//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DebugMap.h" #include "BinaryHolder.h" #include "DebugMap.h" #include "dsymutil.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DIE.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Object/MachO.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include namespace llvm { namespace dsymutil { namespace { void warn(const Twine &Warning, const Twine &Context) { errs() << Twine("while processing ") + Context + ":\n"; errs() << Twine("warning: ") + Warning + "\n"; } bool error(const Twine &Error, const Twine &Context) { errs() << Twine("while processing ") + Context + ":\n"; errs() << Twine("error: ") + Error + "\n"; return false; } /// \brief Stores all information relating to a compile unit, be it in /// its original instance in the object file to its brand new cloned /// and linked DIE tree. class CompileUnit { public: /// \brief Information gathered about a DIE in the object file. struct DIEInfo { uint64_t Address; ///< Linked address of the described entity. uint32_t ParentIdx; ///< The index of this DIE's parent. bool Keep; ///< Is the DIE part of the linked output? bool InDebugMap; ///< Was this DIE's entity found in the map? }; CompileUnit(DWARFUnit &OrigUnit) : OrigUnit(OrigUnit) { Info.resize(OrigUnit.getNumDIEs()); } // Workaround MSVC not supporting implicit move ops CompileUnit(CompileUnit &&RHS) : OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)), CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset), NextUnitOffset(RHS.NextUnitOffset) {} DWARFUnit &getOrigUnit() const { return OrigUnit; } DIE *getOutputUnitDIE() const { return CUDie.get(); } void setOutputUnitDIE(DIE *Die) { CUDie.reset(Die); } DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; } const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; } uint64_t getStartOffset() const { return StartOffset; } uint64_t getNextUnitOffset() const { return NextUnitOffset; } /// \brief Set the start and end offsets for this unit. Must be /// called after the CU's DIEs have been cloned. The unit start /// offset will be set to \p DebugInfoSize. /// \returns the next unit offset (which is also the current /// debug_info section size). uint64_t computeOffsets(uint64_t DebugInfoSize); private: DWARFUnit &OrigUnit; std::vector Info; ///< DIE info indexed by DIE index. std::unique_ptr CUDie; ///< Root of the linked DIE tree. uint64_t StartOffset; uint64_t NextUnitOffset; }; uint64_t CompileUnit::computeOffsets(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; NextUnitOffset = StartOffset + 11 /* Header size */; // The root DIE might be null, meaning that the Unit had nothing to // contribute to the linked output. In that case, we will emit the // unit header without any actual DIE. if (CUDie) NextUnitOffset += CUDie->getSize(); return NextUnitOffset; } /// \brief The Dwarf streaming logic /// /// All interactions with the MC layer that is used to build the debug /// information binary representation are handled in this class. class DwarfStreamer { /// \defgroup MCObjects MC layer objects constructed by the streamer /// @{ std::unique_ptr MRI; std::unique_ptr MAI; std::unique_ptr MOFI; std::unique_ptr MC; MCAsmBackend *MAB; // Owned by MCStreamer std::unique_ptr MII; std::unique_ptr MSTI; MCCodeEmitter *MCE; // Owned by MCStreamer MCStreamer *MS; // Owned by AsmPrinter std::unique_ptr TM; std::unique_ptr Asm; /// @} /// \brief the file we stream the linked Dwarf to. std::unique_ptr OutFile; public: /// \brief Actually create the streamer and the ouptut file. /// /// This could be done directly in the constructor, but it feels /// more natural to handle errors through return value. bool init(Triple TheTriple, StringRef OutputFilename); /// \brief Dump the file to the disk. bool finish(); AsmPrinter &getAsmPrinter() const { return *Asm; } /// \brief Set the current output section to debug_info and change /// the MC Dwarf version to \p DwarfVersion. void switchToDebugInfoSection(unsigned DwarfVersion); /// \brief Emit the compilation unit header for \p Unit in the /// debug_info section. /// /// As a side effect, this also switches the current Dwarf version /// of the MC layer to the one of U.getOrigUnit(). void emitCompileUnitHeader(CompileUnit &Unit); /// \brief Recursively emit the DIE tree rooted at \p Die. void emitDIE(DIE &Die); /// \brief Emit the abbreviation table \p Abbrevs to the /// debug_abbrev section. void emitAbbrevs(const std::vector &Abbrevs); }; bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) { std::string ErrorStr; std::string TripleName; StringRef Context = "dwarf streamer init"; // Get the target. const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr); if (!TheTarget) return error(ErrorStr, Context); TripleName = TheTriple.getTriple(); // Create all the MC Objects. MRI.reset(TheTarget->createMCRegInfo(TripleName)); if (!MRI) return error(Twine("no register info for target ") + TripleName, Context); MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!MAI) return error("no asm info for target " + TripleName, Context); MOFI.reset(new MCObjectFileInfo); MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get())); MOFI->InitMCObjectFileInfo(TripleName, Reloc::Default, CodeModel::Default, *MC); MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, ""); if (!MAB) return error("no asm backend for target " + TripleName, Context); MII.reset(TheTarget->createMCInstrInfo()); if (!MII) return error("no instr info info for target " + TripleName, Context); MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", "")); if (!MSTI) return error("no subtarget info for target " + TripleName, Context); MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MSTI, *MC); if (!MCE) return error("no code emitter for target " + TripleName, Context); // Create the output file. std::error_code EC; OutFile = llvm::make_unique(OutputFilename, EC, sys::fs::F_None); if (EC) return error(Twine(OutputFilename) + ": " + EC.message(), Context); MS = TheTarget->createMCObjectStreamer(TripleName, *MC, *MAB, *OutFile, MCE, *MSTI, false); if (!MS) return error("no object streamer for target " + TripleName, Context); // Finally create the AsmPrinter we'll use to emit the DIEs. TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions())); if (!TM) return error("no target machine for target " + TripleName, Context); Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr(MS))); if (!Asm) return error("no asm printer for target " + TripleName, Context); return true; } bool DwarfStreamer::finish() { MS->Finish(); return true; } /// \brief Set the current output section to debug_info and change /// the MC Dwarf version to \p DwarfVersion. void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) { MS->SwitchSection(MOFI->getDwarfInfoSection()); MC->setDwarfVersion(DwarfVersion); } /// \brief Emit the compilation unit header for \p Unit in the /// debug_info section. /// /// A Dwarf scetion header is encoded as: /// uint32_t Unit length (omiting this field) /// uint16_t Version /// uint32_t Abbreviation table offset /// uint8_t Address size /// /// Leading to a total of 11 bytes. void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) { unsigned Version = Unit.getOrigUnit().getVersion(); switchToDebugInfoSection(Version); // Emit size of content not including length itself. The size has // already been computed in CompileUnit::computeOffsets(). Substract // 4 to that size to account for the length field. Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4); Asm->EmitInt16(Version); // We share one abbreviations table across all units so it's always at the // start of the section. Asm->EmitInt32(0); Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize()); } /// \brief Emit the \p Abbrevs array as the shared abbreviation table /// for the linked Dwarf file. void DwarfStreamer::emitAbbrevs(const std::vector &Abbrevs) { MS->SwitchSection(MOFI->getDwarfAbbrevSection()); Asm->emitDwarfAbbrevs(Abbrevs); } /// \brief Recursively emit the DIE tree rooted at \p Die. void DwarfStreamer::emitDIE(DIE &Die) { MS->SwitchSection(MOFI->getDwarfInfoSection()); Asm->emitDwarfDIE(Die); } /// \brief The core of the Dwarf linking logic. /// /// The link of the dwarf information from the object files will be /// driven by the selection of 'root DIEs', which are DIEs that /// describe variables or functions that are present in the linked /// binary (and thus have entries in the debug map). All the debug /// information that will be linked (the DIEs, but also the line /// tables, ranges, ...) is derived from that set of root DIEs. /// /// The root DIEs are identified because they contain relocations that /// correspond to a debug map entry at specific places (the low_pc for /// a function, the location for a variable). These relocations are /// called ValidRelocs in the DwarfLinker and are gathered as a very /// first step when we start processing a DebugMapObject. class DwarfLinker { public: DwarfLinker(StringRef OutputFilename, const LinkOptions &Options) : OutputFilename(OutputFilename), Options(Options), BinHolder(Options.Verbose) {} ~DwarfLinker() { for (auto *Abbrev : Abbreviations) delete Abbrev; } /// \brief Link the contents of the DebugMap. bool link(const DebugMap &); private: /// \brief Called at the start of a debug object link. void startDebugObject(DWARFContext &); /// \brief Called at the end of a debug object link. void endDebugObject(); /// \defgroup FindValidRelocations Translate debug map into a list /// of relevant relocations /// /// @{ struct ValidReloc { uint32_t Offset; uint32_t Size; uint64_t Addend; const DebugMapObject::DebugMapEntry *Mapping; ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend, const DebugMapObject::DebugMapEntry *Mapping) : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {} bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; } }; /// \brief The valid relocations for the current DebugMapObject. /// This vector is sorted by relocation offset. std::vector ValidRelocs; /// \brief Index into ValidRelocs of the next relocation to /// consider. As we walk the DIEs in acsending file offset and as /// ValidRelocs is sorted by file offset, keeping this index /// uptodate is all we have to do to have a cheap lookup during the /// root DIE selection. unsigned NextValidReloc; bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj, const DebugMapObject &DMO); bool findValidRelocs(const object::SectionRef &Section, const object::ObjectFile &Obj, const DebugMapObject &DMO); void findValidRelocsMachO(const object::SectionRef &Section, const object::MachOObjectFile &Obj, const DebugMapObject &DMO); /// @} /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries. /// /// @{ /// \brief Recursively walk the \p DIE tree and look for DIEs to /// keep. Store that information in \p CU's DIEInfo. void lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags); /// \brief Flags passed to DwarfLinker::lookForDIEsToKeep enum TravesalFlags { TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept. TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope. TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE. TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE. }; /// \brief Mark the passed DIE as well as all the ones it depends on /// as kept. void keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit::DIEInfo &MyInfo, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags); unsigned shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); unsigned shouldKeepVariableDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); unsigned shouldKeepSubprogramDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info); /// @} /// \defgroup Linking Methods used to link the debug information /// /// @{ /// \brief Recursively clone \p InputDIE into an tree of DIE objects /// where useless (as decided by lookForDIEsToKeep()) bits have been /// stripped out and addresses have been rewritten according to the /// debug map. /// /// \param OutOffset is the offset the cloned DIE in the output /// compile unit. /// /// \returns the root of the cloned tree. DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U, uint32_t OutOffset); typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec; /// \brief Helper for cloneDIE. unsigned cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize); /// \brief Helper for cloneDIE. unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec); /// \brief Helper for cloneDIE. unsigned cloneDieReferenceAttribute(DIE &Die, AttributeSpec AttrSpec, unsigned AttrSize); /// \brief Helper for cloneDIE. unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize); /// \brief Helper for cloneDIE. unsigned cloneScalarAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, const DWARFUnit &U, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize); /// \brief Assign an abbreviation number to \p Abbrev void AssignAbbrev(DIEAbbrev &Abbrev); /// \brief FoldingSet that uniques the abbreviations. FoldingSet AbbreviationsSet; /// \brief Storage for the unique Abbreviations. /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot /// be changed to a vecot of unique_ptrs. std::vector Abbreviations; /// \brief DIELoc objects that need to be destructed (but not freed!). std::vector DIELocs; /// \brief DIEBlock objects that need to be destructed (but not freed!). std::vector DIEBlocks; /// \brief Allocator used for all the DIEValue objects. BumpPtrAllocator DIEAlloc; /// @} /// \defgroup Helpers Various helper methods. /// /// @{ const DWARFDebugInfoEntryMinimal * resolveDIEReference(DWARFFormValue &RefValue, const DWARFUnit &Unit, const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&ReferencedCU); CompileUnit *getUnitForOffset(unsigned Offset); void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr, const DWARFDebugInfoEntryMinimal *DIE = nullptr); bool createStreamer(Triple TheTriple, StringRef OutputFilename); /// @} private: std::string OutputFilename; LinkOptions Options; BinaryHolder BinHolder; std::unique_ptr Streamer; /// The units of the current debug map object. std::vector Units; /// The debug map object curently under consideration. DebugMapObject *CurrentDebugObject; }; /// \brief Similar to DWARFUnitSection::getUnitForOffset(), but /// returning our CompileUnit object instead. CompileUnit *DwarfLinker::getUnitForOffset(unsigned Offset) { auto CU = std::upper_bound(Units.begin(), Units.end(), Offset, [](uint32_t LHS, const CompileUnit &RHS) { return LHS < RHS.getOrigUnit().getNextUnitOffset(); }); return CU != Units.end() ? &*CU : nullptr; } /// \brief Resolve the DIE attribute reference that has been /// extracted in \p RefValue. The resulting DIE migh be in another /// CompileUnit which is stored into \p ReferencedCU. /// \returns null if resolving fails for any reason. const DWARFDebugInfoEntryMinimal *DwarfLinker::resolveDIEReference( DWARFFormValue &RefValue, const DWARFUnit &Unit, const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) { assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); uint64_t RefOffset = *RefValue.getAsReference(&Unit); if ((RefCU = getUnitForOffset(RefOffset))) if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) return RefDie; reportWarning("could not find referenced DIE", &Unit, &DIE); return nullptr; } /// \brief Report a warning to the user, optionaly including /// information about a specific \p DIE related to the warning. void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit, const DWARFDebugInfoEntryMinimal *DIE) { StringRef Context = ""; if (CurrentDebugObject) Context = CurrentDebugObject->getObjectFilename(); warn(Warning, Context); if (!Options.Verbose || !DIE) return; errs() << " in DIE:\n"; DIE->dump(errs(), const_cast(Unit), 0 /* RecurseDepth */, 6 /* Indent */); } bool DwarfLinker::createStreamer(Triple TheTriple, StringRef OutputFilename) { if (Options.NoOutput) return true; Streamer = llvm::make_unique(); return Streamer->init(TheTriple, OutputFilename); } /// \brief Recursive helper to gather the child->parent relationships in the /// original compile unit. static void gatherDIEParents(const DWARFDebugInfoEntryMinimal *DIE, unsigned ParentIdx, CompileUnit &CU) { unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE); CU.getInfo(MyIdx).ParentIdx = ParentIdx; if (DIE->hasChildren()) for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL(); Child = Child->getSibling()) gatherDIEParents(Child, MyIdx, CU); } static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { switch (Tag) { default: return false; case dwarf::DW_TAG_subprogram: case dwarf::DW_TAG_lexical_block: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_union_type: return true; } llvm_unreachable("Invalid Tag"); } void DwarfLinker::startDebugObject(DWARFContext &Dwarf) { Units.reserve(Dwarf.getNumCompileUnits()); NextValidReloc = 0; } void DwarfLinker::endDebugObject() { Units.clear(); ValidRelocs.clear(); for (auto *Block : DIEBlocks) Block->~DIEBlock(); for (auto *Loc : DIELocs) Loc->~DIELoc(); DIEBlocks.clear(); DIELocs.clear(); DIEAlloc.Reset(); } /// \brief Iterate over the relocations of the given \p Section and /// store the ones that correspond to debug map entries into the /// ValidRelocs array. void DwarfLinker::findValidRelocsMachO(const object::SectionRef &Section, const object::MachOObjectFile &Obj, const DebugMapObject &DMO) { StringRef Contents; Section.getContents(Contents); DataExtractor Data(Contents, Obj.isLittleEndian(), 0); for (const object::RelocationRef &Reloc : Section.relocations()) { object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl(); MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef); unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc); uint64_t Offset64; if ((RelocSize != 4 && RelocSize != 8) || Reloc.getOffset(Offset64)) { reportWarning(" unsupported relocation in debug_info section."); continue; } uint32_t Offset = Offset64; // Mach-o uses REL relocations, the addend is at the relocation offset. uint64_t Addend = Data.getUnsigned(&Offset, RelocSize); auto Sym = Reloc.getSymbol(); if (Sym != Obj.symbol_end()) { StringRef SymbolName; if (Sym->getName(SymbolName)) { reportWarning("error getting relocation symbol name."); continue; } if (const auto *Mapping = DMO.lookupSymbol(SymbolName)) ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping); } else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) { // Do not store the addend. The addend was the address of the // symbol in the object file, the address in the binary that is // stored in the debug map doesn't need to be offseted. ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping); } } } /// \brief Dispatch the valid relocation finding logic to the /// appropriate handler depending on the object file format. bool DwarfLinker::findValidRelocs(const object::SectionRef &Section, const object::ObjectFile &Obj, const DebugMapObject &DMO) { // Dispatch to the right handler depending on the file type. if (auto *MachOObj = dyn_cast(&Obj)) findValidRelocsMachO(Section, *MachOObj, DMO); else reportWarning(Twine("unsupported object file type: ") + Obj.getFileName()); if (ValidRelocs.empty()) return false; // Sort the relocations by offset. We will walk the DIEs linearly in // the file, this allows us to just keep an index in the relocation // array that we advance during our walk, rather than resorting to // some associative container. See DwarfLinker::NextValidReloc. std::sort(ValidRelocs.begin(), ValidRelocs.end()); return true; } /// \brief Look for relocations in the debug_info section that match /// entries in the debug map. These relocations will drive the Dwarf /// link by indicating which DIEs refer to symbols present in the /// linked binary. /// \returns wether there are any valid relocations in the debug info. bool DwarfLinker::findValidRelocsInDebugInfo(const object::ObjectFile &Obj, const DebugMapObject &DMO) { // Find the debug_info section. for (const object::SectionRef &Section : Obj.sections()) { StringRef SectionName; Section.getName(SectionName); SectionName = SectionName.substr(SectionName.find_first_not_of("._")); if (SectionName != "debug_info") continue; return findValidRelocs(Section, Obj, DMO); } return false; } /// \brief Checks that there is a relocation against an actual debug /// map entry between \p StartOffset and \p NextOffset. /// /// This function must be called with offsets in strictly ascending /// order because it never looks back at relocations it already 'went past'. /// \returns true and sets Info.InDebugMap if it is the case. bool DwarfLinker::hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info) { assert(NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc - 1].Offset); if (NextValidReloc >= ValidRelocs.size()) return false; uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset; // We might need to skip some relocs that we didn't consider. For // example the high_pc of a discarded DIE might contain a reloc that // is in the list because it actually corresponds to the start of a // function that is in the debug map. while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1) RelocOffset = ValidRelocs[++NextValidReloc].Offset; if (RelocOffset < StartOffset || RelocOffset >= EndOffset) return false; const auto &ValidReloc = ValidRelocs[NextValidReloc++]; if (Options.Verbose) outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey() << " " << format("\t%016" PRIx64 " => %016" PRIx64, ValidReloc.Mapping->getValue().ObjectAddress, ValidReloc.Mapping->getValue().BinaryAddress); Info.Address = ValidReloc.Mapping->getValue().BinaryAddress + ValidReloc.Addend; Info.InDebugMap = true; return true; } /// \brief Get the starting and ending (exclusive) offset for the /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is /// supposed to point to the position of the first attribute described /// by \p Abbrev. /// \return [StartOffset, EndOffset) as a pair. static std::pair getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx, unsigned Offset, const DWARFUnit &Unit) { DataExtractor Data = Unit.getDebugInfoExtractor(); for (unsigned i = 0; i < Idx; ++i) DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit); uint32_t End = Offset; DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit); return std::make_pair(Offset, End); } /// \brief Check if a variable describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepVariableDIE( const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); // Global variables with constant value can always be kept. if (!(Flags & TF_InFunctionScope) && Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) { MyInfo.InDebugMap = true; return Flags | TF_Keep; } uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location); if (LocationIdx == -1U) return Flags; uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint32_t LocationOffset, LocationEndOffset; std::tie(LocationOffset, LocationEndOffset) = getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit); // See if there is a relocation to a valid debug map entry inside // this variable's location. The order is important here. We want to // always check in the variable has a valid relocation, so that the // DIEInfo is filled. However, we don't want a static variable in a // function to force us to keep the enclosing function. if (!hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) || (Flags & TF_InFunctionScope)) return Flags; if (Options.Verbose) DIE.dump(outs(), const_cast(&OrigUnit), 0, 8 /* Indent */); return Flags | TF_Keep; } /// \brief Check if a function describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepSubprogramDIE( const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); Flags |= TF_InFunctionScope; uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc); if (LowPcIdx == -1U) return Flags; uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint32_t LowPcOffset, LowPcEndOffset; std::tie(LowPcOffset, LowPcEndOffset) = getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit); uint64_t LowPc = DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL); assert(LowPc != -1ULL && "low_pc attribute is not an address."); if (LowPc == -1ULL || !hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo)) return Flags; if (Options.Verbose) DIE.dump(outs(), const_cast(&OrigUnit), 0, 8 /* Indent */); return Flags | TF_Keep; } /// \brief Check if a DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { switch (DIE.getTag()) { case dwarf::DW_TAG_constant: case dwarf::DW_TAG_variable: return shouldKeepVariableDIE(DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_subprogram: return shouldKeepSubprogramDIE(DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_module: case dwarf::DW_TAG_imported_module: case dwarf::DW_TAG_imported_declaration: case dwarf::DW_TAG_imported_unit: // We always want to keep these. return Flags | TF_Keep; } return Flags; } /// \brief Mark the passed DIE as well as all the ones it depends on /// as kept. /// /// This function is called by lookForDIEsToKeep on DIEs that are /// newly discovered to be needed in the link. It recursively calls /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the /// TraversalFlags to inform it that it's not doing the primary DIE /// tree walk. void DwarfLinker::keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE, CompileUnit::DIEInfo &MyInfo, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags) { const DWARFUnit &Unit = CU.getOrigUnit(); MyInfo.Keep = true; // First mark all the parent chain as kept. unsigned AncestorIdx = MyInfo.ParentIdx; while (!CU.getInfo(AncestorIdx).Keep) { lookForDIEsToKeep(*Unit.getDIEAtIndex(AncestorIdx), DMO, CU, TF_ParentWalk | TF_Keep | TF_DependencyWalk); AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx; } // Then we need to mark all the DIEs referenced by this DIE's // attributes as kept. DataExtractor Data = Unit.getDebugInfoExtractor(); const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); // Mark all DIEs referenced through atttributes as kept. for (const auto &AttrSpec : Abbrev->attributes()) { DWARFFormValue Val(AttrSpec.Form); if (!Val.isFormClass(DWARFFormValue::FC_Reference)) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit); continue; } Val.extractValue(Data, &Offset, &Unit); CompileUnit *ReferencedCU; if (const auto *RefDIE = resolveDIEReference(Val, Unit, DIE, ReferencedCU)) lookForDIEsToKeep(*RefDIE, DMO, *ReferencedCU, TF_Keep | TF_DependencyWalk); } } /// \brief Recursively walk the \p DIE tree and look for DIEs to /// keep. Store that information in \p CU's DIEInfo. /// /// This function is the entry point of the DIE selection /// algorithm. It is expected to walk the DIE tree in file order and /// (though the mediation of its helper) call hasValidRelocation() on /// each DIE that might be a 'root DIE' (See DwarfLinker class /// comment). /// While walking the dependencies of root DIEs, this function is /// also called, but during these dependency walks the file order is /// not respected. The TF_DependencyWalk flag tells us which kind of /// traversal we are currently doing. void DwarfLinker::lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags) { unsigned Idx = CU.getOrigUnit().getDIEIndex(&DIE); CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx); bool AlreadyKept = MyInfo.Keep; // If the Keep flag is set, we are marking a required DIE's // dependencies. If our target is already marked as kept, we're all // set. if ((Flags & TF_DependencyWalk) && AlreadyKept) return; // We must not call shouldKeepDIE while called from keepDIEAndDenpendencies, // because it would screw up the relocation finding logic. if (!(Flags & TF_DependencyWalk)) Flags = shouldKeepDIE(DIE, CU, MyInfo, Flags); // If it is a newly kept DIE mark it as well as all its dependencies as kept. if (!AlreadyKept && (Flags & TF_Keep)) keepDIEAndDenpendencies(DIE, MyInfo, DMO, CU, Flags); // The TF_ParentWalk flag tells us that we are currently walking up // the parent chain of a required DIE, and we don't want to mark all // the children of the parents as kept (consider for example a // DW_TAG_namespace node in the parent chain). There are however a // set of DIE types for which we want to ignore that directive and still // walk their children. if (dieNeedsChildrenToBeMeaningful(DIE.getTag())) Flags &= ~TF_ParentWalk; if (!DIE.hasChildren() || (Flags & TF_ParentWalk)) return; for (auto *Child = DIE.getFirstChild(); Child && !Child->isNULL(); Child = Child->getSibling()) lookForDIEsToKeep(*Child, DMO, CU, Flags); } /// \brief Assign an abbreviation numer to \p Abbrev. /// /// Our DIEs get freed after every DebugMapObject has been processed, /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to /// the instances hold by the DIEs. When we encounter an abbreviation /// that we don't know, we create a permanent copy of it. void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) { // Check the set for priors. FoldingSetNodeID ID; Abbrev.Profile(ID); void *InsertToken; DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); // If it's newly added. if (InSet) { // Assign existing abbreviation number. Abbrev.setNumber(InSet->getNumber()); } else { // Add to abbreviation list. Abbreviations.push_back( new DIEAbbrev(Abbrev.getTag(), Abbrev.hasChildren())); for (const auto &Attr : Abbrev.getData()) Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm()); AbbreviationsSet.InsertNode(Abbreviations.back(), InsertToken); // Assign the unique abbreviation number. Abbrev.setNumber(Abbreviations.size()); Abbreviations.back()->setNumber(Abbreviations.size()); } } /// \brief Clone a string attribute described by \p AttrSpec and add /// it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec) { // Switch everything to out of line strings. // FIXME: Construct the actual string table. Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp, new (DIEAlloc) DIEInteger(0)); return 4; } /// \brief Clone an attribute referencing another DIE and add /// it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneDieReferenceAttribute(DIE &Die, AttributeSpec AttrSpec, unsigned AttrSize) { // FIXME: Handle DIE references. Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), new (DIEAlloc) DIEInteger(0)); return AttrSize; } /// \brief Clone an attribute of block form (locations, constants) and add /// it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize) { DIE *Attr; DIEValue *Value; DIELoc *Loc = nullptr; DIEBlock *Block = nullptr; // Just copy the block data over. if (AttrSpec.Attr == dwarf::DW_FORM_exprloc) { Loc = new (DIEAlloc) DIELoc(); DIELocs.push_back(Loc); } else { Block = new (DIEAlloc) DIEBlock(); DIEBlocks.push_back(Block); } Attr = Loc ? static_cast(Loc) : static_cast(Block); Value = Loc ? static_cast(Loc) : static_cast(Block); ArrayRef Bytes = *Val.getAsBlock(); for (auto Byte : Bytes) Attr->addValue(static_cast(0), dwarf::DW_FORM_data1, new (DIEAlloc) DIEInteger(Byte)); // FIXME: If DIEBlock and DIELoc just reuses the Size field of // the DIE class, this if could be replaced by // Attr->setSize(Bytes.size()). if (Streamer) { if (Loc) Loc->ComputeSize(&Streamer->getAsmPrinter()); else Block->ComputeSize(&Streamer->getAsmPrinter()); } Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Value); return AttrSize; } /// \brief Clone a scalar attribute and add it to \p Die. /// \returns the size of the new attribute. unsigned DwarfLinker::cloneScalarAttribute( DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, const DWARFUnit &U, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize) { uint64_t Value; if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) Value = *Val.getAsSectionOffset(); else if (AttrSpec.Form == dwarf::DW_FORM_sdata) Value = *Val.getAsSignedConstant(); else if (AttrSpec.Form == dwarf::DW_FORM_addr) Value = *Val.getAsAddress(&U); else if (auto OptionalValue = Val.getAsUnsignedConstant()) Value = *OptionalValue; else { reportWarning("Unsupported scalar attribute form. Dropping attribute.", &U, &InputDIE); return 0; } Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), new (DIEAlloc) DIEInteger(Value)); return AttrSize; } /// \brief Clone \p InputDIE's attribute described by \p AttrSpec with /// value \p Val, and add it to \p Die. /// \returns the size of the cloned attribute. unsigned DwarfLinker::cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize) { const DWARFUnit &U = Unit.getOrigUnit(); switch (AttrSpec.Form) { case dwarf::DW_FORM_strp: case dwarf::DW_FORM_string: return cloneStringAttribute(Die, AttrSpec); case dwarf::DW_FORM_ref_addr: case dwarf::DW_FORM_ref1: case dwarf::DW_FORM_ref2: case dwarf::DW_FORM_ref4: case dwarf::DW_FORM_ref8: return cloneDieReferenceAttribute(Die, AttrSpec, AttrSize); case dwarf::DW_FORM_block: case dwarf::DW_FORM_block1: case dwarf::DW_FORM_block2: case dwarf::DW_FORM_block4: case dwarf::DW_FORM_exprloc: return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize); case dwarf::DW_FORM_addr: case dwarf::DW_FORM_data1: case dwarf::DW_FORM_data2: case dwarf::DW_FORM_data4: case dwarf::DW_FORM_data8: case dwarf::DW_FORM_udata: case dwarf::DW_FORM_sdata: case dwarf::DW_FORM_sec_offset: case dwarf::DW_FORM_flag: case dwarf::DW_FORM_flag_present: return cloneScalarAttribute(Die, InputDIE, U, AttrSpec, Val, AttrSize); default: reportWarning("Unsupported attribute form in cloneAttribute. Dropping.", &U, &InputDIE); } return 0; } /// \brief Recursively clone \p InputDIE's subtrees that have been /// selected to appear in the linked output. /// /// \param OutOffset is the Offset where the newly created DIE will /// lie in the linked compile unit. /// /// \returns the cloned DIE object or null if nothing was selected. DIE *DwarfLinker::cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit, uint32_t OutOffset) { DWARFUnit &U = Unit.getOrigUnit(); unsigned Idx = U.getDIEIndex(&InputDIE); // Should the DIE appear in the output? if (!Unit.getInfo(Idx).Keep) return nullptr; uint32_t Offset = InputDIE.getOffset(); DIE *Die = new DIE(static_cast(InputDIE.getTag())); Die->setOffset(OutOffset); // Extract and clone every attribute. DataExtractor Data = U.getDebugInfoExtractor(); const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); Offset += getULEB128Size(Abbrev->getCode()); for (const auto &AttrSpec : Abbrev->attributes()) { DWARFFormValue Val(AttrSpec.Form); uint32_t AttrSize = Offset; Val.extractValue(Data, &Offset, &U); AttrSize = Offset - AttrSize; OutOffset += cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize); } DIEAbbrev &NewAbbrev = Die->getAbbrev(); // If a scope DIE is kept, we must have kept at least one child. If // it's not the case, we'll just be emitting one wasteful end of // children marker, but things won't break. if (InputDIE.hasChildren()) NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); // Assign a permanent abbrev number AssignAbbrev(Die->getAbbrev()); // Add the size of the abbreviation number to the output offset. OutOffset += getULEB128Size(Die->getAbbrevNumber()); if (!Abbrev->hasChildren()) { // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } // Recursively clone children. for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL(); Child = Child->getSibling()) { if (DIE *Clone = cloneDIE(*Child, Unit, OutOffset)) { Die->addChild(std::unique_ptr(Clone)); OutOffset = Clone->getOffset() + Clone->getSize(); } } // Account for the end of children marker. OutOffset += sizeof(int8_t); // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } bool DwarfLinker::link(const DebugMap &Map) { if (Map.begin() == Map.end()) { errs() << "Empty debug map.\n"; return false; } if (!createStreamer(Map.getTriple(), OutputFilename)) return false; // Size of the DIEs (and headers) generated for the linked output. uint64_t OutputDebugInfoSize = 0; for (const auto &Obj : Map.objects()) { CurrentDebugObject = Obj.get(); if (Options.Verbose) outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n"; auto ErrOrObj = BinHolder.GetObjectFile(Obj->getObjectFilename()); if (std::error_code EC = ErrOrObj.getError()) { reportWarning(Twine(Obj->getObjectFilename()) + ": " + EC.message()); continue; } // Look for relocations that correspond to debug map entries. if (!findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) { if (Options.Verbose) outs() << "No valid relocations found. Skipping.\n"; continue; } // Setup access to the debug info. DWARFContextInMemory DwarfContext(*ErrOrObj); startDebugObject(DwarfContext); // In a first phase, just read in the debug info and store the DIE // parent links that we will use during the next phase. for (const auto &CU : DwarfContext.compile_units()) { auto *CUDie = CU->getCompileUnitDIE(false); if (Options.Verbose) { outs() << "Input compilation unit:"; CUDie->dump(outs(), CU.get(), 0); } Units.emplace_back(*CU); gatherDIEParents(CUDie, 0, Units.back()); } // Then mark all the DIEs that need to be present in the linked // output and collect some information about them. Note that this // loop can not be merged with the previous one becaue cross-cu // references require the ParentIdx to be setup for every CU in // the object file before calling this. for (auto &CurrentUnit : Units) lookForDIEsToKeep(*CurrentUnit.getOrigUnit().getCompileUnitDIE(), *Obj, CurrentUnit, 0); // Construct the output DIE tree by cloning the DIEs we chose to // keep above. If there are no valid relocs, then there's nothing // to clone/emit. if (!ValidRelocs.empty()) for (auto &CurrentUnit : Units) { const auto *InputDIE = CurrentUnit.getOrigUnit().getCompileUnitDIE(); DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 11 /* Unit Header size */); CurrentUnit.setOutputUnitDIE(OutputDIE); OutputDebugInfoSize = CurrentUnit.computeOffsets(OutputDebugInfoSize); } // Emit all the compile unit's debug information. if (!ValidRelocs.empty() && !Options.NoOutput) for (auto &CurrentUnit : Units) { Streamer->emitCompileUnitHeader(CurrentUnit); if (!CurrentUnit.getOutputUnitDIE()) continue; Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE()); } // Clean-up before starting working on the next object. endDebugObject(); } // Emit everything that's global. if (!Options.NoOutput) Streamer->emitAbbrevs(Abbreviations); return Options.NoOutput ? true : Streamer->finish(); } } bool linkDwarf(StringRef OutputFilename, const DebugMap &DM, const LinkOptions &Options) { DwarfLinker Linker(OutputFilename, Options); return Linker.link(DM); } } }