//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the machine instruction level pre-register allocation // live interval splitting pass. It finds live interval barriers, i.e. // instructions which will kill all physical registers in certain register // classes, and split all live intervals which cross the barrier. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-alloc-split" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; static cl::opt PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden); STATISTIC(NumSplits, "Number of intervals split"); STATISTIC(NumRemats, "Number of intervals split by rematerialization"); STATISTIC(NumFolds, "Number of intervals split with spill folding"); STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers"); namespace { class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass { MachineFunction *CurrMF; const TargetMachine *TM; const TargetInstrInfo *TII; MachineFrameInfo *MFI; MachineRegisterInfo *MRI; LiveIntervals *LIs; LiveStacks *LSs; // Barrier - Current barrier being processed. MachineInstr *Barrier; // BarrierMBB - Basic block where the barrier resides in. MachineBasicBlock *BarrierMBB; // Barrier - Current barrier index. unsigned BarrierIdx; // CurrLI - Current live interval being split. LiveInterval *CurrLI; // CurrSLI - Current stack slot live interval. LiveInterval *CurrSLI; // CurrSValNo - Current val# for the stack slot live interval. VNInfo *CurrSValNo; // IntervalSSMap - A map from live interval to spill slots. DenseMap IntervalSSMap; // Def2SpillMap - A map from a def instruction index to spill index. DenseMap Def2SpillMap; public: static char ID; PreAllocSplitting() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); if (StrongPHIElim) AU.addPreservedID(StrongPHIEliminationID); else AU.addPreservedID(PHIEliminationID); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { IntervalSSMap.clear(); Def2SpillMap.clear(); } virtual const char *getPassName() const { return "Pre-Register Allocaton Live Interval Splitting"; } /// print - Implement the dump method. virtual void print(std::ostream &O, const Module* M = 0) const { LIs->print(O, M); } void print(std::ostream *O, const Module* M = 0) const { if (O) print(*O, M); } private: MachineBasicBlock::iterator findNextEmptySlot(MachineBasicBlock*, MachineInstr*, unsigned&); MachineBasicBlock::iterator findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*, SmallPtrSet&, unsigned&); MachineBasicBlock::iterator findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned, SmallPtrSet&, unsigned&); int CreateSpillStackSlot(unsigned, const TargetRegisterClass *); bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned, unsigned&, int&) const; void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned); VNInfo* UpdateRegisterInterval(VNInfo*, unsigned, unsigned); bool ShrinkWrapToLastUse(MachineBasicBlock*, VNInfo*, SmallVector&, SmallPtrSet&); void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*, MachineBasicBlock*, MachineBasicBlock*, SmallPtrSet&, DenseMap >&, DenseMap >&, SmallVector&); bool SplitRegLiveInterval(LiveInterval*); bool SplitRegLiveIntervals(const TargetRegisterClass **); void RepairLiveInterval(LiveInterval* CurrLI, VNInfo* ValNo, MachineInstr* DefMI, unsigned RestoreIdx); bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, MachineBasicBlock* BarrierMBB); bool Rematerialize(unsigned vreg, VNInfo* ValNo, MachineInstr* DefMI, MachineBasicBlock::iterator RestorePt, unsigned RestoreIdx, SmallPtrSet& RefsInMBB); MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC, MachineInstr* DefMI, MachineInstr* Barrier, MachineBasicBlock* MBB, int& SS, SmallPtrSet& RefsInMBB); void RenumberValno(VNInfo* VN); }; } // end anonymous namespace char PreAllocSplitting::ID = 0; static RegisterPass X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting"); const PassInfo *const llvm::PreAllocSplittingID = &X; /// findNextEmptySlot - Find a gap after the given machine instruction in the /// instruction index map. If there isn't one, return end(). MachineBasicBlock::iterator PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI, unsigned &SpotIndex) { MachineBasicBlock::iterator MII = MI; if (++MII != MBB->end()) { unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII)); if (Index) { SpotIndex = Index; return MII; } } return MBB->end(); } /// findSpillPoint - Find a gap as far away from the given MI that's suitable /// for spilling the current live interval. The index must be before any /// defs and uses of the live interval register in the mbb. Return begin() if /// none is found. MachineBasicBlock::iterator PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI, MachineInstr *DefMI, SmallPtrSet &RefsInMBB, unsigned &SpillIndex) { MachineBasicBlock::iterator Pt = MBB->begin(); // Go top down if RefsInMBB is empty. if (RefsInMBB.empty() && !DefMI) { MachineBasicBlock::iterator MII = MBB->begin(); MachineBasicBlock::iterator EndPt = MI; do { ++MII; unsigned Index = LIs->getInstructionIndex(MII); unsigned Gap = LIs->findGapBeforeInstr(Index); if (Gap) { Pt = MII; SpillIndex = Gap; break; } } while (MII != EndPt); } else { MachineBasicBlock::iterator MII = MI; MachineBasicBlock::iterator EndPt = DefMI ? MachineBasicBlock::iterator(DefMI) : MBB->begin(); while (MII != EndPt && !RefsInMBB.count(MII)) { unsigned Index = LIs->getInstructionIndex(MII); if (LIs->hasGapBeforeInstr(Index)) { Pt = MII; SpillIndex = LIs->findGapBeforeInstr(Index, true); } --MII; } } return Pt; } /// findRestorePoint - Find a gap in the instruction index map that's suitable /// for restoring the current live interval value. The index must be before any /// uses of the live interval register in the mbb. Return end() if none is /// found. MachineBasicBlock::iterator PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI, unsigned LastIdx, SmallPtrSet &RefsInMBB, unsigned &RestoreIndex) { // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb // begin index accordingly. MachineBasicBlock::iterator Pt = MBB->end(); unsigned EndIdx = LIs->getMBBEndIdx(MBB); // Go bottom up if RefsInMBB is empty and the end of the mbb isn't beyond // the last index in the live range. if (RefsInMBB.empty() && LastIdx >= EndIdx) { MachineBasicBlock::iterator MII = MBB->getFirstTerminator(); MachineBasicBlock::iterator EndPt = MI; --MII; do { unsigned Index = LIs->getInstructionIndex(MII); unsigned Gap = LIs->findGapBeforeInstr(Index); if (Gap) { Pt = MII; RestoreIndex = Gap; break; } --MII; } while (MII != EndPt); } else { MachineBasicBlock::iterator MII = MI; MII = ++MII; // FIXME: Limit the number of instructions to examine to reduce // compile time? while (MII != MBB->end()) { unsigned Index = LIs->getInstructionIndex(MII); if (Index > LastIdx) break; unsigned Gap = LIs->findGapBeforeInstr(Index); if (Gap) { Pt = MII; RestoreIndex = Gap; } if (RefsInMBB.count(MII)) break; ++MII; } } return Pt; } /// CreateSpillStackSlot - Create a stack slot for the live interval being /// split. If the live interval was previously split, just reuse the same /// slot. int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg, const TargetRegisterClass *RC) { int SS; DenseMap::iterator I = IntervalSSMap.find(Reg); if (I != IntervalSSMap.end()) { SS = I->second; } else { SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment()); IntervalSSMap[Reg] = SS; } // Create live interval for stack slot. CurrSLI = &LSs->getOrCreateInterval(SS); if (CurrSLI->hasAtLeastOneValue()) CurrSValNo = CurrSLI->getValNumInfo(0); else CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator()); return SS; } /// IsAvailableInStack - Return true if register is available in a split stack /// slot at the specified index. bool PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB, unsigned Reg, unsigned DefIndex, unsigned RestoreIndex, unsigned &SpillIndex, int& SS) const { if (!DefMBB) return false; DenseMap::iterator I = IntervalSSMap.find(Reg); if (I == IntervalSSMap.end()) return false; DenseMap::iterator II = Def2SpillMap.find(DefIndex); if (II == Def2SpillMap.end()) return false; // If last spill of def is in the same mbb as barrier mbb (where restore will // be), make sure it's not below the intended restore index. // FIXME: Undo the previous spill? assert(LIs->getMBBFromIndex(II->second) == DefMBB); if (DefMBB == BarrierMBB && II->second >= RestoreIndex) return false; SS = I->second; SpillIndex = II->second; return true; } /// UpdateSpillSlotInterval - Given the specified val# of the register live /// interval being split, and the spill and restore indicies, update the live /// interval of the spill stack slot. void PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex, unsigned RestoreIndex) { assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && "Expect restore in the barrier mbb"); MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex); if (MBB == BarrierMBB) { // Intra-block spill + restore. We are done. LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo); CurrSLI->addRange(SLR); return; } SmallPtrSet Processed; unsigned EndIdx = LIs->getMBBEndIdx(MBB); LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo); CurrSLI->addRange(SLR); Processed.insert(MBB); // Start from the spill mbb, figure out the extend of the spill slot's // live interval. SmallVector WorkList; const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex); if (LR->end > EndIdx) // If live range extend beyond end of mbb, add successors to work list. for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) WorkList.push_back(*SI); while (!WorkList.empty()) { MachineBasicBlock *MBB = WorkList.back(); WorkList.pop_back(); if (Processed.count(MBB)) continue; unsigned Idx = LIs->getMBBStartIdx(MBB); LR = CurrLI->getLiveRangeContaining(Idx); if (LR && LR->valno == ValNo) { EndIdx = LIs->getMBBEndIdx(MBB); if (Idx <= RestoreIndex && RestoreIndex < EndIdx) { // Spill slot live interval stops at the restore. LiveRange SLR(Idx, RestoreIndex, CurrSValNo); CurrSLI->addRange(SLR); } else if (LR->end > EndIdx) { // Live range extends beyond end of mbb, process successors. LiveRange SLR(Idx, EndIdx+1, CurrSValNo); CurrSLI->addRange(SLR); for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) WorkList.push_back(*SI); } else { LiveRange SLR(Idx, LR->end, CurrSValNo); CurrSLI->addRange(SLR); } Processed.insert(MBB); } } } /// UpdateRegisterInterval - Given the specified val# of the current live /// interval is being split, and the spill and restore indices, update the live /// interval accordingly. VNInfo* PreAllocSplitting::UpdateRegisterInterval(VNInfo *ValNo, unsigned SpillIndex, unsigned RestoreIndex) { assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && "Expect restore in the barrier mbb"); SmallVector, 4> Before; SmallVector, 4> After; SmallVector BeforeKills; SmallVector AfterKills; SmallPtrSet Processed; // First, let's figure out which parts of the live interval is now defined // by the restore, which are defined by the original definition. const LiveRange *LR = CurrLI->getLiveRangeContaining(RestoreIndex); After.push_back(std::make_pair(RestoreIndex, LR->end)); if (CurrLI->isKill(ValNo, LR->end)) AfterKills.push_back(LR->end); assert(LR->contains(SpillIndex)); if (SpillIndex > LR->start) { Before.push_back(std::make_pair(LR->start, SpillIndex)); BeforeKills.push_back(SpillIndex); } Processed.insert(LR); // Start from the restore mbb, figure out what part of the live interval // are defined by the restore. SmallVector WorkList; MachineBasicBlock *MBB = BarrierMBB; for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) WorkList.push_back(*SI); SmallPtrSet ProcessedBlocks; ProcessedBlocks.insert(MBB); while (!WorkList.empty()) { MBB = WorkList.back(); WorkList.pop_back(); unsigned Idx = LIs->getMBBStartIdx(MBB); LR = CurrLI->getLiveRangeContaining(Idx); if (LR && LR->valno == ValNo && !Processed.count(LR)) { After.push_back(std::make_pair(LR->start, LR->end)); if (CurrLI->isKill(ValNo, LR->end)) AfterKills.push_back(LR->end); Idx = LIs->getMBBEndIdx(MBB); if (LR->end > Idx) { // Live range extend beyond at least one mbb. Let's see what other // mbbs it reaches. LIs->findReachableMBBs(LR->start, LR->end, WorkList); } Processed.insert(LR); } ProcessedBlocks.insert(MBB); if (LR) for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) if (!ProcessedBlocks.count(*SI)) WorkList.push_back(*SI); } for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end(); I != E; ++I) { LiveRange *LR = I; if (LR->valno == ValNo && !Processed.count(LR)) { Before.push_back(std::make_pair(LR->start, LR->end)); if (CurrLI->isKill(ValNo, LR->end)) BeforeKills.push_back(LR->end); } } // Now create new val#s to represent the live ranges defined by the old def // those defined by the restore. unsigned AfterDef = ValNo->def; MachineInstr *AfterCopy = ValNo->copy; bool HasPHIKill = ValNo->hasPHIKill; CurrLI->removeValNo(ValNo); VNInfo *BValNo = (Before.empty()) ? NULL : CurrLI->getNextValue(AfterDef, AfterCopy, LIs->getVNInfoAllocator()); if (BValNo) CurrLI->addKills(BValNo, BeforeKills); VNInfo *AValNo = (After.empty()) ? NULL : CurrLI->getNextValue(RestoreIndex, 0, LIs->getVNInfoAllocator()); if (AValNo) { AValNo->hasPHIKill = HasPHIKill; CurrLI->addKills(AValNo, AfterKills); } for (unsigned i = 0, e = Before.size(); i != e; ++i) { unsigned Start = Before[i].first; unsigned End = Before[i].second; CurrLI->addRange(LiveRange(Start, End, BValNo)); } for (unsigned i = 0, e = After.size(); i != e; ++i) { unsigned Start = After[i].first; unsigned End = After[i].second; CurrLI->addRange(LiveRange(Start, End, AValNo)); } return AValNo; } /// ShrinkWrapToLastUse - There are uses of the current live interval in the /// given block, shrink wrap the live interval to the last use (i.e. remove /// from last use to the end of the mbb). In case mbb is the where the barrier /// is, remove from the last use to the barrier. bool PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB, VNInfo *ValNo, SmallVector &Uses, SmallPtrSet &UseMIs) { MachineOperand *LastMO = 0; MachineInstr *LastMI = 0; if (MBB != BarrierMBB && Uses.size() == 1) { // Single use, no need to traverse the block. We can't assume this for the // barrier bb though since the use is probably below the barrier. LastMO = Uses[0]; LastMI = LastMO->getParent(); } else { MachineBasicBlock::iterator MEE = MBB->begin(); MachineBasicBlock::iterator MII; if (MBB == BarrierMBB) MII = Barrier; else MII = MBB->end(); while (MII != MEE) { --MII; MachineInstr *UseMI = &*MII; if (!UseMIs.count(UseMI)) continue; for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(i); if (MO.isReg() && MO.getReg() == CurrLI->reg) { LastMO = &MO; break; } } LastMI = UseMI; break; } } // Cut off live range from last use (or beginning of the mbb if there // are no uses in it) to the end of the mbb. unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1; if (LastMI) { RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1; assert(!LastMO->isKill() && "Last use already terminates the interval?"); LastMO->setIsKill(); } else { assert(MBB == BarrierMBB); RangeStart = LIs->getMBBStartIdx(MBB); } if (MBB == BarrierMBB) RangeEnd = LIs->getUseIndex(BarrierIdx)+1; CurrLI->removeRange(RangeStart, RangeEnd); if (LastMI) CurrLI->addKill(ValNo, RangeStart); // Return true if the last use becomes a new kill. return LastMI; } /// ShrinkWrapLiveInterval - Recursively traverse the predecessor /// chain to find the new 'kills' and shrink wrap the live interval to the /// new kill indices. void PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB, MachineBasicBlock *SuccMBB, MachineBasicBlock *DefMBB, SmallPtrSet &Visited, DenseMap > &Uses, DenseMap > &UseMIs, SmallVector &UseMBBs) { if (Visited.count(MBB)) return; // If live interval is live in another successor path, then we can't process // this block. But we may able to do so after all the successors have been // processed. if (MBB != BarrierMBB) { for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { MachineBasicBlock *SMBB = *SI; if (SMBB == SuccMBB) continue; if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB))) return; } } Visited.insert(MBB); DenseMap >::iterator UMII = Uses.find(MBB); if (UMII != Uses.end()) { // At least one use in this mbb, lets look for the kill. DenseMap >::iterator UMII2 = UseMIs.find(MBB); if (ShrinkWrapToLastUse(MBB, ValNo, UMII->second, UMII2->second)) // Found a kill, shrink wrapping of this path ends here. return; } else if (MBB == DefMBB) { // There are no uses after the def. MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def); if (UseMBBs.empty()) { // The only use must be below barrier in the barrier block. It's safe to // remove the def. LIs->RemoveMachineInstrFromMaps(DefMI); DefMI->eraseFromParent(); CurrLI->removeRange(ValNo->def, LIs->getMBBEndIdx(MBB)+1); } } else if (MBB == BarrierMBB) { // Remove entire live range from start of mbb to barrier. CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getUseIndex(BarrierIdx)+1); } else { // Remove entire live range of the mbb out of the live interval. CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB)+1); } if (MBB == DefMBB) // Reached the def mbb, stop traversing this path further. return; // Traverse the pathes up the predecessor chains further. for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { MachineBasicBlock *Pred = *PI; if (Pred == MBB) continue; if (Pred == DefMBB && ValNo->hasPHIKill) // Pred is the def bb and the def reaches other val#s, we must // allow the value to be live out of the bb. continue; if (!CurrLI->liveAt(LIs->getMBBEndIdx(Pred)-1)) return; ShrinkWrapLiveInterval(ValNo, Pred, MBB, DefMBB, Visited, Uses, UseMIs, UseMBBs); } return; } void PreAllocSplitting::RepairLiveInterval(LiveInterval* CurrLI, VNInfo* ValNo, MachineInstr* DefMI, unsigned RestoreIdx) { // Shrink wrap the live interval by walking up the CFG and find the // new kills. // Now let's find all the uses of the val#. DenseMap > Uses; DenseMap > UseMIs; SmallPtrSet Seen; SmallVector UseMBBs; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg), UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = UseMO.getParent(); unsigned UseIdx = LIs->getInstructionIndex(UseMI); LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx); if (ULR->valno != ValNo) continue; MachineBasicBlock *UseMBB = UseMI->getParent(); // Remember which other mbb's use this val#. if (Seen.insert(UseMBB) && UseMBB != BarrierMBB) UseMBBs.push_back(UseMBB); DenseMap >::iterator UMII = Uses.find(UseMBB); if (UMII != Uses.end()) { DenseMap >::iterator UMII2 = UseMIs.find(UseMBB); UMII->second.push_back(&UseMO); UMII2->second.insert(UseMI); } else { SmallVector Ops; Ops.push_back(&UseMO); Uses.insert(std::make_pair(UseMBB, Ops)); SmallPtrSet MIs; MIs.insert(UseMI); UseMIs.insert(std::make_pair(UseMBB, MIs)); } } // Walk up the predecessor chains. SmallPtrSet Visited; ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMI->getParent(), Visited, Uses, UseMIs, UseMBBs); // Remove live range from barrier to the restore. FIXME: Find a better // point to re-start the live interval. VNInfo* AfterValNo = UpdateRegisterInterval(ValNo, LIs->getUseIndex(BarrierIdx)+1, LIs->getDefIndex(RestoreIdx)); // Attempt to renumber the new valno into a new vreg. RenumberValno(AfterValNo); } /// RenumberValno - Split the given valno out into a new vreg, allowing it to /// be allocated to a different register. This function creates a new vreg, /// copies the valno and its live ranges over to the new vreg's interval, /// removes them from the old interval, and rewrites all uses and defs of /// the original reg to the new vreg within those ranges. void PreAllocSplitting::RenumberValno(VNInfo* VN) { SmallVector Stack; SmallVector VNsToCopy; Stack.push_back(VN); // Walk through and copy the valno we care about, and any other valnos // that are two-address redefinitions of the one we care about. These // will need to be rewritten as well. We also check for safety of the // renumbering here, by making sure that none of the valno involved has // phi kills. while (!Stack.empty()) { VNInfo* OldVN = Stack.back(); Stack.pop_back(); // Bail out if we ever encounter a valno that has a PHI kill. We can't // renumber these. if (OldVN->hasPHIKill) return; VNsToCopy.push_back(OldVN); // Locate two-address redefinitions for (SmallVector::iterator KI = OldVN->kills.begin(), KE = OldVN->kills.end(); KI != KE; ++KI) { MachineInstr* MI = LIs->getInstructionFromIndex(*KI); //if (!MI) continue; unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg); if (DefIdx == ~0U) continue; if (MI->isRegReDefinedByTwoAddr(DefIdx)) { VNInfo* NextVN = CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(*KI)); Stack.push_back(NextVN); } } } // Create the new vreg unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg)); // Create the new live interval LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg); for (SmallVector::iterator OI = VNsToCopy.begin(), OE = VNsToCopy.end(); OI != OE; ++OI) { VNInfo* OldVN = *OI; // Copy the valno over VNInfo* NewVN = NewLI.getNextValue(OldVN->def, OldVN->copy, LIs->getVNInfoAllocator()); NewLI.copyValNumInfo(NewVN, OldVN); NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN); // Remove the valno from the old interval CurrLI->removeValNo(OldVN); } // Rewrite defs and uses. This is done in two stages to avoid invalidating // the reg_iterator. SmallVector, 8> OpsToChange; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), E = MRI->reg_end(); I != E; ++I) { MachineOperand& MO = I.getOperand(); unsigned InstrIdx = LIs->getInstructionIndex(&*I); if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) || (MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx)))) OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo())); } for (SmallVector, 8>::iterator I = OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) { MachineInstr* Inst = I->first; unsigned OpIdx = I->second; MachineOperand& MO = Inst->getOperand(OpIdx); MO.setReg(NewVReg); } NumRenumbers++; } bool PreAllocSplitting::Rematerialize(unsigned vreg, VNInfo* ValNo, MachineInstr* DefMI, MachineBasicBlock::iterator RestorePt, unsigned RestoreIdx, SmallPtrSet& RefsInMBB) { MachineBasicBlock& MBB = *RestorePt->getParent(); MachineBasicBlock::iterator KillPt = BarrierMBB->end(); unsigned KillIdx = 0; if (ValNo->def == ~0U || DefMI->getParent() == BarrierMBB) KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx); else KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx); if (KillPt == DefMI->getParent()->end()) return false; TII->reMaterialize(MBB, RestorePt, vreg, DefMI); LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx); if (KillPt->getParent() == BarrierMBB) { UpdateRegisterInterval(ValNo, LIs->getUseIndex(KillIdx)+1, LIs->getDefIndex(RestoreIdx)); ++NumSplits; ++NumRemats; return true; } RepairLiveInterval(CurrLI, ValNo, DefMI, RestoreIdx); ++NumSplits; ++NumRemats; return true; } MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, const TargetRegisterClass* RC, MachineInstr* DefMI, MachineInstr* Barrier, MachineBasicBlock* MBB, int& SS, SmallPtrSet& RefsInMBB) { MachineBasicBlock::iterator Pt = MBB->begin(); // Go top down if RefsInMBB is empty. if (RefsInMBB.empty()) return 0; MachineBasicBlock::iterator FoldPt = Barrier; while (&*FoldPt != DefMI && FoldPt != MBB->begin() && !RefsInMBB.count(FoldPt)) --FoldPt; int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false); if (OpIdx == -1) return 0; SmallVector Ops; Ops.push_back(OpIdx); if (!TII->canFoldMemoryOperand(FoldPt, Ops)) return 0; DenseMap::iterator I = IntervalSSMap.find(vreg); if (I != IntervalSSMap.end()) { SS = I->second; } else { SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment()); } MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), FoldPt, Ops, SS); if (FMI) { LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); FMI = MBB->insert(MBB->erase(FoldPt), FMI); ++NumFolds; IntervalSSMap[vreg] = SS; CurrSLI = &LSs->getOrCreateInterval(SS); if (CurrSLI->hasAtLeastOneValue()) CurrSValNo = CurrSLI->getValNumInfo(0); else CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator()); } return FMI; } /// SplitRegLiveInterval - Split (spill and restore) the given live interval /// so it would not cross the barrier that's being processed. Shrink wrap /// (minimize) the live interval to the last uses. bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) { CurrLI = LI; // Find live range where current interval cross the barrier. LiveInterval::iterator LR = CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx)); VNInfo *ValNo = LR->valno; if (ValNo->def == ~1U) { // Defined by a dead def? How can this be? assert(0 && "Val# is defined by a dead def?"); abort(); } MachineInstr *DefMI = (ValNo->def != ~0U) ? LIs->getInstructionFromIndex(ValNo->def) : NULL; // If this would create a new join point, do not split. if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) return false; // Find all references in the barrier mbb. SmallPtrSet RefsInMBB; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), E = MRI->reg_end(); I != E; ++I) { MachineInstr *RefMI = &*I; if (RefMI->getParent() == BarrierMBB) RefsInMBB.insert(RefMI); } // Find a point to restore the value after the barrier. unsigned RestoreIndex; MachineBasicBlock::iterator RestorePt = findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex); if (RestorePt == BarrierMBB->end()) return false; if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI)) if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RestoreIndex, RefsInMBB)) return true; // Add a spill either before the barrier or after the definition. MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL; const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg); unsigned SpillIndex = 0; MachineInstr *SpillMI = NULL; int SS = -1; if (ValNo->def == ~0U) { // If it's defined by a phi, we must split just before the barrier. if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier, BarrierMBB, SS, RefsInMBB))) { SpillIndex = LIs->getInstructionIndex(SpillMI); } else { MachineBasicBlock::iterator SpillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex); if (SpillPt == BarrierMBB->begin()) return false; // No gap to insert spill. // Add spill. SS = CreateSpillStackSlot(CurrLI->reg, RC); TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC); SpillMI = prior(SpillPt); LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex); } } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def, RestoreIndex, SpillIndex, SS)) { // If it's already split, just restore the value. There is no need to spill // the def again. if (!DefMI) return false; // Def is dead. Do nothing. if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier, BarrierMBB, SS, RefsInMBB))) { SpillIndex = LIs->getInstructionIndex(SpillMI); } else { // Check if it's possible to insert a spill after the def MI. MachineBasicBlock::iterator SpillPt; if (DefMBB == BarrierMBB) { // Add spill after the def and the last use before the barrier. SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, RefsInMBB, SpillIndex); if (SpillPt == DefMBB->begin()) return false; // No gap to insert spill. } else { SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex); if (SpillPt == DefMBB->end()) return false; // No gap to insert spill. } // Add spill. The store instruction kills the register if def is before // the barrier in the barrier block. SS = CreateSpillStackSlot(CurrLI->reg, RC); TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, DefMBB == BarrierMBB, SS, RC); SpillMI = prior(SpillPt); LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex); } } // Remember def instruction index to spill index mapping. if (DefMI && SpillMI) Def2SpillMap[ValNo->def] = SpillIndex; // Add restore. TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC); MachineInstr *LoadMI = prior(RestorePt); LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex); // If live interval is spilled in the same block as the barrier, just // create a hole in the interval. if (!DefMBB || (SpillMI && SpillMI->getParent() == BarrierMBB)) { // Update spill stack slot live interval. UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1, LIs->getDefIndex(RestoreIndex)); UpdateRegisterInterval(ValNo, LIs->getUseIndex(SpillIndex)+1, LIs->getDefIndex(RestoreIndex)); ++NumSplits; return true; } // Update spill stack slot live interval. UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1, LIs->getDefIndex(RestoreIndex)); RepairLiveInterval(CurrLI, ValNo, DefMI, RestoreIndex); ++NumSplits; return true; } /// SplitRegLiveIntervals - Split all register live intervals that cross the /// barrier that's being processed. bool PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) { // First find all the virtual registers whose live intervals are intercepted // by the current barrier. SmallVector Intervals; for (const TargetRegisterClass **RC = RCs; *RC; ++RC) { if (TII->IgnoreRegisterClassBarriers(*RC)) continue; std::vector &VRs = MRI->getRegClassVirtRegs(*RC); for (unsigned i = 0, e = VRs.size(); i != e; ++i) { unsigned Reg = VRs[i]; if (!LIs->hasInterval(Reg)) continue; LiveInterval *LI = &LIs->getInterval(Reg); if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg)) // Virtual register live interval is intercepted by the barrier. We // should split and shrink wrap its interval if possible. Intervals.push_back(LI); } } // Process the affected live intervals. bool Change = false; while (!Intervals.empty()) { if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit) break; LiveInterval *LI = Intervals.back(); Intervals.pop_back(); Change |= SplitRegLiveInterval(LI); } return Change; } bool PreAllocSplitting::createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, MachineBasicBlock* BarrierMBB) { if (DefMBB == BarrierMBB) return false; if (LR->valno->hasPHIKill) return false; unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB); if (LR->end < MBBEnd) return false; MachineLoopInfo& MLI = getAnalysis(); if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB)) return true; MachineDominatorTree& MDT = getAnalysis(); SmallPtrSet Visited; typedef std::pair ItPair; SmallVector Stack; Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin())); while (!Stack.empty()) { ItPair P = Stack.back(); Stack.pop_back(); MachineBasicBlock* PredMBB = P.first; MachineBasicBlock::succ_iterator S = P.second; if (S == PredMBB->succ_end()) continue; else if (Visited.count(*S)) { Stack.push_back(std::make_pair(PredMBB, ++S)); continue; } else Stack.push_back(std::make_pair(PredMBB, S+1)); MachineBasicBlock* MBB = *S; Visited.insert(MBB); if (MBB == BarrierMBB) return true; MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB); MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB); MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom(); while (MDTN) { if (MDTN == DefMDTN) return true; else if (MDTN == BarrierMDTN) break; MDTN = MDTN->getIDom(); } MBBEnd = LIs->getMBBEndIdx(MBB); if (LR->end > MBBEnd) Stack.push_back(std::make_pair(MBB, MBB->succ_begin())); } return false; } bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) { CurrMF = &MF; TM = &MF.getTarget(); TII = TM->getInstrInfo(); MFI = MF.getFrameInfo(); MRI = &MF.getRegInfo(); LIs = &getAnalysis(); LSs = &getAnalysis(); bool MadeChange = false; // Make sure blocks are numbered in order. MF.RenumberBlocks(); MachineBasicBlock *Entry = MF.begin(); SmallPtrSet Visited; for (df_ext_iterator > DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { BarrierMBB = *DFI; for (MachineBasicBlock::iterator I = BarrierMBB->begin(), E = BarrierMBB->end(); I != E; ++I) { Barrier = &*I; const TargetRegisterClass **BarrierRCs = Barrier->getDesc().getRegClassBarriers(); if (!BarrierRCs) continue; BarrierIdx = LIs->getInstructionIndex(Barrier); MadeChange |= SplitRegLiveIntervals(BarrierRCs); } } return MadeChange; }