//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PowerPC assembly language. This printer is // the output mechanism used by `llc'. // // Documentation at http://developer.apple.com/documentation/DeveloperTools/ // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asmprinter" #include "PPC.h" #include "PPCPredicates.h" #include "PPCTargetMachine.h" #include "PPCSubtarget.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/SmallString.h" using namespace llvm; namespace { class PPCAsmPrinter : public AsmPrinter { protected: DenseMap TOC; const PPCSubtarget &Subtarget; uint64_t LabelID; public: explicit PPCAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM, MCStreamer &Streamer) : AsmPrinter(O, TM, Streamer), Subtarget(TM.getSubtarget()), LabelID(0) {} virtual const char *getPassName() const { return "PowerPC Assembly Printer"; } PPCTargetMachine &getTM() { return static_cast(TM); } unsigned enumRegToMachineReg(unsigned enumReg) { switch (enumReg) { default: llvm_unreachable("Unhandled register!"); case PPC::CR0: return 0; case PPC::CR1: return 1; case PPC::CR2: return 2; case PPC::CR3: return 3; case PPC::CR4: return 4; case PPC::CR5: return 5; case PPC::CR6: return 6; case PPC::CR7: return 7; } llvm_unreachable(0); } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. void printInstruction(const MachineInstr *MI, raw_ostream &O); static const char *getRegisterName(unsigned RegNo); virtual void EmitInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, raw_ostream &O); /// stripRegisterPrefix - This method strips the character prefix from a /// register name so that only the number is left. Used by for linux asm. const char *stripRegisterPrefix(const char *RegName) { switch (RegName[0]) { case 'r': case 'f': case 'v': return RegName + 1; case 'c': if (RegName[1] == 'r') return RegName + 2; } return RegName; } /// printRegister - Print register according to target requirements. /// void printRegister(const MachineOperand &MO, bool R0AsZero, raw_ostream &O){ unsigned RegNo = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(RegNo) && "Not physreg??"); // If we should use 0 for R0. if (R0AsZero && RegNo == PPC::R0) { O << "0"; return; } const char *RegName = getRegisterName(RegNo); // Linux assembler (Others?) does not take register mnemonics. // FIXME - What about special registers used in mfspr/mtspr? if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName); O << RegName; } void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNo); if (MO.isReg()) { printRegister(MO, false, O); } else if (MO.isImm()) { O << MO.getImm(); } else { printOp(MO, O); } } bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O); bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O); void printS5ImmOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { char value = MI->getOperand(OpNo).getImm(); value = (value << (32-5)) >> (32-5); O << (int)value; } void printU5ImmOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { unsigned char value = MI->getOperand(OpNo).getImm(); assert(value <= 31 && "Invalid u5imm argument!"); O << (unsigned int)value; } void printU6ImmOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { unsigned char value = MI->getOperand(OpNo).getImm(); assert(value <= 63 && "Invalid u6imm argument!"); O << (unsigned int)value; } void printS16ImmOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { O << (short)MI->getOperand(OpNo).getImm(); } void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { O << (unsigned short)MI->getOperand(OpNo).getImm(); } void printS16X4ImmOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) { O << (short)(MI->getOperand(OpNo).getImm()*4); } else { O << "lo16("; printOp(MI->getOperand(OpNo), O); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\")"; else O << ')'; } } void printBranchOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { // Branches can take an immediate operand. This is used by the branch // selection pass to print $+8, an eight byte displacement from the PC. if (MI->getOperand(OpNo).isImm()) { O << "$+" << MI->getOperand(OpNo).getImm()*4; } else { printOp(MI->getOperand(OpNo), O); } } void printCallOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNo); if (TM.getRelocationModel() != Reloc::Static) { if (MO.getType() == MachineOperand::MO_GlobalAddress) { GlobalValue *GV = MO.getGlobal(); if (GV->isDeclaration() || GV->isWeakForLinker()) { // Dynamically-resolved functions need a stub for the function. MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$stub"); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo().getFnStubEntry(Sym); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage()); O << *Sym; return; } } if (MO.getType() == MachineOperand::MO_ExternalSymbol) { SmallString<128> TempNameStr; TempNameStr += StringRef(MO.getSymbolName()); TempNameStr += StringRef("$stub"); MCSymbol *Sym = GetExternalSymbolSymbol(TempNameStr.str()); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo().getFnStubEntry(Sym); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(GetExternalSymbolSymbol(MO.getSymbolName()), true); O << *Sym; return; } } printOp(MI->getOperand(OpNo), O); } void printAbsAddrOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { O << (int)MI->getOperand(OpNo).getImm()*4; } void printPICLabel(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { O << "\"L" << getFunctionNumber() << "$pb\"\n"; O << "\"L" << getFunctionNumber() << "$pb\":"; } void printSymbolHi(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) { printS16ImmOperand(MI, OpNo, O); } else { if (Subtarget.isDarwin()) O << "ha16("; printOp(MI->getOperand(OpNo), O); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; if (Subtarget.isDarwin()) O << ')'; else O << "@ha"; } } void printSymbolLo(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) { printS16ImmOperand(MI, OpNo, O); } else { if (Subtarget.isDarwin()) O << "lo16("; printOp(MI->getOperand(OpNo), O); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; if (Subtarget.isDarwin()) O << ')'; else O << "@l"; } } void printcrbitm(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { unsigned CCReg = MI->getOperand(OpNo).getReg(); unsigned RegNo = enumRegToMachineReg(CCReg); O << (0x80 >> RegNo); } // The new addressing mode printers. void printMemRegImm(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { printSymbolLo(MI, OpNo, O); O << '('; if (MI->getOperand(OpNo+1).isReg() && MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1, O); O << ')'; } void printMemRegImmShifted(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) printS16X4ImmOperand(MI, OpNo, O); else printSymbolLo(MI, OpNo, O); O << '('; if (MI->getOperand(OpNo+1).isReg() && MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1, O); O << ')'; } void printMemRegReg(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { // When used as the base register, r0 reads constant zero rather than // the value contained in the register. For this reason, the darwin // assembler requires that we print r0 as 0 (no r) when used as the base. const MachineOperand &MO = MI->getOperand(OpNo); printRegister(MO, true, O); O << ", "; printOperand(MI, OpNo+1, O); } void printTOCEntryLabel(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNo); assert(MO.getType() == MachineOperand::MO_GlobalAddress); MCSymbol *Sym = Mang->getSymbol(MO.getGlobal()); // Map symbol -> label of TOC entry. MCSymbol *&TOCEntry = TOC[Sym]; if (TOCEntry == 0) TOCEntry = OutContext. GetOrCreateSymbol(StringRef(MAI->getPrivateGlobalPrefix()) + "C" + Twine(LabelID++)); O << *TOCEntry << "@toc"; } void printPredicateOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier); }; /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux class PPCLinuxAsmPrinter : public PPCAsmPrinter { public: explicit PPCLinuxAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM, MCStreamer &Streamer) : PPCAsmPrinter(O, TM, Streamer) {} virtual const char *getPassName() const { return "Linux PPC Assembly Printer"; } bool doFinalization(Module &M); virtual void EmitFunctionEntryLabel(); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); PPCAsmPrinter::getAnalysisUsage(AU); } }; /// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac /// OS X class PPCDarwinAsmPrinter : public PPCAsmPrinter { formatted_raw_ostream &OS; public: explicit PPCDarwinAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM, MCStreamer &Streamer) : PPCAsmPrinter(O, TM, Streamer), OS(O) {} virtual const char *getPassName() const { return "Darwin PPC Assembly Printer"; } bool doFinalization(Module &M); void EmitStartOfAsmFile(Module &M); void EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); PPCAsmPrinter::getAnalysisUsage(AU); } }; } // end of anonymous namespace // Include the auto-generated portion of the assembly writer #include "PPCGenAsmWriter.inc" void PPCAsmPrinter::printOp(const MachineOperand &MO, raw_ostream &O) { switch (MO.getType()) { case MachineOperand::MO_Immediate: llvm_unreachable("printOp() does not handle immediate values"); case MachineOperand::MO_MachineBasicBlock: O << *MO.getMBB()->getSymbol(); return; case MachineOperand::MO_JumpTableIndex: O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); // FIXME: PIC relocation model return; case MachineOperand::MO_ConstantPoolIndex: O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getIndex(); return; case MachineOperand::MO_BlockAddress: O << *GetBlockAddressSymbol(MO.getBlockAddress()); return; case MachineOperand::MO_ExternalSymbol: { // Computing the address of an external symbol, not calling it. if (TM.getRelocationModel() == Reloc::Static) { O << *GetExternalSymbolSymbol(MO.getSymbolName()); return; } MCSymbol *NLPSym = OutContext.GetOrCreateSymbol(StringRef(MAI->getGlobalPrefix())+ MO.getSymbolName()+"$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo().getGVStubEntry(NLPSym); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(GetExternalSymbolSymbol(MO.getSymbolName()), true); O << *NLPSym; return; } case MachineOperand::MO_GlobalAddress: { // Computing the address of a global symbol, not calling it. GlobalValue *GV = MO.getGlobal(); MCSymbol *SymToPrint; // External or weakly linked global variables need non-lazily-resolved stubs if (TM.getRelocationModel() != Reloc::Static && (GV->isDeclaration() || GV->isWeakForLinker())) { if (!GV->hasHiddenVisibility()) { SymToPrint = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo() .getGVStubEntry(SymToPrint); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage()); } else if (GV->isDeclaration() || GV->hasCommonLinkage() || GV->hasAvailableExternallyLinkage()) { SymToPrint = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo(). getHiddenGVStubEntry(SymToPrint); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage()); } else { SymToPrint = Mang->getSymbol(GV); } } else { SymToPrint = Mang->getSymbol(GV); } O << *SymToPrint; printOffset(MO.getOffset(), O); return; } default: O << ""; return; } } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'c': // Don't print "$" before a global var name or constant. // PPC never has a prefix. printOperand(MI, OpNo, O); return false; case 'L': // Write second word of DImode reference. // Verify that this operand has two consecutive registers. if (!MI->getOperand(OpNo).isReg() || OpNo+1 == MI->getNumOperands() || !MI->getOperand(OpNo+1).isReg()) return true; ++OpNo; // Return the high-part. break; case 'I': // Write 'i' if an integer constant, otherwise nothing. Used to print // addi vs add, etc. if (MI->getOperand(OpNo).isImm()) O << "i"; return false; } } printOperand(MI, OpNo, O); return false; } // At the moment, all inline asm memory operands are a single register. // In any case, the output of this routine should always be just one // assembler operand. bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. assert (MI->getOperand(OpNo).isReg()); O << "0("; printOperand(MI, OpNo, O); O << ")"; return false; } void PPCAsmPrinter::printPredicateOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier){ assert(Modifier && "Must specify 'cc' or 'reg' as predicate op modifier!"); unsigned Code = MI->getOperand(OpNo).getImm(); if (!strcmp(Modifier, "cc")) { switch ((PPC::Predicate)Code) { case PPC::PRED_ALWAYS: return; // Don't print anything for always. case PPC::PRED_LT: O << "lt"; return; case PPC::PRED_LE: O << "le"; return; case PPC::PRED_EQ: O << "eq"; return; case PPC::PRED_GE: O << "ge"; return; case PPC::PRED_GT: O << "gt"; return; case PPC::PRED_NE: O << "ne"; return; case PPC::PRED_UN: O << "un"; return; case PPC::PRED_NU: O << "nu"; return; } } else { assert(!strcmp(Modifier, "reg") && "Need to specify 'cc' or 'reg' as predicate op modifier!"); // Don't print the register for 'always'. if (Code == PPC::PRED_ALWAYS) return; printOperand(MI, OpNo+1, O); } } /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to /// the current output stream. /// void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) { SmallString<128> Str; raw_svector_ostream O(Str); // Check for slwi/srwi mnemonics. if (MI->getOpcode() == PPC::RLWINM) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char MB = MI->getOperand(3).getImm(); unsigned char ME = MI->getOperand(4).getImm(); bool useSubstituteMnemonic = false; if (SH <= 31 && MB == 0 && ME == (31-SH)) { O << "\tslwi "; useSubstituteMnemonic = true; } if (SH <= 31 && MB == (32-SH) && ME == 31) { O << "\tsrwi "; useSubstituteMnemonic = true; SH = 32-SH; } if (useSubstituteMnemonic) { printOperand(MI, 0, O); O << ", "; printOperand(MI, 1, O); O << ", " << (unsigned int)SH; OutStreamer.EmitRawText(O.str()); return; } } if ((MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) && MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) { O << "\tmr "; printOperand(MI, 0, O); O << ", "; printOperand(MI, 1, O); OutStreamer.EmitRawText(O.str()); return; } if (MI->getOpcode() == PPC::RLDICR) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char ME = MI->getOperand(3).getImm(); // rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH if (63-SH == ME) { O << "\tsldi "; printOperand(MI, 0, O); O << ", "; printOperand(MI, 1, O); O << ", " << (unsigned int)SH; OutStreamer.EmitRawText(O.str()); return; } } printInstruction(MI, O); OutStreamer.EmitRawText(O.str()); } void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() { if (!Subtarget.isPPC64()) // linux/ppc32 - Normal entry label. return AsmPrinter::EmitFunctionEntryLabel(); // Emit an official procedure descriptor. // FIXME 64-bit SVR4: Use MCSection here! OutStreamer.EmitRawText(StringRef("\t.section\t\".opd\",\"aw\"")); OutStreamer.EmitRawText(StringRef("\t.align 3")); OutStreamer.EmitLabel(CurrentFnSym); OutStreamer.EmitRawText("\t.quad .L." + Twine(CurrentFnSym->getName()) + ",.TOC.@tocbase"); OutStreamer.EmitRawText(StringRef("\t.previous")); OutStreamer.EmitRawText(".L." + Twine(CurrentFnSym->getName()) + ":"); } bool PPCLinuxAsmPrinter::doFinalization(Module &M) { const TargetData *TD = TM.getTargetData(); bool isPPC64 = TD->getPointerSizeInBits() == 64; if (isPPC64 && !TOC.empty()) { // FIXME 64-bit SVR4: Use MCSection here? OutStreamer.EmitRawText(StringRef("\t.section\t\".toc\",\"aw\"")); // FIXME: This is nondeterminstic! for (DenseMap::iterator I = TOC.begin(), E = TOC.end(); I != E; ++I) { OutStreamer.EmitLabel(I->second); OutStreamer.EmitRawText("\t.tc " + Twine(I->first->getName()) + "[TC]," + I->first->getName()); } } return AsmPrinter::doFinalization(M); } void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) { static const char *const CPUDirectives[] = { "", "ppc", "ppc601", "ppc602", "ppc603", "ppc7400", "ppc750", "ppc970", "ppc64" }; unsigned Directive = Subtarget.getDarwinDirective(); if (Subtarget.isGigaProcessor() && Directive < PPC::DIR_970) Directive = PPC::DIR_970; if (Subtarget.hasAltivec() && Directive < PPC::DIR_7400) Directive = PPC::DIR_7400; if (Subtarget.isPPC64() && Directive < PPC::DIR_970) Directive = PPC::DIR_64; assert(Directive <= PPC::DIR_64 && "Directive out of range."); OutStreamer.EmitRawText("\t.machine " + Twine(CPUDirectives[Directive])); // Prime text sections so they are adjacent. This reduces the likelihood a // large data or debug section causes a branch to exceed 16M limit. TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection()); if (TM.getRelocationModel() == Reloc::PIC_) { OutStreamer.SwitchSection( TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub1", MCSectionMachO::S_SYMBOL_STUBS | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 32, SectionKind::getText())); } else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) { OutStreamer.SwitchSection( TLOFMacho.getMachOSection("__TEXT","__symbol_stub1", MCSectionMachO::S_SYMBOL_STUBS | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 16, SectionKind::getText())); } OutStreamer.SwitchSection(getObjFileLowering().getTextSection()); } static MCSymbol *GetLazyPtr(MCSymbol *Sym, MCContext &Ctx) { // Remove $stub suffix, add $lazy_ptr. SmallString<128> TmpStr(Sym->getName().begin(), Sym->getName().end()-5); TmpStr += "$lazy_ptr"; return Ctx.GetOrCreateSymbol(TmpStr.str()); } static MCSymbol *GetAnonSym(MCSymbol *Sym, MCContext &Ctx) { // Add $tmp suffix to $stub, yielding $stub$tmp. SmallString<128> TmpStr(Sym->getName().begin(), Sym->getName().end()); TmpStr += "$tmp"; return Ctx.GetOrCreateSymbol(TmpStr.str()); } void PPCDarwinAsmPrinter:: EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs) { bool isPPC64 = TM.getTargetData()->getPointerSizeInBits() == 64; TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); // .lazy_symbol_pointer const MCSection *LSPSection = TLOFMacho.getLazySymbolPointerSection(); // Output stubs for dynamically-linked functions if (TM.getRelocationModel() == Reloc::PIC_) { const MCSection *StubSection = TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub1", MCSectionMachO::S_SYMBOL_STUBS | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 32, SectionKind::getText()); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { OutStreamer.SwitchSection(StubSection); EmitAlignment(4); MCSymbol *Stub = Stubs[i].first; MCSymbol *RawSym = Stubs[i].second.getPointer(); MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext); MCSymbol *AnonSymbol = GetAnonSym(Stub, OutContext); OutStreamer.EmitLabel(Stub); OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol); // FIXME: MCize this. O << "\tmflr r0\n"; O << "\tbcl 20,31," << *AnonSymbol << '\n'; OutStreamer.EmitLabel(AnonSymbol); O << "\tmflr r11\n"; O << "\taddis r11,r11,ha16(" << *LazyPtr << '-' << *AnonSymbol << ")\n"; O << "\tmtlr r0\n"; O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(" << *LazyPtr << '-' << *AnonSymbol << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; OutStreamer.SwitchSection(LSPSection); OutStreamer.EmitLabel(LazyPtr); OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol); O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n"; } OutStreamer.AddBlankLine(); return; } const MCSection *StubSection = TLOFMacho.getMachOSection("__TEXT","__symbol_stub1", MCSectionMachO::S_SYMBOL_STUBS | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 16, SectionKind::getText()); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { MCSymbol *Stub = Stubs[i].first; MCSymbol *RawSym = Stubs[i].second.getPointer(); MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext); OutStreamer.SwitchSection(StubSection); EmitAlignment(4); OutStreamer.EmitLabel(Stub); OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol); O << "\tlis r11,ha16(" << *LazyPtr << ")\n"; O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(" << *LazyPtr << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; OutStreamer.SwitchSection(LSPSection); OutStreamer.EmitLabel(LazyPtr); OutStreamer.EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol); O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n"; } OutStreamer.AddBlankLine(); } bool PPCDarwinAsmPrinter::doFinalization(Module &M) { bool isPPC64 = TM.getTargetData()->getPointerSizeInBits() == 64; // Darwin/PPC always uses mach-o. TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo(); MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetFnStubList(); if (!Stubs.empty()) EmitFunctionStubs(Stubs); if (MAI->doesSupportExceptionHandling() && MMI) { // Add the (possibly multiple) personalities to the set of global values. // Only referenced functions get into the Personalities list. const std::vector &Personalities = MMI->getPersonalities(); for (std::vector::const_iterator I = Personalities.begin(), E = Personalities.end(); I != E; ++I) { if (*I) { MCSymbol *NLPSym = GetSymbolWithGlobalValueBase(*I, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMIMacho.getGVStubEntry(NLPSym); StubSym = MachineModuleInfoImpl::StubValueTy(Mang->getSymbol(*I), true); } } } // Output stubs for dynamically-linked functions. Stubs = MMIMacho.GetGVStubList(); // Output macho stubs for external and common global variables. if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); EmitAlignment(isPPC64 ? 3 : 2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .indirect_symbol _foo MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.EmitIntValue(0, isPPC64 ? 8 : 4/*size*/, 0/*addrspace*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info pointers // need to be indirect and pc-rel. We accomplish this by using NLPs. // However, sometimes the types are local to the file. So we need to // fill in the value for the NLP in those cases. OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), OutContext), isPPC64 ? 8 : 4/*size*/, 0/*addrspace*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } Stubs = MMIMacho.GetHiddenGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); EmitAlignment(isPPC64 ? 3 : 2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .long _foo OutStreamer.EmitValue(MCSymbolRefExpr:: Create(Stubs[i].second.getPointer(), OutContext), isPPC64 ? 8 : 4/*size*/, 0/*addrspace*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never generates // code that does this, it is always safe to set. OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); return AsmPrinter::doFinalization(M); } /// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code /// for a MachineFunction to the given output stream, in a format that the /// Darwin assembler can deal with. /// static AsmPrinter *createPPCAsmPrinterPass(formatted_raw_ostream &o, TargetMachine &tm, MCStreamer &Streamer) { const PPCSubtarget *Subtarget = &tm.getSubtarget(); if (Subtarget->isDarwin()) return new PPCDarwinAsmPrinter(o, tm, Streamer); return new PPCLinuxAsmPrinter(o, tm, Streamer); } // Force static initialization. extern "C" void LLVMInitializePowerPCAsmPrinter() { TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass); TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass); }