//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass statically checks for common and easily-identified constructs // which produce undefined or likely unintended behavior in LLVM IR. // // It is not a guarantee of correctness, in two ways. First, it isn't // comprehensive. There are checks which could be done statically which are // not yet implemented. Some of these are indicated by TODO comments, but // those aren't comprehensive either. Second, many conditions cannot be // checked statically. This pass does no dynamic instrumentation, so it // can't check for all possible problems. // // Another limitation is that it assumes all code will be executed. A store // through a null pointer in a basic block which is never reached is harmless, // but this pass will warn about it anyway. // Optimization passes may make conditions that this pass checks for more or // less obvious. If an optimization pass appears to be introducing a warning, // it may be that the optimization pass is merely exposing an existing // condition in the code. // // This code may be run before instcombine. In many cases, instcombine checks // for the same kinds of things and turns instructions with undefined behavior // into unreachable (or equivalent). Because of this, this pass makes some // effort to look through bitcasts and so on. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Lint.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/Target/TargetData.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/IntrinsicInst.h" #include "llvm/Function.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; namespace { class Lint : public FunctionPass, public InstVisitor { friend class InstVisitor; void visitFunction(Function &F); void visitCallSite(CallSite CS); void visitMemoryReference(Instruction &I, Value *Ptr, unsigned Align, const Type *Ty); void visitCallInst(CallInst &I); void visitInvokeInst(InvokeInst &I); void visitReturnInst(ReturnInst &I); void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitXor(BinaryOperator &I); void visitSub(BinaryOperator &I); void visitLShr(BinaryOperator &I); void visitAShr(BinaryOperator &I); void visitShl(BinaryOperator &I); void visitSDiv(BinaryOperator &I); void visitUDiv(BinaryOperator &I); void visitSRem(BinaryOperator &I); void visitURem(BinaryOperator &I); void visitAllocaInst(AllocaInst &I); void visitVAArgInst(VAArgInst &I); void visitIndirectBrInst(IndirectBrInst &I); void visitExtractElementInst(ExtractElementInst &I); void visitInsertElementInst(InsertElementInst &I); void visitUnreachableInst(UnreachableInst &I); public: Module *Mod; AliasAnalysis *AA; TargetData *TD; std::string Messages; raw_string_ostream MessagesStr; static char ID; // Pass identification, replacement for typeid Lint() : FunctionPass(&ID), MessagesStr(Messages) {} virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } virtual void print(raw_ostream &O, const Module *M) const {} void WriteValue(const Value *V) { if (!V) return; if (isa(V)) { MessagesStr << *V << '\n'; } else { WriteAsOperand(MessagesStr, V, true, Mod); MessagesStr << '\n'; } } void WriteType(const Type *T) { if (!T) return; MessagesStr << ' '; WriteTypeSymbolic(MessagesStr, T, Mod); } // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. void CheckFailed(const Twine &Message, const Value *V1 = 0, const Value *V2 = 0, const Value *V3 = 0, const Value *V4 = 0) { MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteValue(V2); WriteValue(V3); WriteValue(V4); } void CheckFailed(const Twine &Message, const Value *V1, const Type *T2, const Value *V3 = 0) { MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteType(T2); WriteValue(V3); } void CheckFailed(const Twine &Message, const Type *T1, const Type *T2 = 0, const Type *T3 = 0) { MessagesStr << Message.str() << "\n"; WriteType(T1); WriteType(T2); WriteType(T3); } }; } char Lint::ID = 0; static RegisterPass X("lint", "Statically lint-checks LLVM IR", false, true); // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ do { if (!(C)) { CheckFailed(M); return; } } while (0) #define Assert1(C, M, V1) \ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) #define Assert2(C, M, V1, V2) \ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) #define Assert3(C, M, V1, V2, V3) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) // Lint::run - This is the main Analysis entry point for a // function. // bool Lint::runOnFunction(Function &F) { Mod = F.getParent(); AA = &getAnalysis(); TD = getAnalysisIfAvailable(); visit(F); dbgs() << MessagesStr.str(); return false; } void Lint::visitFunction(Function &F) { // This isn't undefined behavior, it's just a little unusual, and it's a // fairly common mistake to neglect to name a function. Assert1(F.hasName() || F.hasLocalLinkage(), "Unusual: Unnamed function with non-local linkage", &F); } void Lint::visitCallSite(CallSite CS) { Instruction &I = *CS.getInstruction(); Value *Callee = CS.getCalledValue(); // TODO: Check function alignment? visitMemoryReference(I, Callee, 0, 0); if (Function *F = dyn_cast(Callee->stripPointerCasts())) { Assert1(CS.getCallingConv() == F->getCallingConv(), "Undefined behavior: Caller and callee calling convention differ", &I); const FunctionType *FT = F->getFunctionType(); unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); Assert1(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs : FT->getNumParams() == NumActualArgs, "Undefined behavior: Call argument count mismatches callee " "argument count", &I); // TODO: Check argument types (in case the callee was casted) // TODO: Check ABI-significant attributes. // TODO: Check noalias attribute. // TODO: Check sret attribute. } // TODO: Check the "tail" keyword constraints. if (IntrinsicInst *II = dyn_cast(&I)) switch (II->getIntrinsicID()) { default: break; // TODO: Check more intrinsics case Intrinsic::memcpy: { MemCpyInst *MCI = cast(&I); visitMemoryReference(I, MCI->getSource(), MCI->getAlignment(), 0); visitMemoryReference(I, MCI->getDest(), MCI->getAlignment(), 0); // Check that the memcpy arguments don't overlap. The AliasAnalysis API // isn't expressive enough for what we really want to do. Known partial // overlap is not distinguished from the case where nothing is known. unsigned Size = 0; if (const ConstantInt *Len = dyn_cast(MCI->getLength()->stripPointerCasts())) if (Len->getValue().isIntN(32)) Size = Len->getValue().getZExtValue(); Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != AliasAnalysis::MustAlias, "Undefined behavior: memcpy source and destination overlap", &I); break; } case Intrinsic::memmove: { MemMoveInst *MMI = cast(&I); visitMemoryReference(I, MMI->getSource(), MMI->getAlignment(), 0); visitMemoryReference(I, MMI->getDest(), MMI->getAlignment(), 0); break; } case Intrinsic::memset: { MemSetInst *MSI = cast(&I); visitMemoryReference(I, MSI->getDest(), MSI->getAlignment(), 0); break; } case Intrinsic::vastart: Assert1(I.getParent()->getParent()->isVarArg(), "Undefined behavior: va_start called in a non-varargs function", &I); visitMemoryReference(I, CS.getArgument(0), 0, 0); break; case Intrinsic::vacopy: visitMemoryReference(I, CS.getArgument(0), 0, 0); visitMemoryReference(I, CS.getArgument(1), 0, 0); break; case Intrinsic::vaend: visitMemoryReference(I, CS.getArgument(0), 0, 0); break; case Intrinsic::stackrestore: visitMemoryReference(I, CS.getArgument(0), 0, 0); break; } } void Lint::visitCallInst(CallInst &I) { return visitCallSite(&I); } void Lint::visitInvokeInst(InvokeInst &I) { return visitCallSite(&I); } void Lint::visitReturnInst(ReturnInst &I) { Function *F = I.getParent()->getParent(); Assert1(!F->doesNotReturn(), "Unusual: Return statement in function with noreturn attribute", &I); } // TODO: Add a length argument and check that the reference is in bounds // TODO: Add read/write/execute flags and check for writing to read-only // memory or jumping to suspicious writeable memory void Lint::visitMemoryReference(Instruction &I, Value *Ptr, unsigned Align, const Type *Ty) { Value *UnderlyingObject = Ptr->getUnderlyingObject(); Assert1(!isa(UnderlyingObject), "Undefined behavior: Null pointer dereference", &I); Assert1(!isa(UnderlyingObject), "Undefined behavior: Undef pointer dereference", &I); if (TD) { if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty); if (Align != 0) { unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType()); APInt Mask = APInt::getAllOnesValue(BitWidth), KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD); Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))), "Undefined behavior: Memory reference address is misaligned", &I); } } } void Lint::visitLoadInst(LoadInst &I) { visitMemoryReference(I, I.getPointerOperand(), I.getAlignment(), I.getType()); } void Lint::visitStoreInst(StoreInst &I) { visitMemoryReference(I, I.getPointerOperand(), I.getAlignment(), I.getOperand(0)->getType()); } void Lint::visitXor(BinaryOperator &I) { Assert1(!isa(I.getOperand(0)) || !isa(I.getOperand(1)), "Undefined result: xor(undef, undef)", &I); } void Lint::visitSub(BinaryOperator &I) { Assert1(!isa(I.getOperand(0)) || !isa(I.getOperand(1)), "Undefined result: sub(undef, undef)", &I); } void Lint::visitLShr(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(I.getOperand(1)->stripPointerCasts())) Assert1(CI->getValue().ult(cast(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } void Lint::visitAShr(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(I.getOperand(1)->stripPointerCasts())) Assert1(CI->getValue().ult(cast(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } void Lint::visitShl(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(I.getOperand(1)->stripPointerCasts())) Assert1(CI->getValue().ult(cast(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } static bool isZero(Value *V, TargetData *TD) { // Assume undef could be zero. if (isa(V)) return true; unsigned BitWidth = cast(V->getType())->getBitWidth(); APInt Mask = APInt::getAllOnesValue(BitWidth), KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); return KnownZero.isAllOnesValue(); } void Lint::visitSDiv(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitUDiv(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitSRem(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitURem(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitAllocaInst(AllocaInst &I) { if (isa(I.getArraySize())) // This isn't undefined behavior, it's just an obvious pessimization. Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), "Pessimization: Static alloca outside of entry block", &I); } void Lint::visitVAArgInst(VAArgInst &I) { visitMemoryReference(I, I.getOperand(0), 0, 0); } void Lint::visitIndirectBrInst(IndirectBrInst &I) { visitMemoryReference(I, I.getAddress(), 0, 0); } void Lint::visitExtractElementInst(ExtractElementInst &I) { if (ConstantInt *CI = dyn_cast(I.getIndexOperand()->stripPointerCasts())) Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), "Undefined result: extractelement index out of range", &I); } void Lint::visitInsertElementInst(InsertElementInst &I) { if (ConstantInt *CI = dyn_cast(I.getOperand(2)->stripPointerCasts())) Assert1(CI->getValue().ult(I.getType()->getNumElements()), "Undefined result: insertelement index out of range", &I); } void Lint::visitUnreachableInst(UnreachableInst &I) { // This isn't undefined behavior, it's merely suspicious. Assert1(&I == I.getParent()->begin() || prior(BasicBlock::iterator(&I))->mayHaveSideEffects(), "Unusual: unreachable immediately preceded by instruction without " "side effects", &I); } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// FunctionPass *llvm::createLintPass() { return new Lint(); } /// lintFunction - Check a function for errors, printing messages on stderr. /// void llvm::lintFunction(const Function &f) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot lint external functions"); FunctionPassManager FPM(F.getParent()); Lint *V = new Lint(); FPM.add(V); FPM.run(F); } /// lintModule - Check a module for errors, printing messages on stderr. /// Return true if the module is corrupt. /// void llvm::lintModule(const Module &M, std::string *ErrorInfo) { PassManager PM; Lint *V = new Lint(); PM.add(V); PM.run(const_cast(M)); if (ErrorInfo) *ErrorInfo = V->MessagesStr.str(); }