now, only hoist re-materilizable instructions. LICM will // increase register pressure. We want to make sure it doesn't increase // spilling. if (TII->isTriviallyReMaterializable(MI, AA)) { unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); if (CI != CSEMap.end()) CI->second.push_back(MI); else { std::vector CSEMIs; CSEMIs.push_back(MI); CSEMap.insert(std::make_pair(Opcode, CSEMIs)); } } } } const MachineInstr* MachineLICM::LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs) { for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { const MachineInstr *PrevMI = PrevMIs[i]; if (TII->produceSameValue(MI, PrevMI)) return PrevMI; } return 0; } bool MachineLICM::EliminateCSE(MachineInstr *MI, DenseMap >::iterator &CI) { // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate // the undef property onto uses. if (CI == CSEMap.end() || MI->isImplicitDef()) return false; if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); // Replace virtual registers defined by MI by their counterparts defined // by Dup. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); // Physical registers may not differ here. assert((!MO.isReg() || MO.getReg() == 0 || !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || MO.getReg() == Dup->getOperand(i).getReg()) && "Instructions with different phys regs are not identical!"); if (MO.isReg() && MO.isDef() && !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { MRI->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg()); MRI->clearKillFlags(Dup->getOperand(i).getReg()); } } MI->eraseFromParent(); ++NumCSEed; return true; } return false; } /// Hoist - When an instruction is found to use only loop invariant operands /// that are safe to hoist, this instruction is called to do the dirty work. /// void MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { // First check whether we should hoist this instruction. if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { // If not, try unfolding a hoistable load. MI = ExtractHoistableLoad(MI); if (!MI) return; } // Now move the instructions to the predecessor, inserting it before any // terminator instructions. DEBUG({ dbgs() << "Hoisting " << *MI; if (Preheader->getBasicBlock()) dbgs() << " to MachineBasicBlock " << Preheader->getName(); if (MI->getParent()->getBasicBlock()) dbgs() << " from MachineBasicBlock " << MI->getParent()->getName(); dbgs() << "\n"; }); // If this is the first instruction being hoisted to the preheader, // initialize the CSE map with potential common expressions. if (FirstInLoop) { InitCSEMap(Preheader); FirstInLoop = false; } // Look for opportunity to CSE the hoisted instruction. unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); if (!EliminateCSE(MI, CI)) { // Otherwise, splice the instruction to the preheader. Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); // Clear the kill flags of any register this instruction defines, // since they may need to be live throughout the entire loop // rather than just live for part of it. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && !MO.isDead()) MRI->clearKillFlags(MO.getReg()); } // Add to the CSE map. if (CI != CSEMap.end()) CI->second.push_back(MI); else { std::vector CSEMIs; CSEMIs.push_back(MI); CSEMap.insert(std::make_pair(Opcode, CSEMIs)); } } ++NumHoisted; Changed = true; } MachineBasicBlock *MachineLICM::getCurPreheader() { // Determine the block to which to hoist instructions. If we can't find a // suitable loop predecessor, we can't do any hoisting. // If we've tried to get a preheader and failed, don't try again. if (CurPreheader == reinterpret_cast(-1)) return 0; if (!CurPreheader) { CurPreheader = CurLoop->getLoopPreheader(); if (!CurPreheader) { MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); if (!Pred) { CurPreheader = reinterpret_cast(-1); return 0; } CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); if (!CurPreheader) { CurPreheader = reinterpret_cast(-1); return 0; } } } return CurPreheader; }