//===-- SparcJITInfo.cpp - Implement the JIT interfaces for SparcV9 -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JIT interfaces for the SparcV9 target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "SparcV9JITInfo.h" #include "SparcV9Relocations.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/Config/alloca.h" #include "llvm/Support/Debug.h" using namespace llvm; /// JITCompilerFunction - This contains the address of the JIT function used to /// compile a function lazily. static TargetJITInfo::JITCompilerFn JITCompilerFunction; /// BUILD_SETHI/BUILD_ORI/BUILD_BA/BUILD_CALL - These macros build sparc machine /// instructions using lots of magic defined by the Sparc ISA. #define BUILD_SETHI(RD, C) (((RD) << 25) | (4 << 22) | (C & ((1 << 22)-1))) #define BUILD_ORI(RS, C, RD) ((2 << 30) | (RD << 25) | (2 << 19) | (RS << 14) |\ (1 << 13) | (C & ((1 << 12)-1))) #define BUILD_BA(DISP) ((8 << 25) | (2 << 22) | (DISP & ((1 << 22)-1))) #define BUILD_CALL(OFFSET) ((1 << 30) | (OFFSET & (1 << 30)-1)) static void InsertJumpAtAddr(int64_t JumpTarget, unsigned *Addr) { // If the target function is close enough to fit into the 19bit disp of // BA, we should use this version, as it's much cheaper to generate. int64_t BranchTarget = (JumpTarget-(intptr_t)Addr) >> 2; if (BranchTarget < (1 << 19) && BranchTarget > -(1 << 19)) { // ba Addr[0] = BUILD_BA(BranchTarget); // nop Addr[1] = 0x01000000; } else { enum { G0 = 0, G1 = 1, G5 = 5 }; // Get address to branch into %g1, using %g5 as a temporary // // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 Addr[0] = BUILD_SETHI(G5, JumpTarget >> 42); // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1 Addr[1] = BUILD_ORI(G5, JumpTarget >> 32, G5); // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word Addr[2] = 0x8B297020; // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg Addr[3] = BUILD_SETHI(G1, JumpTarget >> 10); // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 Addr[4] = 0x82114001; // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 Addr[5] = BUILD_ORI(G1, JumpTarget, G1); // jmpl %g1, %g0, %g0 ;; indirect branch on %g1 Addr[6] = 0x81C00001; // nop ;; delay slot Addr[7] = 0x01000000; } } void SparcV9JITInfo::replaceMachineCodeForFunction (void *Old, void *New) { InsertJumpAtAddr((intptr_t)New, (unsigned*)Old); } static void SaveRegisters(uint64_t DoubleFP[], uint64_t CC[], uint64_t Globals[]) { #if defined(__sparcv9) __asm__ __volatile__ (// Save condition-code registers "stx %%fsr, %0;\n\t" "rd %%fprs, %1;\n\t" "rd %%ccr, %2;\n\t" : "=m"(CC[0]), "=r"(CC[1]), "=r"(CC[2])); __asm__ __volatile__ (// Save globals g1 and g5 "stx %%g1, %0;\n\t" "stx %%g5, %0;\n\t" : "=m"(Globals[0]), "=m"(Globals[1])); // GCC says: `asm' only allows up to thirty parameters! __asm__ __volatile__ (// Save Single/Double FP registers, part 1 "std %%f0, %0;\n\t" "std %%f2, %1;\n\t" "std %%f4, %2;\n\t" "std %%f6, %3;\n\t" "std %%f8, %4;\n\t" "std %%f10, %5;\n\t" "std %%f12, %6;\n\t" "std %%f14, %7;\n\t" "std %%f16, %8;\n\t" "std %%f18, %9;\n\t" "std %%f20, %10;\n\t" "std %%f22, %11;\n\t" "std %%f24, %12;\n\t" "std %%f26, %13;\n\t" "std %%f28, %14;\n\t" "std %%f30, %15;\n\t" : "=m"(DoubleFP[ 0]), "=m"(DoubleFP[ 1]), "=m"(DoubleFP[ 2]), "=m"(DoubleFP[ 3]), "=m"(DoubleFP[ 4]), "=m"(DoubleFP[ 5]), "=m"(DoubleFP[ 6]), "=m"(DoubleFP[ 7]), "=m"(DoubleFP[ 8]), "=m"(DoubleFP[ 9]), "=m"(DoubleFP[10]), "=m"(DoubleFP[11]), "=m"(DoubleFP[12]), "=m"(DoubleFP[13]), "=m"(DoubleFP[14]), "=m"(DoubleFP[15])); __asm__ __volatile__ (// Save Double FP registers, part 2 "std %%f32, %0;\n\t" "std %%f34, %1;\n\t" "std %%f36, %2;\n\t" "std %%f38, %3;\n\t" "std %%f40, %4;\n\t" "std %%f42, %5;\n\t" "std %%f44, %6;\n\t" "std %%f46, %7;\n\t" "std %%f48, %8;\n\t" "std %%f50, %9;\n\t" "std %%f52, %10;\n\t" "std %%f54, %11;\n\t" "std %%f56, %12;\n\t" "std %%f58, %13;\n\t" "std %%f60, %14;\n\t" "std %%f62, %15;\n\t" : "=m"(DoubleFP[16]), "=m"(DoubleFP[17]), "=m"(DoubleFP[18]), "=m"(DoubleFP[19]), "=m"(DoubleFP[20]), "=m"(DoubleFP[21]), "=m"(DoubleFP[22]), "=m"(DoubleFP[23]), "=m"(DoubleFP[24]), "=m"(DoubleFP[25]), "=m"(DoubleFP[26]), "=m"(DoubleFP[27]), "=m"(DoubleFP[28]), "=m"(DoubleFP[29]), "=m"(DoubleFP[30]), "=m"(DoubleFP[31])); #else std::cerr << "ERROR: RUNNING CODE THAT ONLY WORKS ON A SPARCV9 HOST!\n"; abort(); #endif } static void RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[], uint64_t Globals[]) { #if defined(__sparcv9) __asm__ __volatile__ (// Restore condition-code registers "ldx %0, %%fsr;\n\t" "wr %1, 0, %%fprs;\n\t" "wr %2, 0, %%ccr;\n\t" :: "m"(CC[0]), "r"(CC[1]), "r"(CC[2])); __asm__ __volatile__ (// Restore globals g1 and g5 "ldx %0, %%g1;\n\t" "ldx %0, %%g5;\n\t" :: "m"(Globals[0]), "m"(Globals[1])); // GCC says: `asm' only allows up to thirty parameters! __asm__ __volatile__ (// Restore Single/Double FP registers, part 1 "ldd %0, %%f0;\n\t" "ldd %1, %%f2;\n\t" "ldd %2, %%f4;\n\t" "ldd %3, %%f6;\n\t" "ldd %4, %%f8;\n\t" "ldd %5, %%f10;\n\t" "ldd %6, %%f12;\n\t" "ldd %7, %%f14;\n\t" "ldd %8, %%f16;\n\t" "ldd %9, %%f18;\n\t" "ldd %10, %%f20;\n\t" "ldd %11, %%f22;\n\t" "ldd %12, %%f24;\n\t" "ldd %13, %%f26;\n\t" "ldd %14, %%f28;\n\t" "ldd %15, %%f30;\n\t" :: "m"(DoubleFP[0]), "m"(DoubleFP[1]), "m"(DoubleFP[2]), "m"(DoubleFP[3]), "m"(DoubleFP[4]), "m"(DoubleFP[5]), "m"(DoubleFP[6]), "m"(DoubleFP[7]), "m"(DoubleFP[8]), "m"(DoubleFP[9]), "m"(DoubleFP[10]), "m"(DoubleFP[11]), "m"(DoubleFP[12]), "m"(DoubleFP[13]), "m"(DoubleFP[14]), "m"(DoubleFP[15])); __asm__ __volatile__ (// Restore Double FP registers, part 2 "ldd %0, %%f32;\n\t" "ldd %1, %%f34;\n\t" "ldd %2, %%f36;\n\t" "ldd %3, %%f38;\n\t" "ldd %4, %%f40;\n\t" "ldd %5, %%f42;\n\t" "ldd %6, %%f44;\n\t" "ldd %7, %%f46;\n\t" "ldd %8, %%f48;\n\t" "ldd %9, %%f50;\n\t" "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t" "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t" "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t" :: "m"(DoubleFP[16]), "m"(DoubleFP[17]), "m"(DoubleFP[18]), "m"(DoubleFP[19]), "m"(DoubleFP[20]), "m"(DoubleFP[21]), "m"(DoubleFP[22]), "m"(DoubleFP[23]), "m"(DoubleFP[24]), "m"(DoubleFP[25]), "m"(DoubleFP[26]), "m"(DoubleFP[27]), "m"(DoubleFP[28]), "m"(DoubleFP[29]), "m"(DoubleFP[30]), "m"(DoubleFP[31])); #else std::cerr << "ERROR: RUNNING CODE THAT ONLY WORKS ON A SPARCV9 HOST!\n"; abort(); #endif } static void CompilationCallback() { // Local space to save the registers uint64_t DoubleFP[32]; uint64_t CC[3]; uint64_t Globals[2]; SaveRegisters(DoubleFP, CC, Globals); unsigned *CameFrom = (unsigned*)__builtin_return_address(0); unsigned *CameFrom1 = (unsigned*)__builtin_return_address(1); int64_t Target = (intptr_t)JITCompilerFunction(CameFrom); DEBUG(std::cerr << "In callback! Addr=" << (void*)CameFrom << "\n"); // If we can rewrite the ORIGINAL caller, we eliminate the whole need for a // trampoline function stub!! unsigned OrigCallInst = *CameFrom1; int64_t OrigTarget = (Target-(intptr_t)CameFrom1) >> 2; if ((OrigCallInst >> 30) == 1 && (OrigTarget <= (1 << 30) && OrigTarget >= -(1 << 30))) { // The original call instruction was CALL , which means we can // overwrite it directly, since the offset will fit into 30 bits *CameFrom1 = BUILD_CALL(OrigTarget); //++OverwrittenCalls; } else { //++UnmodifiedCalls; } // Rewrite the call target so that we don't fault every time we execute it. // unsigned OrigStubCallInst = *CameFrom; // Subtract enough to overwrite up to the 'save' instruction // This depends on whether we made a short call (1 instruction) or the // farCall (7 instructions) int Offset = ((OrigStubCallInst >> 30) == 1) ? 1 : 7; unsigned *CodeBegin = CameFrom - Offset; // FIXME: __builtin_frame_address doesn't work if frame pointer elimination // has been performed. Having a variable sized alloca disables frame pointer // elimination currently, even if it's dead. This is a gross hack. alloca(42+Offset); // Make sure that what we're about to overwrite is indeed "save". if (*CodeBegin != 0x9DE3BF40) { std::cerr << "About to overwrite smthg not a save instr!"; abort(); } // Overwrite it InsertJumpAtAddr(Target, CodeBegin); // Flush the I-Cache: FLUSH clears out a doubleword at a given address // Self-modifying code MUST clear out the I-Cache to be portable #if defined(__sparcv9) for (int i = -Offset*4, e = 32-((int64_t)Offset*4); i < e; i += 8) __asm__ __volatile__ ("flush %%i7 + %0" : : "r" (i)); #endif // Change the return address to re-execute the restore, then the jump. DEBUG(std::cerr << "Callback returning to: 0x" << std::hex << (CameFrom-Offset*4-12) << "\n"); #if defined(__sparcv9) __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset*4+12)); #endif RestoreRegisters(DoubleFP, CC, Globals); } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// void *SparcV9JITInfo::emitFunctionStub(void *Fn, MachineCodeEmitter &MCE) { if (Fn != CompilationCallback) { // If this is just a call to an external function, MCE.startFunctionStub(4*8); unsigned *Stub = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); for (unsigned i = 0; i != 8; ++i) MCE.emitWord(0); InsertJumpAtAddr((intptr_t)Fn, Stub); return MCE.finishFunctionStub(0); // 1 instr past the restore } MCE.startFunctionStub(44); MCE.emitWord(0x81e82000); // restore %g0, 0, %g0 MCE.emitWord(0x9DE3BF40); // save %sp, -192, %sp int64_t CurrPC = MCE.getCurrentPCValue(); int64_t Addr = (intptr_t)Fn; int64_t CallTarget = (Addr-CurrPC) >> 2; if (CallTarget < (1 << 29) && CallTarget > -(1 << 29)) { // call CallTarget MCE.emitWord((0x01 << 30) | CallTarget); } else { enum {G5 = 5, G1 = 1 }; // Otherwise, we need to emit a sequence of instructions to call a distant // function. We use %g5 as a temporary, and compute the value into %g1 // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 MCE.emitWord(BUILD_SETHI(G5, Addr >> 42)); // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1 MCE.emitWord(BUILD_ORI(G5, Addr >> 32, G5)); // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word MCE.emitWord(0x8B297020); // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg MCE.emitWord(BUILD_SETHI(G1, Addr >> 10)); // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 MCE.emitWord(0x82114001); // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 MCE.emitWord(BUILD_ORI(G1, Addr, G1)); // call %g1 ;; indirect call on %g1 MCE.emitWord(0x9FC04000); } // nop ;; call delay slot MCE.emitWord(0x1000000); // FIXME: Should have a restore and return! MCE.emitWord(0xDEADBEEF); // marker so that we know it's really a stub return (char*)MCE.finishFunctionStub(0)+4; // 1 instr past the restore } TargetJITInfo::LazyResolverFn SparcV9JITInfo::getLazyResolverFunction(JITCompilerFn F) { JITCompilerFunction = F; return CompilationCallback; } void SparcV9JITInfo::relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs, unsigned char* GOTBase) { for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { unsigned *RelocPos = (unsigned*)Function + MR->getMachineCodeOffset()/4; intptr_t ResultPtr = (intptr_t)MR->getResultPointer(); switch ((V9::RelocationType)MR->getRelocationType()) { default: assert(0 && "Unknown relocation type!"); case V9::reloc_pcrel_call: ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2; // PC relative. assert((ResultPtr < (1 << 29) && ResultPtr > -(1 << 29)) && "reloc_pcrel_call is out of range!"); // The high two bits of the call are always set to 01. *RelocPos = (1 << 30) | (ResultPtr & ((1 << 30)-1)) ; break; case V9::reloc_sethi_hh: case V9::reloc_sethi_lm: ResultPtr >>= (MR->getRelocationType() == V9::reloc_sethi_hh ? 32 : 0); ResultPtr >>= 10; ResultPtr &= (1 << 22)-1; *RelocPos |= (unsigned)ResultPtr; break; case V9::reloc_or_hm: case V9::reloc_or_lo: ResultPtr >>= (MR->getRelocationType() == V9::reloc_or_hm ? 32 : 0); ResultPtr &= (1 << 12)-1; *RelocPos |= (unsigned)ResultPtr; break; } } }