//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf exception info into asm files. // //===----------------------------------------------------------------------===// #include "DwarfException.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; static TimerGroup &getDwarfTimerGroup() { static TimerGroup DwarfTimerGroup("Dwarf Exception"); return DwarfTimerGroup; } DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T) : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false), shouldEmitTableModule(false), shouldEmitMovesModule(false), ExceptionTimer(0) { if (TimePassesIsEnabled) ExceptionTimer = new Timer("Dwarf Exception Writer", getDwarfTimerGroup()); } DwarfException::~DwarfException() { delete ExceptionTimer; } void DwarfException::EmitCommonEHFrame(const Function *Personality, unsigned Index) { // Size and sign of stack growth. int stackGrowth = Asm->TM.getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize(); // Begin eh frame section. Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection()); if (TAI->is_EHSymbolPrivate()) O << TAI->getPrivateGlobalPrefix(); O << "EH_frame" << Index << ":\n"; EmitLabel("section_eh_frame", Index); // Define base labels. EmitLabel("eh_frame_common", Index); // Define the eh frame length. EmitDifference("eh_frame_common_end", Index, "eh_frame_common_begin", Index, true); Asm->EOL("Length of Common Information Entry"); // EH frame header. EmitLabel("eh_frame_common_begin", Index); Asm->EmitInt32((int)0); Asm->EOL("CIE Identifier Tag"); Asm->EmitInt8(dwarf::DW_CIE_VERSION); Asm->EOL("CIE Version"); // The personality presence indicates that language specific information will // show up in the eh frame. Asm->EmitString(Personality ? "zPLR" : "zR"); Asm->EOL("CIE Augmentation"); // Round out reader. Asm->EmitULEB128Bytes(1); Asm->EOL("CIE Code Alignment Factor"); Asm->EmitSLEB128Bytes(stackGrowth); Asm->EOL("CIE Data Alignment Factor"); Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true)); Asm->EOL("CIE Return Address Column"); // If there is a personality, we need to indicate the functions location. if (Personality) { Asm->EmitULEB128Bytes(7); Asm->EOL("Augmentation Size"); if (TAI->getNeedsIndirectEncoding()) { Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 | dwarf::DW_EH_PE_indirect); Asm->EOL("Personality (pcrel sdata4 indirect)"); } else { Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); Asm->EOL("Personality (pcrel sdata4)"); } PrintRelDirective(true); O << TAI->getPersonalityPrefix(); Asm->EmitExternalGlobal((const GlobalVariable *)(Personality)); O << TAI->getPersonalitySuffix(); if (strcmp(TAI->getPersonalitySuffix(), "+4@GOTPCREL")) O << "-" << TAI->getPCSymbol(); Asm->EOL("Personality"); Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); Asm->EOL("LSDA Encoding (pcrel sdata4)"); Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); Asm->EOL("FDE Encoding (pcrel sdata4)"); } else { Asm->EmitULEB128Bytes(1); Asm->EOL("Augmentation Size"); Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); Asm->EOL("FDE Encoding (pcrel sdata4)"); } // Indicate locations of general callee saved registers in frame. std::vector Moves; RI->getInitialFrameState(Moves); EmitFrameMoves(NULL, 0, Moves, true); // On Darwin the linker honors the alignment of eh_frame, which means it must // be 8-byte on 64-bit targets to match what gcc does. Otherwise you get // holes which confuse readers of eh_frame. Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 0, 0, false); EmitLabel("eh_frame_common_end", Index); Asm->EOL(); } /// EmitEHFrame - Emit function exception frame information. /// void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) { assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() && "Should not emit 'available externally' functions at all"); const Function *TheFunc = EHFrameInfo.function; Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection()); // Externally visible entry into the functions eh frame info. If the // corresponding function is static, this should not be externally visible. if (!TheFunc->hasLocalLinkage()) if (const char *GlobalEHDirective = TAI->getGlobalEHDirective()) O << GlobalEHDirective << EHFrameInfo.FnName << "\n"; // If corresponding function is weak definition, this should be too. if (TheFunc->isWeakForLinker() && TAI->getWeakDefDirective()) O << TAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n"; // If there are no calls then you can't unwind. This may mean we can omit the // EH Frame, but some environments do not handle weak absolute symbols. If // UnwindTablesMandatory is set we cannot do this optimization; the unwind // info is to be available for non-EH uses. if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory && (!TheFunc->isWeakForLinker() || !TAI->getWeakDefDirective() || TAI->getSupportsWeakOmittedEHFrame())) { O << EHFrameInfo.FnName << " = 0\n"; // This name has no connection to the function, so it might get // dead-stripped when the function is not, erroneously. Prohibit // dead-stripping unconditionally. if (const char *UsedDirective = TAI->getUsedDirective()) O << UsedDirective << EHFrameInfo.FnName << "\n\n"; } else { O << EHFrameInfo.FnName << ":\n"; // EH frame header. EmitDifference("eh_frame_end", EHFrameInfo.Number, "eh_frame_begin", EHFrameInfo.Number, true); Asm->EOL("Length of Frame Information Entry"); EmitLabel("eh_frame_begin", EHFrameInfo.Number); EmitSectionOffset("eh_frame_begin", "eh_frame_common", EHFrameInfo.Number, EHFrameInfo.PersonalityIndex, true, true, false); Asm->EOL("FDE CIE offset"); EmitReference("eh_func_begin", EHFrameInfo.Number, true, true); Asm->EOL("FDE initial location"); EmitDifference("eh_func_end", EHFrameInfo.Number, "eh_func_begin", EHFrameInfo.Number, true); Asm->EOL("FDE address range"); // If there is a personality and landing pads then point to the language // specific data area in the exception table. if (EHFrameInfo.PersonalityIndex) { Asm->EmitULEB128Bytes(4); Asm->EOL("Augmentation size"); if (EHFrameInfo.hasLandingPads) EmitReference("exception", EHFrameInfo.Number, true, true); else Asm->EmitInt32((int)0); Asm->EOL("Language Specific Data Area"); } else { Asm->EmitULEB128Bytes(0); Asm->EOL("Augmentation size"); } // Indicate locations of function specific callee saved registers in frame. EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves, true); // On Darwin the linker honors the alignment of eh_frame, which means it // must be 8-byte on 64-bit targets to match what gcc does. Otherwise you // get holes which confuse readers of eh_frame. Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 0, 0, false); EmitLabel("eh_frame_end", EHFrameInfo.Number); // If the function is marked used, this table should be also. We cannot // make the mark unconditional in this case, since retaining the table also // retains the function in this case, and there is code around that depends // on unused functions (calling undefined externals) being dead-stripped to // link correctly. Yes, there really is. if (MMI->isUsedFunction(EHFrameInfo.function)) if (const char *UsedDirective = TAI->getUsedDirective()) O << UsedDirective << EHFrameInfo.FnName << "\n\n"; } } /// EmitExceptionTable - Emit landing pads and actions. /// /// The general organization of the table is complex, but the basic concepts are /// easy. First there is a header which describes the location and organization /// of the three components that follow. /// /// 1. The landing pad site information describes the range of code covered by /// the try. In our case it's an accumulation of the ranges covered by the /// invokes in the try. There is also a reference to the landing pad that /// handles the exception once processed. Finally an index into the actions /// table. /// 2. The action table, in our case, is composed of pairs of type ids and next /// action offset. Starting with the action index from the landing pad /// site, each type Id is checked for a match to the current exception. If /// it matches then the exception and type id are passed on to the landing /// pad. Otherwise the next action is looked up. This chain is terminated /// with a next action of zero. If no type id is found the the frame is /// unwound and handling continues. /// 3. Type id table contains references to all the C++ typeinfo for all /// catches in the function. This tables is reversed indexed base 1. /// SharedTypeIds - How many leading type ids two landing pads have in common. unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; unsigned LSize = LIds.size(), RSize = RIds.size(); unsigned MinSize = LSize < RSize ? LSize : RSize; unsigned Count = 0; for (; Count != MinSize; ++Count) if (LIds[Count] != RIds[Count]) return Count; return Count; } /// PadLT - Order landing pads lexicographically by type id. bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; unsigned LSize = LIds.size(), RSize = RIds.size(); unsigned MinSize = LSize < RSize ? LSize : RSize; for (unsigned i = 0; i != MinSize; ++i) if (LIds[i] != RIds[i]) return LIds[i] < RIds[i]; return LSize < RSize; } void DwarfException::EmitExceptionTable() { const std::vector &TypeInfos = MMI->getTypeInfos(); const std::vector &FilterIds = MMI->getFilterIds(); const std::vector &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type id // itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries are // written using a variable width encoding which outputs one byte per entry as // long as the value written is not too large, but can differ. This kind of // complication does not occur for positive type ids because type infos are // output using a fixed width encoding. FilterOffsets[i] holds the byte // offset corresponding to FilterIds[i]. SmallVector FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= TargetAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector Actions; SmallVector FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) + TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. The entry for an invoke has a try-range // containing the call, a non-zero landing pad and an appropriate action. The // entry for an ordinary call has a try-range containing the call and zero for // the landing pad and the action. Calls marked 'nounwind' have no entry and // must not be contained in the try-range of any entry - they form gaps in the // table. Entries must be ordered by try-range address. SmallVector CallSites; RangeMapType PadMap; // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced. for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { unsigned BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } // The end label of the previous invoke or nounwind try-range. unsigned LastLabel = 0; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last callsite entry was for an invoke. bool PreviousIsInvoke = false; // Visit all instructions in order of address. for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { SawPotentiallyThrowing |= MI->getDesc().isCall(); continue; } unsigned BeginLabel = MI->getOperand(0).getImm(); assert(BeginLabel && "Invalid label!"); // End of the previous try-range? if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (SawPotentiallyThrowing) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (LandingPad->LandingPadLabel) { // This try-range is for an invoke. CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; // Try to merge with the previous call-site. if (PreviousIsInvoke) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); PreviousIsInvoke = true; } else { // Create a gap. PreviousIsInvoke = false; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. // Call sites. const unsigned SiteStartSize = sizeof(int32_t); // DW_EH_PE_udata4 const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4 const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4 unsigned SizeSites = CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action); // Type infos. const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr unsigned SizeTypes = TypeInfos.size() * TypeInfoSize; unsigned TypeOffset = sizeof(int8_t) + // Call site format TargetAsmInfo::getULEB128Size(SizeSites) + // Call-site table length SizeSites + SizeActions + SizeTypes; unsigned TotalSize = sizeof(int8_t) + // LPStart format sizeof(int8_t) + // TType format TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset TypeOffset; unsigned SizeAlign = (4 - TotalSize) & 3; // Begin the exception table. Asm->SwitchToDataSection(TAI->getDwarfExceptionSection()); Asm->EmitAlignment(2, 0, 0, false); O << "GCC_except_table" << SubprogramCount << ":\n"; for (unsigned i = 0; i != SizeAlign; ++i) { Asm->EmitInt8(0); Asm->EOL("Padding"); } EmitLabel("exception", SubprogramCount); // Emit the header. Asm->EmitInt8(dwarf::DW_EH_PE_omit); Asm->EOL("LPStart format (DW_EH_PE_omit)"); Asm->EmitInt8(dwarf::DW_EH_PE_absptr); Asm->EOL("TType format (DW_EH_PE_absptr)"); Asm->EmitULEB128Bytes(TypeOffset); Asm->EOL("TType base offset"); Asm->EmitInt8(dwarf::DW_EH_PE_udata4); Asm->EOL("Call site format (DW_EH_PE_udata4)"); Asm->EmitULEB128Bytes(SizeSites); Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; const char *BeginTag; unsigned BeginNumber; if (!S.BeginLabel) { BeginTag = "eh_func_begin"; BeginNumber = SubprogramCount; } else { BeginTag = "label"; BeginNumber = S.BeginLabel; } EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount, true, true); Asm->EOL("Region start"); if (!S.EndLabel) EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber, true); else EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true); Asm->EOL("Region length"); if (!S.PadLabel) Asm->EmitInt32(0); else EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount, true, true); Asm->EOL("Landing pad"); Asm->EmitULEB128Bytes(S.Action); Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; Asm->EmitSLEB128Bytes(Action.ValueForTypeID); Asm->EOL("TypeInfo index"); Asm->EmitSLEB128Bytes(Action.NextAction); Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { GlobalVariable *GV = TypeInfos[M - 1]; PrintRelDirective(); if (GV) { std::string GLN; O << Asm->getGlobalLinkName(GV, GLN); } else { O << "0"; } Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; Asm->EmitULEB128Bytes(TypeID); Asm->EOL("Filter TypeInfo index"); } Asm->EmitAlignment(2, 0, 0, false); } /// EndModule - Emit all exception information that should come after the /// content. void DwarfException::EndModule() { if (TimePassesIsEnabled) ExceptionTimer->startTimer(); if (shouldEmitMovesModule || shouldEmitTableModule) { const std::vector Personalities = MMI->getPersonalities(); for (unsigned i = 0; i < Personalities.size(); ++i) EmitCommonEHFrame(Personalities[i], i); for (std::vector::iterator I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I) EmitEHFrame(*I); } if (TimePassesIsEnabled) ExceptionTimer->stopTimer(); } /// BeginFunction - Gather pre-function exception information. Assumes being /// emitted immediately after the function entry point. void DwarfException::BeginFunction(MachineFunction *MF) { if (TimePassesIsEnabled) ExceptionTimer->startTimer(); this->MF = MF; shouldEmitTable = shouldEmitMoves = false; if (MMI && TAI->doesSupportExceptionHandling()) { // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(); // If any landing pads survive, we need an EH table. if (MMI->getLandingPads().size()) shouldEmitTable = true; // See if we need frame move info. if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory) shouldEmitMoves = true; if (shouldEmitMoves || shouldEmitTable) // Assumes in correct section after the entry point. EmitLabel("eh_func_begin", ++SubprogramCount); } shouldEmitTableModule |= shouldEmitTable; shouldEmitMovesModule |= shouldEmitMoves; if (TimePassesIsEnabled) ExceptionTimer->stopTimer(); } /// EndFunction - Gather and emit post-function exception information. /// void DwarfException::EndFunction() { if (TimePassesIsEnabled) ExceptionTimer->startTimer(); if (shouldEmitMoves || shouldEmitTable) { EmitLabel("eh_func_end", SubprogramCount); EmitExceptionTable(); // Save EH frame information EHFrames.push_back( FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF), SubprogramCount, MMI->getPersonalityIndex(), MF->getFrameInfo()->hasCalls(), !MMI->getLandingPads().empty(), MMI->getFrameMoves(), MF->getFunction())); } if (TimePassesIsEnabled) ExceptionTimer->stopTimer(); }