//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief R600 Machine Scheduler interface // //===----------------------------------------------------------------------===// #include "R600MachineScheduler.h" #include "AMDGPUSubtarget.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "misched" void R600SchedStrategy::initialize(ScheduleDAGMI *dag) { assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness"); DAG = static_cast(dag); const AMDGPUSubtarget &ST = DAG->TM.getSubtarget(); TII = static_cast(DAG->TII); TRI = static_cast(DAG->TRI); VLIW5 = !ST.hasCaymanISA(); MRI = &DAG->MRI; CurInstKind = IDOther; CurEmitted = 0; OccupedSlotsMask = 31; InstKindLimit[IDAlu] = TII->getMaxAlusPerClause(); InstKindLimit[IDOther] = 32; InstKindLimit[IDFetch] = ST.getTexVTXClauseSize(); AluInstCount = 0; FetchInstCount = 0; } void R600SchedStrategy::MoveUnits(std::vector &QSrc, std::vector &QDst) { QDst.insert(QDst.end(), QSrc.begin(), QSrc.end()); QSrc.clear(); } static unsigned getWFCountLimitedByGPR(unsigned GPRCount) { assert (GPRCount && "GPRCount cannot be 0"); return 248 / GPRCount; } SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) { SUnit *SU = nullptr; NextInstKind = IDOther; IsTopNode = false; // check if we might want to switch current clause type bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) || (Available[CurInstKind].empty()); bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) && (!Available[IDFetch].empty() || !Available[IDOther].empty()); if (CurInstKind == IDAlu && !Available[IDFetch].empty()) { // We use the heuristic provided by AMD Accelerated Parallel Processing // OpenCL Programming Guide : // The approx. number of WF that allows TEX inst to hide ALU inst is : // 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU)) float ALUFetchRationEstimate = (AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) / (FetchInstCount + Available[IDFetch].size()); if (ALUFetchRationEstimate == 0) { AllowSwitchFromAlu = true; } else { unsigned NeededWF = 62.5f / ALUFetchRationEstimate; DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" ); // We assume the local GPR requirements to be "dominated" by the requirement // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and // after TEX are indeed likely to consume or generate values from/for the // TEX clause. // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need // one GPR) or TmXYZW = TnXYZW (need 2 GPR). // (TODO : use RegisterPressure) // If we are going too use too many GPR, we flush Fetch instruction to lower // register pressure on 128 bits regs. unsigned NearRegisterRequirement = 2 * Available[IDFetch].size(); if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement)) AllowSwitchFromAlu = true; } } if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) || (!AllowSwitchFromAlu && CurInstKind == IDAlu))) { // try to pick ALU SU = pickAlu(); if (!SU && !PhysicalRegCopy.empty()) { SU = PhysicalRegCopy.front(); PhysicalRegCopy.erase(PhysicalRegCopy.begin()); } if (SU) { if (CurEmitted >= InstKindLimit[IDAlu]) CurEmitted = 0; NextInstKind = IDAlu; } } if (!SU) { // try to pick FETCH SU = pickOther(IDFetch); if (SU) NextInstKind = IDFetch; } // try to pick other if (!SU) { SU = pickOther(IDOther); if (SU) NextInstKind = IDOther; } DEBUG( if (SU) { dbgs() << " ** Pick node **\n"; SU->dump(DAG); } else { dbgs() << "NO NODE \n"; for (unsigned i = 0; i < DAG->SUnits.size(); i++) { const SUnit &S = DAG->SUnits[i]; if (!S.isScheduled) S.dump(DAG); } } ); return SU; } void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) { if (NextInstKind != CurInstKind) { DEBUG(dbgs() << "Instruction Type Switch\n"); if (NextInstKind != IDAlu) OccupedSlotsMask |= 31; CurEmitted = 0; CurInstKind = NextInstKind; } if (CurInstKind == IDAlu) { AluInstCount ++; switch (getAluKind(SU)) { case AluT_XYZW: CurEmitted += 4; break; case AluDiscarded: break; default: { ++CurEmitted; for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(), E = SU->getInstr()->operands_end(); It != E; ++It) { MachineOperand &MO = *It; if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X) ++CurEmitted; } } } } else { ++CurEmitted; } DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n"); if (CurInstKind != IDFetch) { MoveUnits(Pending[IDFetch], Available[IDFetch]); } else FetchInstCount++; } static bool isPhysicalRegCopy(MachineInstr *MI) { if (MI->getOpcode() != AMDGPU::COPY) return false; return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg()); } void R600SchedStrategy::releaseTopNode(SUnit *SU) { DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG);); } void R600SchedStrategy::releaseBottomNode(SUnit *SU) { DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG);); if (isPhysicalRegCopy(SU->getInstr())) { PhysicalRegCopy.push_back(SU); return; } int IK = getInstKind(SU); // There is no export clause, we can schedule one as soon as its ready if (IK == IDOther) Available[IDOther].push_back(SU); else Pending[IK].push_back(SU); } bool R600SchedStrategy::regBelongsToClass(unsigned Reg, const TargetRegisterClass *RC) const { if (!TargetRegisterInfo::isVirtualRegister(Reg)) { return RC->contains(Reg); } else { return MRI->getRegClass(Reg) == RC; } } R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const { MachineInstr *MI = SU->getInstr(); if (TII->isTransOnly(MI)) return AluTrans; switch (MI->getOpcode()) { case AMDGPU::PRED_X: return AluPredX; case AMDGPU::INTERP_PAIR_XY: case AMDGPU::INTERP_PAIR_ZW: case AMDGPU::INTERP_VEC_LOAD: case AMDGPU::DOT_4: return AluT_XYZW; case AMDGPU::COPY: if (MI->getOperand(1).isUndef()) { // MI will become a KILL, don't considers it in scheduling return AluDiscarded; } default: break; } // Does the instruction take a whole IG ? // XXX: Is it possible to add a helper function in R600InstrInfo that can // be used here and in R600PacketizerList::isSoloInstruction() ? if(TII->isVector(*MI) || TII->isCubeOp(MI->getOpcode()) || TII->isReductionOp(MI->getOpcode()) || MI->getOpcode() == AMDGPU::GROUP_BARRIER) { return AluT_XYZW; } if (TII->isLDSInstr(MI->getOpcode())) { return AluT_X; } // Is the result already assigned to a channel ? unsigned DestSubReg = MI->getOperand(0).getSubReg(); switch (DestSubReg) { case AMDGPU::sub0: return AluT_X; case AMDGPU::sub1: return AluT_Y; case AMDGPU::sub2: return AluT_Z; case AMDGPU::sub3: return AluT_W; default: break; } // Is the result already member of a X/Y/Z/W class ? unsigned DestReg = MI->getOperand(0).getReg(); if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) || regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass)) return AluT_X; if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass)) return AluT_Y; if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass)) return AluT_Z; if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass)) return AluT_W; if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass)) return AluT_XYZW; // LDS src registers cannot be used in the Trans slot. if (TII->readsLDSSrcReg(MI)) return AluT_XYZW; return AluAny; } int R600SchedStrategy::getInstKind(SUnit* SU) { int Opcode = SU->getInstr()->getOpcode(); if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode)) return IDFetch; if (TII->isALUInstr(Opcode)) { return IDAlu; } switch (Opcode) { case AMDGPU::PRED_X: case AMDGPU::COPY: case AMDGPU::CONST_COPY: case AMDGPU::INTERP_PAIR_XY: case AMDGPU::INTERP_PAIR_ZW: case AMDGPU::INTERP_VEC_LOAD: case AMDGPU::DOT_4: return IDAlu; default: return IDOther; } } SUnit *R600SchedStrategy::PopInst(std::vector &Q, bool AnyALU) { if (Q.empty()) return nullptr; for (std::vector::reverse_iterator It = Q.rbegin(), E = Q.rend(); It != E; ++It) { SUnit *SU = *It; InstructionsGroupCandidate.push_back(SU->getInstr()); if (TII->fitsConstReadLimitations(InstructionsGroupCandidate) && (!AnyALU || !TII->isVectorOnly(SU->getInstr())) ) { InstructionsGroupCandidate.pop_back(); Q.erase((It + 1).base()); return SU; } else { InstructionsGroupCandidate.pop_back(); } } return nullptr; } void R600SchedStrategy::LoadAlu() { std::vector &QSrc = Pending[IDAlu]; for (unsigned i = 0, e = QSrc.size(); i < e; ++i) { AluKind AK = getAluKind(QSrc[i]); AvailableAlus[AK].push_back(QSrc[i]); } QSrc.clear(); } void R600SchedStrategy::PrepareNextSlot() { DEBUG(dbgs() << "New Slot\n"); assert (OccupedSlotsMask && "Slot wasn't filled"); OccupedSlotsMask = 0; // if (HwGen == AMDGPUSubtarget::NORTHERN_ISLANDS) // OccupedSlotsMask |= 16; InstructionsGroupCandidate.clear(); LoadAlu(); } void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) { int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst); if (DstIndex == -1) { return; } unsigned DestReg = MI->getOperand(DstIndex).getReg(); // PressureRegister crashes if an operand is def and used in the same inst // and we try to constraint its regclass for (MachineInstr::mop_iterator It = MI->operands_begin(), E = MI->operands_end(); It != E; ++It) { MachineOperand &MO = *It; if (MO.isReg() && !MO.isDef() && MO.getReg() == DestReg) return; } // Constrains the regclass of DestReg to assign it to Slot switch (Slot) { case 0: MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass); break; case 1: MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass); break; case 2: MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass); break; case 3: MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass); break; } } SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) { static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W}; SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu); if (SlotedSU) return SlotedSU; SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu); if (UnslotedSU) AssignSlot(UnslotedSU->getInstr(), Slot); return UnslotedSU; } unsigned R600SchedStrategy::AvailablesAluCount() const { return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() + AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() + AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() + AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() + AvailableAlus[AluPredX].size(); } SUnit* R600SchedStrategy::pickAlu() { while (AvailablesAluCount() || !Pending[IDAlu].empty()) { if (!OccupedSlotsMask) { // Bottom up scheduling : predX must comes first if (!AvailableAlus[AluPredX].empty()) { OccupedSlotsMask |= 31; return PopInst(AvailableAlus[AluPredX], false); } // Flush physical reg copies (RA will discard them) if (!AvailableAlus[AluDiscarded].empty()) { OccupedSlotsMask |= 31; return PopInst(AvailableAlus[AluDiscarded], false); } // If there is a T_XYZW alu available, use it if (!AvailableAlus[AluT_XYZW].empty()) { OccupedSlotsMask |= 15; return PopInst(AvailableAlus[AluT_XYZW], false); } } bool TransSlotOccuped = OccupedSlotsMask & 16; if (!TransSlotOccuped && VLIW5) { if (!AvailableAlus[AluTrans].empty()) { OccupedSlotsMask |= 16; return PopInst(AvailableAlus[AluTrans], false); } SUnit *SU = AttemptFillSlot(3, true); if (SU) { OccupedSlotsMask |= 16; return SU; } } for (int Chan = 3; Chan > -1; --Chan) { bool isOccupied = OccupedSlotsMask & (1 << Chan); if (!isOccupied) { SUnit *SU = AttemptFillSlot(Chan, false); if (SU) { OccupedSlotsMask |= (1 << Chan); InstructionsGroupCandidate.push_back(SU->getInstr()); return SU; } } } PrepareNextSlot(); } return nullptr; } SUnit* R600SchedStrategy::pickOther(int QID) { SUnit *SU = nullptr; std::vector &AQ = Available[QID]; if (AQ.empty()) { MoveUnits(Pending[QID], AQ); } if (!AQ.empty()) { SU = AQ.back(); AQ.resize(AQ.size() - 1); } return SU; }