//===- TGParser.cpp - Parser for TableGen Files ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implement the Parser for TableGen. // //===----------------------------------------------------------------------===// #include "TGParser.h" #include "llvm/TableGen/Record.h" #include "llvm/ADT/StringExtras.h" #include #include #include "llvm/ADT/SmallVector.h" #include "llvm/Support/CommandLine.h" using namespace llvm; //===----------------------------------------------------------------------===// // Support Code for the Semantic Actions. //===----------------------------------------------------------------------===// namespace llvm { struct SubClassReference { SMLoc RefLoc; Record *Rec; std::vector TemplateArgs; SubClassReference() : Rec(0) {} bool isInvalid() const { return Rec == 0; } }; struct SubMultiClassReference { SMLoc RefLoc; MultiClass *MC; std::vector TemplateArgs; SubMultiClassReference() : MC(0) {} bool isInvalid() const { return MC == 0; } void dump() const; }; void SubMultiClassReference::dump() const { errs() << "Multiclass:\n"; MC->dump(); errs() << "Template args:\n"; for (std::vector::const_iterator i = TemplateArgs.begin(), iend = TemplateArgs.end(); i != iend; ++i) { (*i)->dump(); } } } // end namespace llvm bool TGParser::AddValue(Record *CurRec, SMLoc Loc, const RecordVal &RV) { if (CurRec == 0) CurRec = &CurMultiClass->Rec; if (RecordVal *ERV = CurRec->getValue(RV.getNameInit())) { // The value already exists in the class, treat this as a set. if (ERV->setValue(RV.getValue())) return Error(Loc, "New definition of '" + RV.getName() + "' of type '" + RV.getType()->getAsString() + "' is incompatible with " + "previous definition of type '" + ERV->getType()->getAsString() + "'"); } else { CurRec->addValue(RV); } return false; } /// SetValue - /// Return true on error, false on success. bool TGParser::SetValue(Record *CurRec, SMLoc Loc, Init *ValName, const std::vector &BitList, Init *V) { if (!V) return false; if (CurRec == 0) CurRec = &CurMultiClass->Rec; RecordVal *RV = CurRec->getValue(ValName); if (RV == 0) return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' unknown!"); // Do not allow assignments like 'X = X'. This will just cause infinite loops // in the resolution machinery. if (BitList.empty()) if (VarInit *VI = dynamic_cast(V)) if (VI->getNameInit() == ValName) return false; // If we are assigning to a subset of the bits in the value... then we must be // assigning to a field of BitsRecTy, which must have a BitsInit // initializer. // if (!BitList.empty()) { BitsInit *CurVal = dynamic_cast(RV->getValue()); if (CurVal == 0) return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' is not a bits type"); // Convert the incoming value to a bits type of the appropriate size... Init *BI = V->convertInitializerTo(BitsRecTy::get(BitList.size())); if (BI == 0) { V->convertInitializerTo(BitsRecTy::get(BitList.size())); return Error(Loc, "Initializer is not compatible with bit range"); } // We should have a BitsInit type now. BitsInit *BInit = dynamic_cast(BI); assert(BInit != 0); SmallVector NewBits(CurVal->getNumBits()); // Loop over bits, assigning values as appropriate. for (unsigned i = 0, e = BitList.size(); i != e; ++i) { unsigned Bit = BitList[i]; if (NewBits[Bit]) return Error(Loc, "Cannot set bit #" + utostr(Bit) + " of value '" + ValName->getAsUnquotedString() + "' more than once"); NewBits[Bit] = BInit->getBit(i); } for (unsigned i = 0, e = CurVal->getNumBits(); i != e; ++i) if (NewBits[i] == 0) NewBits[i] = CurVal->getBit(i); V = BitsInit::get(NewBits); } if (RV->setValue(V)) return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' of type '" + RV->getType()->getAsString() + "' is incompatible with initializer '" + V->getAsString() + "'"); return false; } /// AddSubClass - Add SubClass as a subclass to CurRec, resolving its template /// args as SubClass's template arguments. bool TGParser::AddSubClass(Record *CurRec, SubClassReference &SubClass) { Record *SC = SubClass.Rec; // Add all of the values in the subclass into the current class. const std::vector &Vals = SC->getValues(); for (unsigned i = 0, e = Vals.size(); i != e; ++i) if (AddValue(CurRec, SubClass.RefLoc, Vals[i])) return true; const std::vector &TArgs = SC->getTemplateArgs(); // Ensure that an appropriate number of template arguments are specified. if (TArgs.size() < SubClass.TemplateArgs.size()) return Error(SubClass.RefLoc, "More template args specified than expected"); // Loop over all of the template arguments, setting them to the specified // value or leaving them as the default if necessary. for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { if (i < SubClass.TemplateArgs.size()) { // If a value is specified for this template arg, set it now. if (SetValue(CurRec, SubClass.RefLoc, TArgs[i], std::vector(), SubClass.TemplateArgs[i])) return true; // Resolve it next. CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i])); // Now remove it. CurRec->removeValue(TArgs[i]); } else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) { return Error(SubClass.RefLoc,"Value not specified for template argument #" + utostr(i) + " (" + TArgs[i]->getAsUnquotedString() + ") of subclass '" + SC->getNameInitAsString() + "'!"); } } // Since everything went well, we can now set the "superclass" list for the // current record. const std::vector &SCs = SC->getSuperClasses(); for (unsigned i = 0, e = SCs.size(); i != e; ++i) { if (CurRec->isSubClassOf(SCs[i])) return Error(SubClass.RefLoc, "Already subclass of '" + SCs[i]->getName() + "'!\n"); CurRec->addSuperClass(SCs[i]); } if (CurRec->isSubClassOf(SC)) return Error(SubClass.RefLoc, "Already subclass of '" + SC->getName() + "'!\n"); CurRec->addSuperClass(SC); return false; } /// AddSubMultiClass - Add SubMultiClass as a subclass to /// CurMC, resolving its template args as SubMultiClass's /// template arguments. bool TGParser::AddSubMultiClass(MultiClass *CurMC, SubMultiClassReference &SubMultiClass) { MultiClass *SMC = SubMultiClass.MC; Record *CurRec = &CurMC->Rec; const std::vector &MCVals = CurRec->getValues(); // Add all of the values in the subclass into the current class. const std::vector &SMCVals = SMC->Rec.getValues(); for (unsigned i = 0, e = SMCVals.size(); i != e; ++i) if (AddValue(CurRec, SubMultiClass.RefLoc, SMCVals[i])) return true; int newDefStart = CurMC->DefPrototypes.size(); // Add all of the defs in the subclass into the current multiclass. for (MultiClass::RecordVector::const_iterator i = SMC->DefPrototypes.begin(), iend = SMC->DefPrototypes.end(); i != iend; ++i) { // Clone the def and add it to the current multiclass Record *NewDef = new Record(**i); // Add all of the values in the superclass into the current def. for (unsigned i = 0, e = MCVals.size(); i != e; ++i) if (AddValue(NewDef, SubMultiClass.RefLoc, MCVals[i])) return true; CurMC->DefPrototypes.push_back(NewDef); } const std::vector &SMCTArgs = SMC->Rec.getTemplateArgs(); // Ensure that an appropriate number of template arguments are // specified. if (SMCTArgs.size() < SubMultiClass.TemplateArgs.size()) return Error(SubMultiClass.RefLoc, "More template args specified than expected"); // Loop over all of the template arguments, setting them to the specified // value or leaving them as the default if necessary. for (unsigned i = 0, e = SMCTArgs.size(); i != e; ++i) { if (i < SubMultiClass.TemplateArgs.size()) { // If a value is specified for this template arg, set it in the // superclass now. if (SetValue(CurRec, SubMultiClass.RefLoc, SMCTArgs[i], std::vector(), SubMultiClass.TemplateArgs[i])) return true; // Resolve it next. CurRec->resolveReferencesTo(CurRec->getValue(SMCTArgs[i])); // Now remove it. CurRec->removeValue(SMCTArgs[i]); // If a value is specified for this template arg, set it in the // new defs now. for (MultiClass::RecordVector::iterator j = CurMC->DefPrototypes.begin() + newDefStart, jend = CurMC->DefPrototypes.end(); j != jend; ++j) { Record *Def = *j; if (SetValue(Def, SubMultiClass.RefLoc, SMCTArgs[i], std::vector(), SubMultiClass.TemplateArgs[i])) return true; // Resolve it next. Def->resolveReferencesTo(Def->getValue(SMCTArgs[i])); // Now remove it Def->removeValue(SMCTArgs[i]); } } else if (!CurRec->getValue(SMCTArgs[i])->getValue()->isComplete()) { return Error(SubMultiClass.RefLoc, "Value not specified for template argument #" + utostr(i) + " (" + SMCTArgs[i]->getAsUnquotedString() + ") of subclass '" + SMC->Rec.getNameInitAsString() + "'!"); } } return false; } //===----------------------------------------------------------------------===// // Parser Code //===----------------------------------------------------------------------===// /// isObjectStart - Return true if this is a valid first token for an Object. static bool isObjectStart(tgtok::TokKind K) { return K == tgtok::Class || K == tgtok::Def || K == tgtok::Defm || K == tgtok::Let || K == tgtok::MultiClass; } static std::string GetNewAnonymousName() { static unsigned AnonCounter = 0; return "anonymous."+utostr(AnonCounter++); } /// ParseObjectName - If an object name is specified, return it. Otherwise, /// return an anonymous name. /// ObjectName ::= Value [ '#' Value ]* /// ObjectName ::= /*empty*/ /// Init *TGParser::ParseObjectName(MultiClass *CurMultiClass) { switch (Lex.getCode()) { case tgtok::colon: case tgtok::semi: case tgtok::l_brace: // These are all of the tokens that can begin an object body. // Some of these can also begin values but we disallow those cases // because they are unlikely to be useful. return StringInit::get(GetNewAnonymousName()); default: break; } Record *CurRec = 0; if (CurMultiClass) CurRec = &CurMultiClass->Rec; RecTy *Type = 0; if (CurRec) { const TypedInit *CurRecName = dynamic_cast(CurRec->getNameInit()); if (!CurRecName) { TokError("Record name is not typed!"); return 0; } Type = CurRecName->getType(); } return ParseValue(CurRec, Type, ParseNameMode); } /// ParseClassID - Parse and resolve a reference to a class name. This returns /// null on error. /// /// ClassID ::= ID /// Record *TGParser::ParseClassID() { if (Lex.getCode() != tgtok::Id) { TokError("expected name for ClassID"); return 0; } Record *Result = Records.getClass(Lex.getCurStrVal()); if (Result == 0) TokError("Couldn't find class '" + Lex.getCurStrVal() + "'"); Lex.Lex(); return Result; } /// ParseMultiClassID - Parse and resolve a reference to a multiclass name. /// This returns null on error. /// /// MultiClassID ::= ID /// MultiClass *TGParser::ParseMultiClassID() { if (Lex.getCode() != tgtok::Id) { TokError("expected name for ClassID"); return 0; } MultiClass *Result = MultiClasses[Lex.getCurStrVal()]; if (Result == 0) TokError("Couldn't find class '" + Lex.getCurStrVal() + "'"); Lex.Lex(); return Result; } Record *TGParser::ParseDefmID() { if (Lex.getCode() != tgtok::Id) { TokError("expected multiclass name"); return 0; } MultiClass *MC = MultiClasses[Lex.getCurStrVal()]; if (MC == 0) { TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'"); return 0; } Lex.Lex(); return &MC->Rec; } /// ParseSubClassReference - Parse a reference to a subclass or to a templated /// subclass. This returns a SubClassRefTy with a null Record* on error. /// /// SubClassRef ::= ClassID /// SubClassRef ::= ClassID '<' ValueList '>' /// SubClassReference TGParser:: ParseSubClassReference(Record *CurRec, bool isDefm) { SubClassReference Result; Result.RefLoc = Lex.getLoc(); if (isDefm) Result.Rec = ParseDefmID(); else Result.Rec = ParseClassID(); if (Result.Rec == 0) return Result; // If there is no template arg list, we're done. if (Lex.getCode() != tgtok::less) return Result; Lex.Lex(); // Eat the '<' if (Lex.getCode() == tgtok::greater) { TokError("subclass reference requires a non-empty list of template values"); Result.Rec = 0; return Result; } Result.TemplateArgs = ParseValueList(CurRec, Result.Rec); if (Result.TemplateArgs.empty()) { Result.Rec = 0; // Error parsing value list. return Result; } if (Lex.getCode() != tgtok::greater) { TokError("expected '>' in template value list"); Result.Rec = 0; return Result; } Lex.Lex(); return Result; } /// ParseSubMultiClassReference - Parse a reference to a subclass or to a /// templated submulticlass. This returns a SubMultiClassRefTy with a null /// Record* on error. /// /// SubMultiClassRef ::= MultiClassID /// SubMultiClassRef ::= MultiClassID '<' ValueList '>' /// SubMultiClassReference TGParser:: ParseSubMultiClassReference(MultiClass *CurMC) { SubMultiClassReference Result; Result.RefLoc = Lex.getLoc(); Result.MC = ParseMultiClassID(); if (Result.MC == 0) return Result; // If there is no template arg list, we're done. if (Lex.getCode() != tgtok::less) return Result; Lex.Lex(); // Eat the '<' if (Lex.getCode() == tgtok::greater) { TokError("subclass reference requires a non-empty list of template values"); Result.MC = 0; return Result; } Result.TemplateArgs = ParseValueList(&CurMC->Rec, &Result.MC->Rec); if (Result.TemplateArgs.empty()) { Result.MC = 0; // Error parsing value list. return Result; } if (Lex.getCode() != tgtok::greater) { TokError("expected '>' in template value list"); Result.MC = 0; return Result; } Lex.Lex(); return Result; } /// ParseRangePiece - Parse a bit/value range. /// RangePiece ::= INTVAL /// RangePiece ::= INTVAL '-' INTVAL /// RangePiece ::= INTVAL INTVAL bool TGParser::ParseRangePiece(std::vector &Ranges) { if (Lex.getCode() != tgtok::IntVal) { TokError("expected integer or bitrange"); return true; } int64_t Start = Lex.getCurIntVal(); int64_t End; if (Start < 0) return TokError("invalid range, cannot be negative"); switch (Lex.Lex()) { // eat first character. default: Ranges.push_back(Start); return false; case tgtok::minus: if (Lex.Lex() != tgtok::IntVal) { TokError("expected integer value as end of range"); return true; } End = Lex.getCurIntVal(); break; case tgtok::IntVal: End = -Lex.getCurIntVal(); break; } if (End < 0) return TokError("invalid range, cannot be negative"); Lex.Lex(); // Add to the range. if (Start < End) { for (; Start <= End; ++Start) Ranges.push_back(Start); } else { for (; Start >= End; --Start) Ranges.push_back(Start); } return false; } /// ParseRangeList - Parse a list of scalars and ranges into scalar values. /// /// RangeList ::= RangePiece (',' RangePiece)* /// std::vector TGParser::ParseRangeList() { std::vector Result; // Parse the first piece. if (ParseRangePiece(Result)) return std::vector(); while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // Eat the comma. // Parse the next range piece. if (ParseRangePiece(Result)) return std::vector(); } return Result; } /// ParseOptionalRangeList - Parse either a range list in <>'s or nothing. /// OptionalRangeList ::= '<' RangeList '>' /// OptionalRangeList ::= /*empty*/ bool TGParser::ParseOptionalRangeList(std::vector &Ranges) { if (Lex.getCode() != tgtok::less) return false; SMLoc StartLoc = Lex.getLoc(); Lex.Lex(); // eat the '<' // Parse the range list. Ranges = ParseRangeList(); if (Ranges.empty()) return true; if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of range list"); return Error(StartLoc, "to match this '<'"); } Lex.Lex(); // eat the '>'. return false; } /// ParseOptionalBitList - Parse either a bit list in {}'s or nothing. /// OptionalBitList ::= '{' RangeList '}' /// OptionalBitList ::= /*empty*/ bool TGParser::ParseOptionalBitList(std::vector &Ranges) { if (Lex.getCode() != tgtok::l_brace) return false; SMLoc StartLoc = Lex.getLoc(); Lex.Lex(); // eat the '{' // Parse the range list. Ranges = ParseRangeList(); if (Ranges.empty()) return true; if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit list"); return Error(StartLoc, "to match this '{'"); } Lex.Lex(); // eat the '}'. return false; } /// ParseType - Parse and return a tblgen type. This returns null on error. /// /// Type ::= STRING // string type /// Type ::= CODE // code type /// Type ::= BIT // bit type /// Type ::= BITS '<' INTVAL '>' // bits type /// Type ::= INT // int type /// Type ::= LIST '<' Type '>' // list type /// Type ::= DAG // dag type /// Type ::= ClassID // Record Type /// RecTy *TGParser::ParseType() { switch (Lex.getCode()) { default: TokError("Unknown token when expecting a type"); return 0; case tgtok::String: Lex.Lex(); return StringRecTy::get(); case tgtok::Code: Lex.Lex(); return StringRecTy::get(); case tgtok::Bit: Lex.Lex(); return BitRecTy::get(); case tgtok::Int: Lex.Lex(); return IntRecTy::get(); case tgtok::Dag: Lex.Lex(); return DagRecTy::get(); case tgtok::Id: if (Record *R = ParseClassID()) return RecordRecTy::get(R); return 0; case tgtok::Bits: { if (Lex.Lex() != tgtok::less) { // Eat 'bits' TokError("expected '<' after bits type"); return 0; } if (Lex.Lex() != tgtok::IntVal) { // Eat '<' TokError("expected integer in bits type"); return 0; } uint64_t Val = Lex.getCurIntVal(); if (Lex.Lex() != tgtok::greater) { // Eat count. TokError("expected '>' at end of bits type"); return 0; } Lex.Lex(); // Eat '>' return BitsRecTy::get(Val); } case tgtok::List: { if (Lex.Lex() != tgtok::less) { // Eat 'bits' TokError("expected '<' after list type"); return 0; } Lex.Lex(); // Eat '<' RecTy *SubType = ParseType(); if (SubType == 0) return 0; if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of list type"); return 0; } Lex.Lex(); // Eat '>' return ListRecTy::get(SubType); } } } /// ParseIDValue - Parse an ID as a value and decode what it means. /// /// IDValue ::= ID [def local value] /// IDValue ::= ID [def template arg] /// IDValue ::= ID [multiclass local value] /// IDValue ::= ID [multiclass template argument] /// IDValue ::= ID [def name] /// Init *TGParser::ParseIDValue(Record *CurRec, IDParseMode Mode) { assert(Lex.getCode() == tgtok::Id && "Expected ID in ParseIDValue"); std::string Name = Lex.getCurStrVal(); SMLoc Loc = Lex.getLoc(); Lex.Lex(); return ParseIDValue(CurRec, Name, Loc); } /// ParseIDValue - This is just like ParseIDValue above, but it assumes the ID /// has already been read. Init *TGParser::ParseIDValue(Record *CurRec, const std::string &Name, SMLoc NameLoc, IDParseMode Mode) { if (CurRec) { if (const RecordVal *RV = CurRec->getValue(Name)) return VarInit::get(Name, RV->getType()); Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, ":"); if (CurMultiClass) TemplateArgName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); if (CurRec->isTemplateArg(TemplateArgName)) { const RecordVal *RV = CurRec->getValue(TemplateArgName); assert(RV && "Template arg doesn't exist??"); return VarInit::get(TemplateArgName, RV->getType()); } } if (CurMultiClass) { Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); if (CurMultiClass->Rec.isTemplateArg(MCName)) { const RecordVal *RV = CurMultiClass->Rec.getValue(MCName); assert(RV && "Template arg doesn't exist??"); return VarInit::get(MCName, RV->getType()); } } if (Mode == ParseNameMode) return StringInit::get(Name); if (Record *D = Records.getDef(Name)) return DefInit::get(D); if (Mode == ParseValueMode) { Error(NameLoc, "Variable not defined: '" + Name + "'"); return 0; } return StringInit::get(Name); } /// ParseOperation - Parse an operator. This returns null on error. /// /// Operation ::= XOperator ['<' Type '>'] '(' Args ')' /// Init *TGParser::ParseOperation(Record *CurRec) { switch (Lex.getCode()) { default: TokError("unknown operation"); return 0; case tgtok::XHead: case tgtok::XTail: case tgtok::XEmpty: case tgtok::XCast: { // Value ::= !unop '(' Value ')' UnOpInit::UnaryOp Code; RecTy *Type = 0; switch (Lex.getCode()) { default: assert(0 && "Unhandled code!"); case tgtok::XCast: Lex.Lex(); // eat the operation Code = UnOpInit::CAST; Type = ParseOperatorType(); if (Type == 0) { TokError("did not get type for unary operator"); return 0; } break; case tgtok::XHead: Lex.Lex(); // eat the operation Code = UnOpInit::HEAD; break; case tgtok::XTail: Lex.Lex(); // eat the operation Code = UnOpInit::TAIL; break; case tgtok::XEmpty: Lex.Lex(); // eat the operation Code = UnOpInit::EMPTY; Type = IntRecTy::get(); break; } if (Lex.getCode() != tgtok::l_paren) { TokError("expected '(' after unary operator"); return 0; } Lex.Lex(); // eat the '(' Init *LHS = ParseValue(CurRec); if (LHS == 0) return 0; if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL || Code == UnOpInit::EMPTY) { ListInit *LHSl = dynamic_cast(LHS); StringInit *LHSs = dynamic_cast(LHS); TypedInit *LHSt = dynamic_cast(LHS); if (LHSl == 0 && LHSs == 0 && LHSt == 0) { TokError("expected list or string type argument in unary operator"); return 0; } if (LHSt) { ListRecTy *LType = dynamic_cast(LHSt->getType()); StringRecTy *SType = dynamic_cast(LHSt->getType()); if (LType == 0 && SType == 0) { TokError("expected list or string type argumnet in unary operator"); return 0; } } if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL) { if (LHSl == 0 && LHSt == 0) { TokError("expected list type argumnet in unary operator"); return 0; } if (LHSl && LHSl->getSize() == 0) { TokError("empty list argument in unary operator"); return 0; } if (LHSl) { Init *Item = LHSl->getElement(0); TypedInit *Itemt = dynamic_cast(Item); if (Itemt == 0) { TokError("untyped list element in unary operator"); return 0; } if (Code == UnOpInit::HEAD) { Type = Itemt->getType(); } else { Type = ListRecTy::get(Itemt->getType()); } } else { assert(LHSt && "expected list type argument in unary operator"); ListRecTy *LType = dynamic_cast(LHSt->getType()); if (LType == 0) { TokError("expected list type argumnet in unary operator"); return 0; } if (Code == UnOpInit::HEAD) { Type = LType->getElementType(); } else { Type = LType; } } } } if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in unary operator"); return 0; } Lex.Lex(); // eat the ')' return (UnOpInit::get(Code, LHS, Type))->Fold(CurRec, CurMultiClass); } case tgtok::XConcat: case tgtok::XSRA: case tgtok::XSRL: case tgtok::XSHL: case tgtok::XEq: case tgtok::XStrConcat: { // Value ::= !binop '(' Value ',' Value ')' tgtok::TokKind OpTok = Lex.getCode(); SMLoc OpLoc = Lex.getLoc(); Lex.Lex(); // eat the operation BinOpInit::BinaryOp Code; RecTy *Type = 0; switch (OpTok) { default: assert(0 && "Unhandled code!"); case tgtok::XConcat: Code = BinOpInit::CONCAT;Type = DagRecTy::get(); break; case tgtok::XSRA: Code = BinOpInit::SRA; Type = IntRecTy::get(); break; case tgtok::XSRL: Code = BinOpInit::SRL; Type = IntRecTy::get(); break; case tgtok::XSHL: Code = BinOpInit::SHL; Type = IntRecTy::get(); break; case tgtok::XEq: Code = BinOpInit::EQ; Type = BitRecTy::get(); break; case tgtok::XStrConcat: Code = BinOpInit::STRCONCAT; Type = StringRecTy::get(); break; } if (Lex.getCode() != tgtok::l_paren) { TokError("expected '(' after binary operator"); return 0; } Lex.Lex(); // eat the '(' SmallVector InitList; InitList.push_back(ParseValue(CurRec)); if (InitList.back() == 0) return 0; while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // eat the ',' InitList.push_back(ParseValue(CurRec)); if (InitList.back() == 0) return 0; } if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in operator"); return 0; } Lex.Lex(); // eat the ')' // We allow multiple operands to associative operators like !strconcat as // shorthand for nesting them. if (Code == BinOpInit::STRCONCAT) { while (InitList.size() > 2) { Init *RHS = InitList.pop_back_val(); RHS = (BinOpInit::get(Code, InitList.back(), RHS, Type)) ->Fold(CurRec, CurMultiClass); InitList.back() = RHS; } } if (InitList.size() == 2) return (BinOpInit::get(Code, InitList[0], InitList[1], Type)) ->Fold(CurRec, CurMultiClass); Error(OpLoc, "expected two operands to operator"); return 0; } case tgtok::XIf: case tgtok::XForEach: case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')' TernOpInit::TernaryOp Code; RecTy *Type = 0; tgtok::TokKind LexCode = Lex.getCode(); Lex.Lex(); // eat the operation switch (LexCode) { default: assert(0 && "Unhandled code!"); case tgtok::XIf: Code = TernOpInit::IF; break; case tgtok::XForEach: Code = TernOpInit::FOREACH; break; case tgtok::XSubst: Code = TernOpInit::SUBST; break; } if (Lex.getCode() != tgtok::l_paren) { TokError("expected '(' after ternary operator"); return 0; } Lex.Lex(); // eat the '(' Init *LHS = ParseValue(CurRec); if (LHS == 0) return 0; if (Lex.getCode() != tgtok::comma) { TokError("expected ',' in ternary operator"); return 0; } Lex.Lex(); // eat the ',' Init *MHS = ParseValue(CurRec); if (MHS == 0) return 0; if (Lex.getCode() != tgtok::comma) { TokError("expected ',' in ternary operator"); return 0; } Lex.Lex(); // eat the ',' Init *RHS = ParseValue(CurRec); if (RHS == 0) return 0; if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in binary operator"); return 0; } Lex.Lex(); // eat the ')' switch (LexCode) { default: assert(0 && "Unhandled code!"); case tgtok::XIf: { // FIXME: The `!if' operator doesn't handle non-TypedInit well at // all. This can be made much more robust. TypedInit *MHSt = dynamic_cast(MHS); TypedInit *RHSt = dynamic_cast(RHS); RecTy *MHSTy = 0; RecTy *RHSTy = 0; if (MHSt == 0 && RHSt == 0) { BitsInit *MHSbits = dynamic_cast(MHS); BitsInit *RHSbits = dynamic_cast(RHS); if (MHSbits && RHSbits && MHSbits->getNumBits() == RHSbits->getNumBits()) { Type = BitRecTy::get(); break; } else { BitInit *MHSbit = dynamic_cast(MHS); BitInit *RHSbit = dynamic_cast(RHS); if (MHSbit && RHSbit) { Type = BitRecTy::get(); break; } } } else if (MHSt != 0 && RHSt != 0) { MHSTy = MHSt->getType(); RHSTy = RHSt->getType(); } if (!MHSTy || !RHSTy) { TokError("could not get type for !if"); return 0; } if (MHSTy->typeIsConvertibleTo(RHSTy)) { Type = RHSTy; } else if (RHSTy->typeIsConvertibleTo(MHSTy)) { Type = MHSTy; } else { TokError("inconsistent types for !if"); return 0; } break; } case tgtok::XForEach: { TypedInit *MHSt = dynamic_cast(MHS); if (MHSt == 0) { TokError("could not get type for !foreach"); return 0; } Type = MHSt->getType(); break; } case tgtok::XSubst: { TypedInit *RHSt = dynamic_cast(RHS); if (RHSt == 0) { TokError("could not get type for !subst"); return 0; } Type = RHSt->getType(); break; } } return (TernOpInit::get(Code, LHS, MHS, RHS, Type))->Fold(CurRec, CurMultiClass); } } } /// ParseOperatorType - Parse a type for an operator. This returns /// null on error. /// /// OperatorType ::= '<' Type '>' /// RecTy *TGParser::ParseOperatorType() { RecTy *Type = 0; if (Lex.getCode() != tgtok::less) { TokError("expected type name for operator"); return 0; } Lex.Lex(); // eat the < Type = ParseType(); if (Type == 0) { TokError("expected type name for operator"); return 0; } if (Lex.getCode() != tgtok::greater) { TokError("expected type name for operator"); return 0; } Lex.Lex(); // eat the > return Type; } /// ParseSimpleValue - Parse a tblgen value. This returns null on error. /// /// SimpleValue ::= IDValue /// SimpleValue ::= INTVAL /// SimpleValue ::= STRVAL+ /// SimpleValue ::= CODEFRAGMENT /// SimpleValue ::= '?' /// SimpleValue ::= '{' ValueList '}' /// SimpleValue ::= ID '<' ValueListNE '>' /// SimpleValue ::= '[' ValueList ']' /// SimpleValue ::= '(' IDValue DagArgList ')' /// SimpleValue ::= CONCATTOK '(' Value ',' Value ')' /// SimpleValue ::= SHLTOK '(' Value ',' Value ')' /// SimpleValue ::= SRATOK '(' Value ',' Value ')' /// SimpleValue ::= SRLTOK '(' Value ',' Value ')' /// SimpleValue ::= STRCONCATTOK '(' Value ',' Value ')' /// Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) { Init *R = 0; switch (Lex.getCode()) { default: TokError("Unknown token when parsing a value"); break; case tgtok::paste: // This is a leading paste operation. This is deprecated but // still exists in some .td files. Ignore it. Lex.Lex(); // Skip '#'. return ParseSimpleValue(CurRec, ItemType, Mode); case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break; case tgtok::StrVal: { std::string Val = Lex.getCurStrVal(); Lex.Lex(); // Handle multiple consecutive concatenated strings. while (Lex.getCode() == tgtok::StrVal) { Val += Lex.getCurStrVal(); Lex.Lex(); } R = StringInit::get(Val); break; } case tgtok::CodeFragment: R = StringInit::get(Lex.getCurStrVal()); Lex.Lex(); break; case tgtok::question: R = UnsetInit::get(); Lex.Lex(); break; case tgtok::Id: { SMLoc NameLoc = Lex.getLoc(); std::string Name = Lex.getCurStrVal(); if (Lex.Lex() != tgtok::less) // consume the Id. return ParseIDValue(CurRec, Name, NameLoc, Mode); // Value ::= IDValue // Value ::= ID '<' ValueListNE '>' if (Lex.Lex() == tgtok::greater) { TokError("expected non-empty value list"); return 0; } // This is a CLASS expression. This is supposed to synthesize // a new anonymous definition, deriving from CLASS with no // body. Record *Class = Records.getClass(Name); if (!Class) { Error(NameLoc, "Expected a class name, got '" + Name + "'"); return 0; } std::vector ValueList = ParseValueList(CurRec, Class); if (ValueList.empty()) return 0; if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of value list"); return 0; } Lex.Lex(); // eat the '>' // Create the new record, set it as CurRec temporarily. static unsigned AnonCounter = 0; Record *NewRec = new Record("anonymous.val."+utostr(AnonCounter++), NameLoc, Records); SubClassReference SCRef; SCRef.RefLoc = NameLoc; SCRef.Rec = Class; SCRef.TemplateArgs = ValueList; // Add info about the subclass to NewRec. if (AddSubClass(NewRec, SCRef)) return 0; NewRec->resolveReferences(); Records.addDef(NewRec); // The result of the expression is a reference to the new record. return DefInit::get(NewRec); } case tgtok::l_brace: { // Value ::= '{' ValueList '}' SMLoc BraceLoc = Lex.getLoc(); Lex.Lex(); // eat the '{' std::vector Vals; if (Lex.getCode() != tgtok::r_brace) { Vals = ParseValueList(CurRec); if (Vals.empty()) return 0; } if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit list value"); return 0; } Lex.Lex(); // eat the '}' SmallVector NewBits(Vals.size()); for (unsigned i = 0, e = Vals.size(); i != e; ++i) { Init *Bit = Vals[i]->convertInitializerTo(BitRecTy::get()); if (Bit == 0) { Error(BraceLoc, "Element #" + utostr(i) + " (" + Vals[i]->getAsString()+ ") is not convertable to a bit"); return 0; } NewBits[Vals.size()-i-1] = Bit; } return BitsInit::get(NewBits); } case tgtok::l_square: { // Value ::= '[' ValueList ']' Lex.Lex(); // eat the '[' std::vector Vals; RecTy *DeducedEltTy = 0; ListRecTy *GivenListTy = 0; if (ItemType != 0) { ListRecTy *ListType = dynamic_cast(ItemType); if (ListType == 0) { std::stringstream s; s << "Type mismatch for list, expected list type, got " << ItemType->getAsString(); TokError(s.str()); return 0; } GivenListTy = ListType; } if (Lex.getCode() != tgtok::r_square) { Vals = ParseValueList(CurRec, 0, GivenListTy ? GivenListTy->getElementType() : 0); if (Vals.empty()) return 0; } if (Lex.getCode() != tgtok::r_square) { TokError("expected ']' at end of list value"); return 0; } Lex.Lex(); // eat the ']' RecTy *GivenEltTy = 0; if (Lex.getCode() == tgtok::less) { // Optional list element type Lex.Lex(); // eat the '<' GivenEltTy = ParseType(); if (GivenEltTy == 0) { // Couldn't parse element type return 0; } if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of list element type"); return 0; } Lex.Lex(); // eat the '>' } // Check elements RecTy *EltTy = 0; for (std::vector::iterator i = Vals.begin(), ie = Vals.end(); i != ie; ++i) { TypedInit *TArg = dynamic_cast(*i); if (TArg == 0) { TokError("Untyped list element"); return 0; } if (EltTy != 0) { EltTy = resolveTypes(EltTy, TArg->getType()); if (EltTy == 0) { TokError("Incompatible types in list elements"); return 0; } } else { EltTy = TArg->getType(); } } if (GivenEltTy != 0) { if (EltTy != 0) { // Verify consistency if (!EltTy->typeIsConvertibleTo(GivenEltTy)) { TokError("Incompatible types in list elements"); return 0; } } EltTy = GivenEltTy; } if (EltTy == 0) { if (ItemType == 0) { TokError("No type for list"); return 0; } DeducedEltTy = GivenListTy->getElementType(); } else { // Make sure the deduced type is compatible with the given type if (GivenListTy) { if (!EltTy->typeIsConvertibleTo(GivenListTy->getElementType())) { TokError("Element type mismatch for list"); return 0; } } DeducedEltTy = EltTy; } return ListInit::get(Vals, DeducedEltTy); } case tgtok::l_paren: { // Value ::= '(' IDValue DagArgList ')' Lex.Lex(); // eat the '(' if (Lex.getCode() != tgtok::Id && Lex.getCode() != tgtok::XCast) { TokError("expected identifier in dag init"); return 0; } Init *Operator = ParseValue(CurRec); if (Operator == 0) return 0; // If the operator name is present, parse it. std::string OperatorName; if (Lex.getCode() == tgtok::colon) { if (Lex.Lex() != tgtok::VarName) { // eat the ':' TokError("expected variable name in dag operator"); return 0; } OperatorName = Lex.getCurStrVal(); Lex.Lex(); // eat the VarName. } std::vector > DagArgs; if (Lex.getCode() != tgtok::r_paren) { DagArgs = ParseDagArgList(CurRec); if (DagArgs.empty()) return 0; } if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in dag init"); return 0; } Lex.Lex(); // eat the ')' return DagInit::get(Operator, OperatorName, DagArgs); } case tgtok::XHead: case tgtok::XTail: case tgtok::XEmpty: case tgtok::XCast: // Value ::= !unop '(' Value ')' case tgtok::XConcat: case tgtok::XSRA: case tgtok::XSRL: case tgtok::XSHL: case tgtok::XEq: case tgtok::XStrConcat: // Value ::= !binop '(' Value ',' Value ')' case tgtok::XIf: case tgtok::XForEach: case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')' return ParseOperation(CurRec); } } return R; } /// ParseValue - Parse a tblgen value. This returns null on error. /// /// Value ::= SimpleValue ValueSuffix* /// ValueSuffix ::= '{' BitList '}' /// ValueSuffix ::= '[' BitList ']' /// ValueSuffix ::= '.' ID /// Init *TGParser::ParseValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) { Init *Result = ParseSimpleValue(CurRec, ItemType, Mode); if (Result == 0) return 0; // Parse the suffixes now if present. while (1) { switch (Lex.getCode()) { default: return Result; case tgtok::l_brace: { if (Mode == ParseNameMode) // This is the beginning of the object body. return Result; SMLoc CurlyLoc = Lex.getLoc(); Lex.Lex(); // eat the '{' std::vector Ranges = ParseRangeList(); if (Ranges.empty()) return 0; // Reverse the bitlist. std::reverse(Ranges.begin(), Ranges.end()); Result = Result->convertInitializerBitRange(Ranges); if (Result == 0) { Error(CurlyLoc, "Invalid bit range for value"); return 0; } // Eat the '}'. if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit range list"); return 0; } Lex.Lex(); break; } case tgtok::l_square: { SMLoc SquareLoc = Lex.getLoc(); Lex.Lex(); // eat the '[' std::vector Ranges = ParseRangeList(); if (Ranges.empty()) return 0; Result = Result->convertInitListSlice(Ranges); if (Result == 0) { Error(SquareLoc, "Invalid range for list slice"); return 0; } // Eat the ']'. if (Lex.getCode() != tgtok::r_square) { TokError("expected ']' at end of list slice"); return 0; } Lex.Lex(); break; } case tgtok::period: if (Lex.Lex() != tgtok::Id) { // eat the . TokError("expected field identifier after '.'"); return 0; } if (!Result->getFieldType(Lex.getCurStrVal())) { TokError("Cannot access field '" + Lex.getCurStrVal() + "' of value '" + Result->getAsString() + "'"); return 0; } Result = FieldInit::get(Result, Lex.getCurStrVal()); Lex.Lex(); // eat field name break; case tgtok::paste: SMLoc PasteLoc = Lex.getLoc(); // Create a !strconcat() operation, first casting each operand to // a string if necessary. TypedInit *LHS = dynamic_cast(Result); if (!LHS) { Error(PasteLoc, "LHS of paste is not typed!"); return 0; } if (LHS->getType() != StringRecTy::get()) { LHS = UnOpInit::get(UnOpInit::CAST, LHS, StringRecTy::get()); } TypedInit *RHS = 0; Lex.Lex(); // Eat the '#'. switch (Lex.getCode()) { case tgtok::colon: case tgtok::semi: case tgtok::l_brace: // These are all of the tokens that can begin an object body. // Some of these can also begin values but we disallow those cases // because they are unlikely to be useful. // Trailing paste, concat with an empty string. RHS = StringInit::get(""); break; default: Init *RHSResult = ParseValue(CurRec, ItemType, ParseNameMode); RHS = dynamic_cast(RHSResult); if (!RHS) { Error(PasteLoc, "RHS of paste is not typed!"); return 0; } if (RHS->getType() != StringRecTy::get()) { RHS = UnOpInit::get(UnOpInit::CAST, RHS, StringRecTy::get()); } break; } Result = BinOpInit::get(BinOpInit::STRCONCAT, LHS, RHS, StringRecTy::get())->Fold(CurRec, CurMultiClass); break; } } } /// ParseDagArgList - Parse the argument list for a dag literal expression. /// /// ParseDagArgList ::= Value (':' VARNAME)? /// ParseDagArgList ::= ParseDagArgList ',' Value (':' VARNAME)? std::vector > TGParser::ParseDagArgList(Record *CurRec) { std::vector > Result; while (1) { Init *Val = ParseValue(CurRec); if (Val == 0) return std::vector >(); // If the variable name is present, add it. std::string VarName; if (Lex.getCode() == tgtok::colon) { if (Lex.Lex() != tgtok::VarName) { // eat the ':' TokError("expected variable name in dag literal"); return std::vector >(); } VarName = Lex.getCurStrVal(); Lex.Lex(); // eat the VarName. } Result.push_back(std::make_pair(Val, VarName)); if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat the ',' } return Result; } /// ParseValueList - Parse a comma separated list of values, returning them as a /// vector. Note that this always expects to be able to parse at least one /// value. It returns an empty list if this is not possible. /// /// ValueList ::= Value (',' Value) /// std::vector TGParser::ParseValueList(Record *CurRec, Record *ArgsRec, RecTy *EltTy) { std::vector Result; RecTy *ItemType = EltTy; unsigned int ArgN = 0; if (ArgsRec != 0 && EltTy == 0) { const std::vector &TArgs = ArgsRec->getTemplateArgs(); if (!TArgs.size()) { TokError("template argument provided to non-template class"); return std::vector(); } const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]); if (!RV) { errs() << "Cannot find template arg " << ArgN << " (" << TArgs[ArgN] << ")\n"; } assert(RV && "Template argument record not found??"); ItemType = RV->getType(); ++ArgN; } Result.push_back(ParseValue(CurRec, ItemType)); if (Result.back() == 0) return std::vector(); while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // Eat the comma if (ArgsRec != 0 && EltTy == 0) { const std::vector &TArgs = ArgsRec->getTemplateArgs(); if (ArgN >= TArgs.size()) { TokError("too many template arguments"); return std::vector(); } const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]); assert(RV && "Template argument record not found??"); ItemType = RV->getType(); ++ArgN; } Result.push_back(ParseValue(CurRec, ItemType)); if (Result.back() == 0) return std::vector(); } return Result; } /// ParseDeclaration - Read a declaration, returning the name of field ID, or an /// empty string on error. This can happen in a number of different context's, /// including within a def or in the template args for a def (which which case /// CurRec will be non-null) and within the template args for a multiclass (in /// which case CurRec will be null, but CurMultiClass will be set). This can /// also happen within a def that is within a multiclass, which will set both /// CurRec and CurMultiClass. /// /// Declaration ::= FIELD? Type ID ('=' Value)? /// Init *TGParser::ParseDeclaration(Record *CurRec, bool ParsingTemplateArgs) { // Read the field prefix if present. bool HasField = Lex.getCode() == tgtok::Field; if (HasField) Lex.Lex(); RecTy *Type = ParseType(); if (Type == 0) return 0; if (Lex.getCode() != tgtok::Id) { TokError("Expected identifier in declaration"); return 0; } SMLoc IdLoc = Lex.getLoc(); Init *DeclName = StringInit::get(Lex.getCurStrVal()); Lex.Lex(); if (ParsingTemplateArgs) { if (CurRec) { DeclName = QualifyName(*CurRec, CurMultiClass, DeclName, ":"); } else { assert(CurMultiClass); } if (CurMultiClass) DeclName = QualifyName(CurMultiClass->Rec, CurMultiClass, DeclName, "::"); } // Add the value. if (AddValue(CurRec, IdLoc, RecordVal(DeclName, Type, HasField))) return 0; // If a value is present, parse it. if (Lex.getCode() == tgtok::equal) { Lex.Lex(); SMLoc ValLoc = Lex.getLoc(); Init *Val = ParseValue(CurRec, Type); if (Val == 0 || SetValue(CurRec, ValLoc, DeclName, std::vector(), Val)) return 0; } return DeclName; } /// ParseTemplateArgList - Read a template argument list, which is a non-empty /// sequence of template-declarations in <>'s. If CurRec is non-null, these are /// template args for a def, which may or may not be in a multiclass. If null, /// these are the template args for a multiclass. /// /// TemplateArgList ::= '<' Declaration (',' Declaration)* '>' /// bool TGParser::ParseTemplateArgList(Record *CurRec) { assert(Lex.getCode() == tgtok::less && "Not a template arg list!"); Lex.Lex(); // eat the '<' Record *TheRecToAddTo = CurRec ? CurRec : &CurMultiClass->Rec; // Read the first declaration. Init *TemplArg = ParseDeclaration(CurRec, true/*templateargs*/); if (TemplArg == 0) return true; TheRecToAddTo->addTemplateArg(TemplArg); while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // eat the ',' // Read the following declarations. TemplArg = ParseDeclaration(CurRec, true/*templateargs*/); if (TemplArg == 0) return true; TheRecToAddTo->addTemplateArg(TemplArg); } if (Lex.getCode() != tgtok::greater) return TokError("expected '>' at end of template argument list"); Lex.Lex(); // eat the '>'. return false; } /// ParseBodyItem - Parse a single item at within the body of a def or class. /// /// BodyItem ::= Declaration ';' /// BodyItem ::= LET ID OptionalBitList '=' Value ';' bool TGParser::ParseBodyItem(Record *CurRec) { if (Lex.getCode() != tgtok::Let) { if (ParseDeclaration(CurRec, false) == 0) return true; if (Lex.getCode() != tgtok::semi) return TokError("expected ';' after declaration"); Lex.Lex(); return false; } // LET ID OptionalRangeList '=' Value ';' if (Lex.Lex() != tgtok::Id) return TokError("expected field identifier after let"); SMLoc IdLoc = Lex.getLoc(); std::string FieldName = Lex.getCurStrVal(); Lex.Lex(); // eat the field name. std::vector BitList; if (ParseOptionalBitList(BitList)) return true; std::reverse(BitList.begin(), BitList.end()); if (Lex.getCode() != tgtok::equal) return TokError("expected '=' in let expression"); Lex.Lex(); // eat the '='. RecordVal *Field = CurRec->getValue(FieldName); if (Field == 0) return TokError("Value '" + FieldName + "' unknown!"); RecTy *Type = Field->getType(); Init *Val = ParseValue(CurRec, Type); if (Val == 0) return true; if (Lex.getCode() != tgtok::semi) return TokError("expected ';' after let expression"); Lex.Lex(); return SetValue(CurRec, IdLoc, FieldName, BitList, Val); } /// ParseBody - Read the body of a class or def. Return true on error, false on /// success. /// /// Body ::= ';' /// Body ::= '{' BodyList '}' /// BodyList BodyItem* /// bool TGParser::ParseBody(Record *CurRec) { // If this is a null definition, just eat the semi and return. if (Lex.getCode() == tgtok::semi) { Lex.Lex(); return false; } if (Lex.getCode() != tgtok::l_brace) return TokError("Expected ';' or '{' to start body"); // Eat the '{'. Lex.Lex(); while (Lex.getCode() != tgtok::r_brace) if (ParseBodyItem(CurRec)) return true; // Eat the '}'. Lex.Lex(); return false; } /// ParseObjectBody - Parse the body of a def or class. This consists of an /// optional ClassList followed by a Body. CurRec is the current def or class /// that is being parsed. /// /// ObjectBody ::= BaseClassList Body /// BaseClassList ::= /*empty*/ /// BaseClassList ::= ':' BaseClassListNE /// BaseClassListNE ::= SubClassRef (',' SubClassRef)* /// bool TGParser::ParseObjectBody(Record *CurRec) { // If there is a baseclass list, read it. if (Lex.getCode() == tgtok::colon) { Lex.Lex(); // Read all of the subclasses. SubClassReference SubClass = ParseSubClassReference(CurRec, false); while (1) { // Check for error. if (SubClass.Rec == 0) return true; // Add it. if (AddSubClass(CurRec, SubClass)) return true; if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubClass = ParseSubClassReference(CurRec, false); } } // Process any variables on the let stack. for (unsigned i = 0, e = LetStack.size(); i != e; ++i) for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j) if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name, LetStack[i][j].Bits, LetStack[i][j].Value)) return true; return ParseBody(CurRec); } /// ParseDef - Parse and return a top level or multiclass def, return the record /// corresponding to it. This returns null on error. /// /// DefInst ::= DEF ObjectName ObjectBody /// bool TGParser::ParseDef(MultiClass *CurMultiClass) { SMLoc DefLoc = Lex.getLoc(); assert(Lex.getCode() == tgtok::Def && "Unknown tok"); Lex.Lex(); // Eat the 'def' token. // Parse ObjectName and make a record for it. Record *CurRec = new Record(ParseObjectName(CurMultiClass), DefLoc, Records); if (!CurMultiClass) { // Top-level def definition. // Ensure redefinition doesn't happen. if (Records.getDef(CurRec->getName())) { Error(DefLoc, "def '" + CurRec->getNameInitAsString() + "' already defined"); return true; } Records.addDef(CurRec); } else { // Otherwise, a def inside a multiclass, add it to the multiclass. for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size(); i != e; ++i) if (CurMultiClass->DefPrototypes[i]->getNameInit() == CurRec->getNameInit()) { Error(DefLoc, "def '" + CurRec->getNameInitAsString() + "' already defined in this multiclass!"); return true; } CurMultiClass->DefPrototypes.push_back(CurRec); } if (ParseObjectBody(CurRec)) return true; if (CurMultiClass == 0) // Def's in multiclasses aren't really defs. // See Record::setName(). This resolve step will see any new name // for the def that might have been created when resolving // inheritance, values and arguments above. CurRec->resolveReferences(); // If ObjectBody has template arguments, it's an error. assert(CurRec->getTemplateArgs().empty() && "How'd this get template args?"); if (CurMultiClass) { // Copy the template arguments for the multiclass into the def. const std::vector &TArgs = CurMultiClass->Rec.getTemplateArgs(); for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { const RecordVal *RV = CurMultiClass->Rec.getValue(TArgs[i]); assert(RV && "Template arg doesn't exist?"); CurRec->addValue(*RV); } } return false; } /// ParseClass - Parse a tblgen class definition. /// /// ClassInst ::= CLASS ID TemplateArgList? ObjectBody /// bool TGParser::ParseClass() { assert(Lex.getCode() == tgtok::Class && "Unexpected token!"); Lex.Lex(); if (Lex.getCode() != tgtok::Id) return TokError("expected class name after 'class' keyword"); Record *CurRec = Records.getClass(Lex.getCurStrVal()); if (CurRec) { // If the body was previously defined, this is an error. if (CurRec->getValues().size() > 1 || // Account for NAME. !CurRec->getSuperClasses().empty() || !CurRec->getTemplateArgs().empty()) return TokError("Class '" + CurRec->getNameInitAsString() + "' already defined"); } else { // If this is the first reference to this class, create and add it. CurRec = new Record(Lex.getCurStrVal(), Lex.getLoc(), Records); Records.addClass(CurRec); } Lex.Lex(); // eat the name. // If there are template args, parse them. if (Lex.getCode() == tgtok::less) if (ParseTemplateArgList(CurRec)) return true; // Finally, parse the object body. return ParseObjectBody(CurRec); } /// ParseLetList - Parse a non-empty list of assignment expressions into a list /// of LetRecords. /// /// LetList ::= LetItem (',' LetItem)* /// LetItem ::= ID OptionalRangeList '=' Value /// std::vector TGParser::ParseLetList() { std::vector Result; while (1) { if (Lex.getCode() != tgtok::Id) { TokError("expected identifier in let definition"); return std::vector(); } std::string Name = Lex.getCurStrVal(); SMLoc NameLoc = Lex.getLoc(); Lex.Lex(); // Eat the identifier. // Check for an optional RangeList. std::vector Bits; if (ParseOptionalRangeList(Bits)) return std::vector(); std::reverse(Bits.begin(), Bits.end()); if (Lex.getCode() != tgtok::equal) { TokError("expected '=' in let expression"); return std::vector(); } Lex.Lex(); // eat the '='. Init *Val = ParseValue(0); if (Val == 0) return std::vector(); // Now that we have everything, add the record. Result.push_back(LetRecord(Name, Bits, Val, NameLoc)); if (Lex.getCode() != tgtok::comma) return Result; Lex.Lex(); // eat the comma. } } /// ParseTopLevelLet - Parse a 'let' at top level. This can be a couple of /// different related productions. This works inside multiclasses too. /// /// Object ::= LET LetList IN '{' ObjectList '}' /// Object ::= LET LetList IN Object /// bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) { assert(Lex.getCode() == tgtok::Let && "Unexpected token"); Lex.Lex(); // Add this entry to the let stack. std::vector LetInfo = ParseLetList(); if (LetInfo.empty()) return true; LetStack.push_back(LetInfo); if (Lex.getCode() != tgtok::In) return TokError("expected 'in' at end of top-level 'let'"); Lex.Lex(); // If this is a scalar let, just handle it now if (Lex.getCode() != tgtok::l_brace) { // LET LetList IN Object if (ParseObject(CurMultiClass)) return true; } else { // Object ::= LETCommand '{' ObjectList '}' SMLoc BraceLoc = Lex.getLoc(); // Otherwise, this is a group let. Lex.Lex(); // eat the '{'. // Parse the object list. if (ParseObjectList(CurMultiClass)) return true; if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of top level let command"); return Error(BraceLoc, "to match this '{'"); } Lex.Lex(); } // Outside this let scope, this let block is not active. LetStack.pop_back(); return false; } /// ParseMultiClass - Parse a multiclass definition. /// /// MultiClassInst ::= MULTICLASS ID TemplateArgList? /// ':' BaseMultiClassList '{' MultiClassDef+ '}' /// bool TGParser::ParseMultiClass() { assert(Lex.getCode() == tgtok::MultiClass && "Unexpected token"); Lex.Lex(); // Eat the multiclass token. if (Lex.getCode() != tgtok::Id) return TokError("expected identifier after multiclass for name"); std::string Name = Lex.getCurStrVal(); if (MultiClasses.count(Name)) return TokError("multiclass '" + Name + "' already defined"); CurMultiClass = MultiClasses[Name] = new MultiClass(Name, Lex.getLoc(), Records); Lex.Lex(); // Eat the identifier. // If there are template args, parse them. if (Lex.getCode() == tgtok::less) if (ParseTemplateArgList(0)) return true; bool inherits = false; // If there are submulticlasses, parse them. if (Lex.getCode() == tgtok::colon) { inherits = true; Lex.Lex(); // Read all of the submulticlasses. SubMultiClassReference SubMultiClass = ParseSubMultiClassReference(CurMultiClass); while (1) { // Check for error. if (SubMultiClass.MC == 0) return true; // Add it. if (AddSubMultiClass(CurMultiClass, SubMultiClass)) return true; if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubMultiClass = ParseSubMultiClassReference(CurMultiClass); } } if (Lex.getCode() != tgtok::l_brace) { if (!inherits) return TokError("expected '{' in multiclass definition"); else if (Lex.getCode() != tgtok::semi) return TokError("expected ';' in multiclass definition"); else Lex.Lex(); // eat the ';'. } else { if (Lex.Lex() == tgtok::r_brace) // eat the '{'. return TokError("multiclass must contain at least one def"); while (Lex.getCode() != tgtok::r_brace) { switch (Lex.getCode()) { default: return TokError("expected 'let', 'def' or 'defm' in multiclass body"); case tgtok::Let: case tgtok::Def: case tgtok::Defm: if (ParseObject(CurMultiClass)) return true; break; } } Lex.Lex(); // eat the '}'. } CurMultiClass = 0; return false; } Record *TGParser:: InstantiateMulticlassDef(MultiClass &MC, Record *DefProto, Init *DefmPrefix, SMLoc DefmPrefixLoc) { // We need to preserve DefProto so it can be reused for later // instantiations, so create a new Record to inherit from it. // Add in the defm name. If the defm prefix is empty, give each // instantiated def a unique name. Otherwise, if "#NAME#" exists in the // name, substitute the prefix for #NAME#. Otherwise, use the defm name // as a prefix. if (DefmPrefix == 0) DefmPrefix = StringInit::get(GetNewAnonymousName()); Init *DefName = DefProto->getNameInit(); StringInit *DefNameString = dynamic_cast(DefName); if (DefNameString != 0) { // We have a fully expanded string so there are no operators to // resolve. We should concatenate the given prefix and name. DefName = BinOpInit::get(BinOpInit::STRCONCAT, UnOpInit::get(UnOpInit::CAST, DefmPrefix, StringRecTy::get())->Fold(DefProto, &MC), DefName, StringRecTy::get())->Fold(DefProto, &MC); } Record *CurRec = new Record(DefName, DefmPrefixLoc, Records); SubClassReference Ref; Ref.RefLoc = DefmPrefixLoc; Ref.Rec = DefProto; AddSubClass(CurRec, Ref); if (DefNameString == 0) { // We must resolve references to NAME. if (SetValue(CurRec, Ref.RefLoc, "NAME", std::vector(), DefmPrefix)) { Error(DefmPrefixLoc, "Could not resolve " + CurRec->getNameInitAsString() + ":NAME to '" + DefmPrefix->getAsUnquotedString() + "'"); return 0; } RecordVal *DefNameRV = CurRec->getValue("NAME"); CurRec->resolveReferencesTo(DefNameRV); } if (!CurMultiClass) { // We do this after resolving NAME because before resolution, many // multiclass defs will have the same name expression. If we are // currently in a multiclass, it means this defm appears inside a // multiclass and its name won't be fully resolvable until we see // the top-level defm. Therefore, we don't add this to the // RecordKeeper at this point. If we did we could get duplicate // defs as more than one probably refers to NAME or some other // common internal placeholder. // Ensure redefinition doesn't happen. if (Records.getDef(CurRec->getNameInitAsString())) { Error(DefmPrefixLoc, "def '" + CurRec->getNameInitAsString() + "' already defined, instantiating defm with subdef '" + DefProto->getNameInitAsString() + "'"); return 0; } Records.addDef(CurRec); } return CurRec; } bool TGParser::ResolveMulticlassDefArgs(MultiClass &MC, Record *CurRec, SMLoc DefmPrefixLoc, SMLoc SubClassLoc, const std::vector &TArgs, std::vector &TemplateVals, bool DeleteArgs) { // Loop over all of the template arguments, setting them to the specified // value or leaving them as the default if necessary. for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { // Check if a value is specified for this temp-arg. if (i < TemplateVals.size()) { // Set it now. if (SetValue(CurRec, DefmPrefixLoc, TArgs[i], std::vector(), TemplateVals[i])) return true; // Resolve it next. CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i])); if (DeleteArgs) // Now remove it. CurRec->removeValue(TArgs[i]); } else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) { return Error(SubClassLoc, "value not specified for template argument #"+ utostr(i) + " (" + TArgs[i]->getAsUnquotedString() + ") of multiclassclass '" + MC.Rec.getNameInitAsString() + "'"); } } return false; } bool TGParser::ResolveMulticlassDef(MultiClass &MC, Record *CurRec, Record *DefProto, SMLoc DefmPrefixLoc) { // If the mdef is inside a 'let' expression, add to each def. for (unsigned i = 0, e = LetStack.size(); i != e; ++i) for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j) if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name, LetStack[i][j].Bits, LetStack[i][j].Value)) return Error(DefmPrefixLoc, "when instantiating this defm"); // Don't create a top level definition for defm inside multiclasses, // instead, only update the prototypes and bind the template args // with the new created definition. if (CurMultiClass) { for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size(); i != e; ++i) if (CurMultiClass->DefPrototypes[i]->getNameInit() == CurRec->getNameInit()) return Error(DefmPrefixLoc, "defm '" + CurRec->getNameInitAsString() + "' already defined in this multiclass!"); CurMultiClass->DefPrototypes.push_back(CurRec); // Copy the template arguments for the multiclass into the new def. const std::vector &TA = CurMultiClass->Rec.getTemplateArgs(); for (unsigned i = 0, e = TA.size(); i != e; ++i) { const RecordVal *RV = CurMultiClass->Rec.getValue(TA[i]); assert(RV && "Template arg doesn't exist?"); CurRec->addValue(*RV); } } return false; } /// ParseDefm - Parse the instantiation of a multiclass. /// /// DefMInst ::= DEFM ID ':' DefmSubClassRef ';' /// bool TGParser::ParseDefm(MultiClass *CurMultiClass) { assert(Lex.getCode() == tgtok::Defm && "Unexpected token!"); Init *DefmPrefix = 0; if (Lex.Lex() == tgtok::Id) { // eat the defm. DefmPrefix = ParseObjectName(CurMultiClass); } SMLoc DefmPrefixLoc = Lex.getLoc(); if (Lex.getCode() != tgtok::colon) return TokError("expected ':' after defm identifier"); // Keep track of the new generated record definitions. std::vector NewRecDefs; // This record also inherits from a regular class (non-multiclass)? bool InheritFromClass = false; // eat the colon. Lex.Lex(); SMLoc SubClassLoc = Lex.getLoc(); SubClassReference Ref = ParseSubClassReference(0, true); while (1) { if (Ref.Rec == 0) return true; // To instantiate a multiclass, we need to first get the multiclass, then // instantiate each def contained in the multiclass with the SubClassRef // template parameters. MultiClass *MC = MultiClasses[Ref.Rec->getName()]; assert(MC && "Didn't lookup multiclass correctly?"); std::vector &TemplateVals = Ref.TemplateArgs; // Verify that the correct number of template arguments were specified. const std::vector &TArgs = MC->Rec.getTemplateArgs(); if (TArgs.size() < TemplateVals.size()) return Error(SubClassLoc, "more template args specified than multiclass expects"); // Loop over all the def's in the multiclass, instantiating each one. for (unsigned i = 0, e = MC->DefPrototypes.size(); i != e; ++i) { Record *DefProto = MC->DefPrototypes[i]; Record *CurRec = InstantiateMulticlassDef(*MC, DefProto, DefmPrefix, DefmPrefixLoc); if (!CurRec) return true; if (ResolveMulticlassDefArgs(*MC, CurRec, DefmPrefixLoc, SubClassLoc, TArgs, TemplateVals, true/*Delete args*/)) return Error(SubClassLoc, "could not instantiate def"); if (ResolveMulticlassDef(*MC, CurRec, DefProto, DefmPrefixLoc)) return Error(SubClassLoc, "could not instantiate def"); NewRecDefs.push_back(CurRec); } if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubClassLoc = Lex.getLoc(); // A defm can inherit from regular classes (non-multiclass) as // long as they come in the end of the inheritance list. InheritFromClass = (Records.getClass(Lex.getCurStrVal()) != 0); if (InheritFromClass) break; Ref = ParseSubClassReference(0, true); } if (InheritFromClass) { // Process all the classes to inherit as if they were part of a // regular 'def' and inherit all record values. SubClassReference SubClass = ParseSubClassReference(0, false); while (1) { // Check for error. if (SubClass.Rec == 0) return true; // Get the expanded definition prototypes and teach them about // the record values the current class to inherit has for (unsigned i = 0, e = NewRecDefs.size(); i != e; ++i) { Record *CurRec = NewRecDefs[i]; // Add it. if (AddSubClass(CurRec, SubClass)) return true; // Process any variables on the let stack. for (unsigned i = 0, e = LetStack.size(); i != e; ++i) for (unsigned j = 0, e = LetStack[i].size(); j != e; ++j) if (SetValue(CurRec, LetStack[i][j].Loc, LetStack[i][j].Name, LetStack[i][j].Bits, LetStack[i][j].Value)) return true; } if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubClass = ParseSubClassReference(0, false); } } if (!CurMultiClass) for (unsigned i = 0, e = NewRecDefs.size(); i != e; ++i) // See Record::setName(). This resolve step will see any new // name for the def that might have been created when resolving // inheritance, values and arguments above. NewRecDefs[i]->resolveReferences(); if (Lex.getCode() != tgtok::semi) return TokError("expected ';' at end of defm"); Lex.Lex(); return false; } /// ParseObject /// Object ::= ClassInst /// Object ::= DefInst /// Object ::= MultiClassInst /// Object ::= DefMInst /// Object ::= LETCommand '{' ObjectList '}' /// Object ::= LETCommand Object bool TGParser::ParseObject(MultiClass *MC) { switch (Lex.getCode()) { default: return TokError("Expected class, def, defm, multiclass or let definition"); case tgtok::Let: return ParseTopLevelLet(MC); case tgtok::Def: return ParseDef(MC); case tgtok::Defm: return ParseDefm(MC); case tgtok::Class: return ParseClass(); case tgtok::MultiClass: return ParseMultiClass(); } } /// ParseObjectList /// ObjectList :== Object* bool TGParser::ParseObjectList(MultiClass *MC) { while (isObjectStart(Lex.getCode())) { if (ParseObject(MC)) return true; } return false; } bool TGParser::ParseFile() { Lex.Lex(); // Prime the lexer. if (ParseObjectList()) return true; // If we have unread input at the end of the file, report it. if (Lex.getCode() == tgtok::Eof) return false; return TokError("Unexpected input at top level"); }