//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Optimizations may be specified an arbitrary number of times on the command // line, They are run in the order specified. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Bytecode/Reader.h" #include "llvm/Bytecode/WriteBytecodePass.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/PassNameParser.h" #include "llvm/System/Signals.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/Streams.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/Timer.h" #include "llvm/LinkAllPasses.h" #include "llvm/LinkAllVMCore.h" #include #include #include #include using namespace llvm; // The OptimizationList is automatically populated with registered Passes by the // PassNameParser. // static cl::list PassList(cl::desc("Optimizations available:")); static cl::opt NoCompress("disable-compression", cl::init(false), cl::desc("Don't compress the generated bytecode")); // Other command line options... // static cl::opt InputFilename(cl::Positional, cl::desc(""), cl::init("-"), cl::value_desc("filename")); static cl::opt OutputFilename("o", cl::desc("Override output filename"), cl::value_desc("filename"), cl::init("-")); static cl::opt Force("f", cl::desc("Overwrite output files")); static cl::opt PrintEachXForm("p", cl::desc("Print module after each transformation")); static cl::opt NoOutput("disable-output", cl::desc("Do not write result bytecode file"), cl::Hidden); static cl::opt NoVerify("disable-verify", cl::desc("Do not verify result module"), cl::Hidden); static cl::opt Quiet("q", cl::desc("Obsolete option"), cl::Hidden); static cl::alias QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet)); static cl::opt AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization")); static Timer BytecodeLoadTimer("Bytecode Loader"); // ---------- Define Printers for module and function passes ------------ namespace { struct ModulePassPrinter : public ModulePass { const PassInfo *PassToPrint; ModulePassPrinter(const PassInfo *PI) : PassToPrint(PI) {} virtual bool runOnModule(Module &M) { if (!Quiet) { llvm_cout << "Printing analysis '" << PassToPrint->getPassName() << "':\n"; getAnalysisID(PassToPrint).print(llvm_cout, &M); } // Get and print pass... return false; } virtual const char *getPassName() const { return "'Pass' Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; struct FunctionPassPrinter : public FunctionPass { const PassInfo *PassToPrint; FunctionPassPrinter(const PassInfo *PI) : PassToPrint(PI) {} virtual bool runOnFunction(Function &F) { if (!Quiet) { llvm_cout << "Printing analysis '" << PassToPrint->getPassName() << "' for function '" << F.getName() << "':\n"; } // Get and print pass... getAnalysisID(PassToPrint).print(llvm_cout, F.getParent()); return false; } virtual const char *getPassName() const { return "FunctionPass Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; struct BasicBlockPassPrinter : public BasicBlockPass { const PassInfo *PassToPrint; BasicBlockPassPrinter(const PassInfo *PI) : PassToPrint(PI) {} virtual bool runOnBasicBlock(BasicBlock &BB) { if (!Quiet) { llvm_cout << "Printing Analysis info for BasicBlock '" << BB.getName() << "': Pass " << PassToPrint->getPassName() << ":\n"; } // Get and print pass... getAnalysisID(PassToPrint).print( llvm_cout, BB.getParent()->getParent()); return false; } virtual const char *getPassName() const { return "BasicBlockPass Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; } // anonymous namespace //===----------------------------------------------------------------------===// // main for opt // int main(int argc, char **argv) { try { cl::ParseCommandLineOptions(argc, argv, " llvm .bc -> .bc modular optimizer and analysis printer \n"); sys::PrintStackTraceOnErrorSignal(); // Allocate a full target machine description only if necessary. // FIXME: The choice of target should be controllable on the command line. std::auto_ptr target; std::string ErrorMessage; // Load the input module... std::auto_ptr M(ParseBytecodeFile(InputFilename, &ErrorMessage)); if (M.get() == 0) { llvm_cerr << argv[0] << ": "; if (ErrorMessage.size()) llvm_cerr << ErrorMessage << "\n"; else llvm_cerr << "bytecode didn't read correctly.\n"; return 1; } // Figure out what stream we are supposed to write to... // FIXME: cout is not binary! std::ostream *Out = &std::cout; // Default to printing to stdout... if (OutputFilename != "-") { if (!Force && std::ifstream(OutputFilename.c_str())) { // If force is not specified, make sure not to overwrite a file! llvm_cerr << argv[0] << ": error opening '" << OutputFilename << "': file exists!\n" << "Use -f command line argument to force output\n"; return 1; } std::ios::openmode io_mode = std::ios::out | std::ios::trunc | std::ios::binary; Out = new std::ofstream(OutputFilename.c_str(), io_mode); if (!Out->good()) { llvm_cerr << argv[0] << ": error opening " << OutputFilename << "!\n"; return 1; } // Make sure that the Output file gets unlinked from the disk if we get a // SIGINT sys::RemoveFileOnSignal(sys::Path(OutputFilename)); } // If the output is set to be emitted to standard out, and standard out is a // console, print out a warning message and refuse to do it. We don't // impress anyone by spewing tons of binary goo to a terminal. if (!Force && !NoOutput && CheckBytecodeOutputToConsole(Out,!Quiet)) { NoOutput = true; } // Create a PassManager to hold and optimize the collection of passes we are // about to build... // PassManager Passes; // Add an appropriate TargetData instance for this module... Passes.add(new TargetData(M.get())); // Create a new optimization pass for each one specified on the command line for (unsigned i = 0; i < PassList.size(); ++i) { const PassInfo *PassInf = PassList[i]; Pass *P = 0; if (PassInf->getNormalCtor()) P = PassInf->getNormalCtor()(); else llvm_cerr << argv[0] << ": cannot create pass: " << PassInf->getPassName() << "\n"; if (P) { Passes.add(P); if (AnalyzeOnly) { if (dynamic_cast(P)) Passes.add(new BasicBlockPassPrinter(PassInf)); else if (dynamic_cast(P)) Passes.add(new FunctionPassPrinter(PassInf)); else Passes.add(new ModulePassPrinter(PassInf)); } } if (PrintEachXForm) Passes.add(new PrintModulePass(&llvm_cerr)); } // Check that the module is well formed on completion of optimization if (!NoVerify) Passes.add(createVerifierPass()); // Write bytecode out to disk or cout as the last step... llvm_ostream L(*Out); if (!NoOutput && !AnalyzeOnly) Passes.add(new WriteBytecodePass(&L, false, !NoCompress)); // Now that we have all of the passes ready, run them. Passes.run(*M.get()); return 0; } catch (const std::string& msg) { llvm_cerr << argv[0] << ": " << msg << "\n"; } catch (...) { llvm_cerr << argv[0] << ": Unexpected unknown exception occurred.\n"; } return 1; }