///===-- FastISel.cpp - Implementation of the FastISel class --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the implementation of the FastISel class. // //===----------------------------------------------------------------------===// #include "llvm/Instructions.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; // Don't cache constant materializations. To do so would require // tracking what uses they dominate. Non-constants, however, already // have the SSA def-doms-use requirement enforced, so we can cache their // computations. unsigned FastISel::getRegForValue(Value *V) { if (ValueMap.count(V)) return ValueMap[V]; MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT(); if (ConstantInt *CI = dyn_cast(V)) { if (CI->getValue().getActiveBits() > 64) return 0; // Don't cache constant materializations. To do so would require // tracking what uses they dominate. return FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); } else if (isa(V)) { return FastEmit_i(VT, VT, ISD::Constant, 0); } else if (ConstantFP *CF = dyn_cast(V)) { unsigned Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); if (!Reg) { const APFloat &Flt = CF->getValueAPF(); MVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); if (Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero) != APFloat::opOK) return 0; APInt IntVal(IntBitWidth, 2, x); unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), ISD::Constant, IntVal.getZExtValue()); if (IntegerReg == 0) return 0; Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); if (Reg == 0) return 0; } return Reg; } else if (isa(V)) { unsigned Reg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(MBB, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg); return Reg; } return 0; } /// UpdateValueMap - Update the value map to include the new mapping for this /// instruction, or insert an extra copy to get the result in a previous /// determined register. /// NOTE: This is only necessary because we might select a block that uses /// a value before we select the block that defines the value. It might be /// possible to fix this by selecting blocks in reverse postorder. void FastISel::UpdateValueMap(Instruction* I, unsigned Reg) { if (!ValueMap.count(I)) ValueMap[I] = Reg; else TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I], Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg)); } /// SelectBinaryOp - Select and emit code for a binary operator instruction, /// which has an opcode which directly corresponds to the given ISD opcode. /// bool FastISel::SelectBinaryOp(Instruction *I, ISD::NodeType ISDOpcode) { MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true); if (VT == MVT::Other || !VT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. if (!TLI.isTypeLegal(VT)) return false; unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // Check if the second operand is a constant and handle it appropriately. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, CI->getZExtValue()); if (ResultReg != 0) { // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } } // Check if the second operand is a constant float. if (ConstantFP *CF = dyn_cast(I->getOperand(1))) { unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, CF); if (ResultReg != 0) { // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } } unsigned Op1 = getRegForValue(I->getOperand(1)); if (Op1 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // Now we have both operands in registers. Emit the instruction. unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op1); if (ResultReg == 0) // Target-specific code wasn't able to find a machine opcode for // the given ISD opcode and type. Halt "fast" selection and bail. return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectGetElementPtr(Instruction *I) { unsigned N = getRegForValue(I->getOperand(0)); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; const Type *Ty = I->getOperand(0)->getType(); MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT(); for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); // FIXME: This can be optimized by combining the add with a // subsequent one. N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getZExtValue() == 0) continue; uint64_t Offs = TD.getABITypeSize(Ty)*cast(CI)->getSExtValue(); N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getABITypeSize(Ty); unsigned IdxN = getRegForValue(Idx); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // If the index is smaller or larger than intptr_t, truncate or extend // it. MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false); if (IdxVT.bitsLT(VT)) IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::SIGN_EXTEND, IdxN); else if (IdxVT.bitsGT(VT)) IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::TRUNCATE, IdxN); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; if (ElementSize != 1) { IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } } // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, N); return true; } bool FastISel::SelectCast(Instruction *I, ISD::NodeType Opcode) { MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple() || !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) // Unhandled type. Halt "fast" selection and bail. return false; unsigned InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opcode, InputReg); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectBitCast(Instruction *I) { // If the bitcast doesn't change the type, just use the operand value. if (I->getType() == I->getOperand(0)->getType()) { unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators. MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple() || !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) // Unhandled type. Halt "fast" selection and bail. return false; unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // First, try to perform the bitcast by inserting a reg-reg copy. unsigned ResultReg = 0; if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); ResultReg = createResultReg(DstClass); bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Op0, DstClass, SrcClass); if (!InsertedCopy) ResultReg = 0; } // If the reg-reg copy failed, select a BIT_CONVERT opcode. if (!ResultReg) ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), ISD::BIT_CONVERT, Op0); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectInstruction(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: { ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD; return SelectBinaryOp(I, Opc); } case Instruction::Sub: { ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB; return SelectBinaryOp(I, Opc); } case Instruction::Mul: { ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL; return SelectBinaryOp(I, Opc); } case Instruction::SDiv: return SelectBinaryOp(I, ISD::SDIV); case Instruction::UDiv: return SelectBinaryOp(I, ISD::UDIV); case Instruction::FDiv: return SelectBinaryOp(I, ISD::FDIV); case Instruction::SRem: return SelectBinaryOp(I, ISD::SREM); case Instruction::URem: return SelectBinaryOp(I, ISD::UREM); case Instruction::FRem: return SelectBinaryOp(I, ISD::FREM); case Instruction::Shl: return SelectBinaryOp(I, ISD::SHL); case Instruction::LShr: return SelectBinaryOp(I, ISD::SRL); case Instruction::AShr: return SelectBinaryOp(I, ISD::SRA); case Instruction::And: return SelectBinaryOp(I, ISD::AND); case Instruction::Or: return SelectBinaryOp(I, ISD::OR); case Instruction::Xor: return SelectBinaryOp(I, ISD::XOR); case Instruction::GetElementPtr: return SelectGetElementPtr(I); case Instruction::Br: { BranchInst *BI = cast(I); if (BI->isUnconditional()) { MachineFunction::iterator NextMBB = next(MachineFunction::iterator(MBB)); BasicBlock *LLVMSucc = BI->getSuccessor(0); MachineBasicBlock *MSucc = MBBMap[LLVMSucc]; if (NextMBB != MF.end() && MSucc == NextMBB) { // The unconditional fall-through case, which needs no instructions. } else { // The unconditional branch case. TII.InsertBranch(*MBB, MSucc, NULL, SmallVector()); } MBB->addSuccessor(MSucc); return true; } // Conditional branches are not handed yet. // Halt "fast" selection and bail. return false; } case Instruction::PHI: // PHI nodes are already emitted. return true; case Instruction::BitCast: return SelectBitCast(I); case Instruction::FPToSI: return SelectCast(I, ISD::FP_TO_SINT); case Instruction::ZExt: return SelectCast(I, ISD::ZERO_EXTEND); case Instruction::SExt: return SelectCast(I, ISD::SIGN_EXTEND); case Instruction::Trunc: return SelectCast(I, ISD::TRUNCATE); case Instruction::SIToFP: return SelectCast(I, ISD::SINT_TO_FP); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(I->getType()); if (DstVT.bitsGT(SrcVT)) return SelectCast(I, ISD::ZERO_EXTEND); if (DstVT.bitsLT(SrcVT)) return SelectCast(I, ISD::TRUNCATE); unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } default: // Unhandled instruction. Halt "fast" selection and bail. return false; } } FastISel::FastISel(MachineFunction &mf, DenseMap &vm, DenseMap &bm) : MBB(0), ValueMap(vm), MBBMap(bm), MF(mf), MRI(MF.getRegInfo()), TM(MF.getTarget()), TD(*TM.getTargetData()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()) { } FastISel::~FastISel() {} unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType) { return 0; } unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/) { return 0; } unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, unsigned /*Op0*/) { return 0; } unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, unsigned /*Op1*/, uint64_t /*Imm*/) { return 0; } /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with an immediate operand using FastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode, unsigned Op0, uint64_t Imm, MVT::SimpleValueType ImmType) { // First check if immediate type is legal. If not, we can't use the ri form. unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm); if (ResultReg != 0) return ResultReg; unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); if (MaterialReg == 0) return 0; return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); } /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with a floating-point immediate operand using /// FastEmit_rf. If that fails, it materializes the immediate into a register /// and try FastEmit_rr instead. unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode, unsigned Op0, ConstantFP *FPImm, MVT::SimpleValueType ImmType) { // First check if immediate type is legal. If not, we can't use the rf form. unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm); if (ResultReg != 0) return ResultReg; // Materialize the constant in a register. unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm); if (MaterialReg == 0) { // If the target doesn't have a way to directly enter a floating-point // value into a register, use an alternate approach. // TODO: The current approach only supports floating-point constants // that can be constructed by conversion from integer values. This should // be replaced by code that creates a load from a constant-pool entry, // which will require some target-specific work. const APFloat &Flt = FPImm->getValueAPF(); MVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); if (Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero) != APFloat::opOK) return 0; APInt IntVal(IntBitWidth, 2, x); unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), ISD::Constant, IntVal.getZExtValue()); if (IntegerReg == 0) return 0; MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); if (MaterialReg == 0) return 0; } return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); } unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { return MRI.createVirtualRegister(RC); } unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg); return ResultReg; } unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0); return ResultReg; } unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1); return ResultReg; } unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Imm); return ResultReg; } unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, ConstantFP *FPImm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0).addFPImm(FPImm); return ResultReg; } unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm); return ResultReg; } unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addImm(Imm); return ResultReg; } unsigned FastISel::FastEmitInst_extractsubreg(unsigned Op0, uint32_t Idx) { const TargetRegisterClass* RC = MRI.getRegClass(Op0); const TargetRegisterClass* SRC = *(RC->subregclasses_begin()+Idx-1); unsigned ResultReg = createResultReg(SRC); const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG); BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Idx); return ResultReg; }