//===-- OptimizePHIs.cpp - Optimize machine instruction PHIs --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass optimizes machine instruction PHIs to take advantage of // opportunities created during DAG legalization. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "phi-opt" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Function.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumPHICycles, "Number of PHI cycles replaced"); STATISTIC(NumDeadPHICycles, "Number of dead PHI cycles"); namespace { class OptimizePHIs : public MachineFunctionPass { MachineRegisterInfo *MRI; const TargetInstrInfo *TII; public: static char ID; // Pass identification OptimizePHIs() : MachineFunctionPass(ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } private: typedef SmallPtrSet InstrSet; typedef SmallPtrSetIterator InstrSetIterator; bool IsSingleValuePHICycle(MachineInstr *MI, unsigned &SingleValReg, InstrSet &PHIsInCycle); bool IsDeadPHICycle(MachineInstr *MI, InstrSet &PHIsInCycle); bool OptimizeBB(MachineBasicBlock &MBB); }; } char OptimizePHIs::ID = 0; INITIALIZE_PASS(OptimizePHIs, "opt-phis", "Optimize machine instruction PHIs", false, false) FunctionPass *llvm::createOptimizePHIsPass() { return new OptimizePHIs(); } bool OptimizePHIs::runOnMachineFunction(MachineFunction &Fn) { MRI = &Fn.getRegInfo(); TII = Fn.getTarget().getInstrInfo(); // Find dead PHI cycles and PHI cycles that can be replaced by a single // value. InstCombine does these optimizations, but DAG legalization may // introduce new opportunities, e.g., when i64 values are split up for // 32-bit targets. bool Changed = false; for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) Changed |= OptimizeBB(*I); return Changed; } /// IsSingleValuePHICycle - Check if MI is a PHI where all the source operands /// are copies of SingleValReg, possibly via copies through other PHIs. If /// SingleValReg is zero on entry, it is set to the register with the single /// non-copy value. PHIsInCycle is a set used to keep track of the PHIs that /// have been scanned. bool OptimizePHIs::IsSingleValuePHICycle(MachineInstr *MI, unsigned &SingleValReg, InstrSet &PHIsInCycle) { assert(MI->isPHI() && "IsSingleValuePHICycle expects a PHI instruction"); unsigned DstReg = MI->getOperand(0).getReg(); // See if we already saw this register. if (!PHIsInCycle.insert(MI)) return true; // Don't scan crazily complex things. if (PHIsInCycle.size() == 16) return false; // Scan the PHI operands. for (unsigned i = 1; i != MI->getNumOperands(); i += 2) { unsigned SrcReg = MI->getOperand(i).getReg(); if (SrcReg == DstReg) continue; MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); // Skip over register-to-register moves. if (SrcMI && SrcMI->isCopy() && !SrcMI->getOperand(0).getSubReg() && !SrcMI->getOperand(1).getSubReg() && TargetRegisterInfo::isVirtualRegister(SrcMI->getOperand(1).getReg())) SrcMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); if (!SrcMI) return false; if (SrcMI->isPHI()) { if (!IsSingleValuePHICycle(SrcMI, SingleValReg, PHIsInCycle)) return false; } else { // Fail if there is more than one non-phi/non-move register. if (SingleValReg != 0) return false; SingleValReg = SrcReg; } } return true; } /// IsDeadPHICycle - Check if the register defined by a PHI is only used by /// other PHIs in a cycle. bool OptimizePHIs::IsDeadPHICycle(MachineInstr *MI, InstrSet &PHIsInCycle) { assert(MI->isPHI() && "IsDeadPHICycle expects a PHI instruction"); unsigned DstReg = MI->getOperand(0).getReg(); assert(TargetRegisterInfo::isVirtualRegister(DstReg) && "PHI destination is not a virtual register"); // See if we already saw this register. if (!PHIsInCycle.insert(MI)) return true; // Don't scan crazily complex things. if (PHIsInCycle.size() == 16) return false; for (MachineRegisterInfo::use_iterator I = MRI->use_begin(DstReg), E = MRI->use_end(); I != E; ++I) { MachineInstr *UseMI = &*I; if (!UseMI->isPHI() || !IsDeadPHICycle(UseMI, PHIsInCycle)) return false; } return true; } /// OptimizeBB - Remove dead PHI cycles and PHI cycles that can be replaced by /// a single value. bool OptimizePHIs::OptimizeBB(MachineBasicBlock &MBB) { bool Changed = false; for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); MII != E; ) { MachineInstr *MI = &*MII++; if (!MI->isPHI()) break; // Check for single-value PHI cycles. unsigned SingleValReg = 0; InstrSet PHIsInCycle; if (IsSingleValuePHICycle(MI, SingleValReg, PHIsInCycle) && SingleValReg != 0) { MRI->replaceRegWith(MI->getOperand(0).getReg(), SingleValReg); MI->eraseFromParent(); ++NumPHICycles; Changed = true; continue; } // Check for dead PHI cycles. PHIsInCycle.clear(); if (IsDeadPHICycle(MI, PHIsInCycle)) { for (InstrSetIterator PI = PHIsInCycle.begin(), PE = PHIsInCycle.end(); PI != PE; ++PI) { MachineInstr *PhiMI = *PI; if (&*MII == PhiMI) ++MII; PhiMI->eraseFromParent(); } ++NumDeadPHICycles; Changed = true; } } return Changed; }