//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "codegenprepare" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/AddrModeMatcher.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/PatternMatch.h" using namespace llvm; using namespace llvm::PatternMatch; static cl::opt FactorCommonPreds("split-critical-paths-tweak", cl::init(false), cl::Hidden); namespace { class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetLowering *TLI; /// BackEdges - Keep a set of all the loop back edges. /// SmallSet, 8> BackEdges; public: static char ID; // Pass identification, replacement for typeid explicit CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass(&ID), TLI(tli) {} bool runOnFunction(Function &F); private: bool EliminateMostlyEmptyBlocks(Function &F); bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void EliminateMostlyEmptyBlock(BasicBlock *BB); bool OptimizeBlock(BasicBlock &BB); bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy, DenseMap &SunkAddrs); bool OptimizeInlineAsmInst(Instruction *I, CallSite CS, DenseMap &SunkAddrs); bool OptimizeExtUses(Instruction *I); void findLoopBackEdges(const Function &F); }; } char CodeGenPrepare::ID = 0; static RegisterPass X("codegenprepare", "Optimize for code generation"); FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) { return new CodeGenPrepare(TLI); } /// findLoopBackEdges - Do a DFS walk to find loop back edges. /// void CodeGenPrepare::findLoopBackEdges(const Function &F) { SmallVector, 32> Edges; FindFunctionBackedges(F, Edges); BackEdges.insert(Edges.begin(), Edges.end()); } bool CodeGenPrepare::runOnFunction(Function &F) { bool EverMadeChange = false; // First pass, eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= EliminateMostlyEmptyBlocks(F); // Now find loop back edges. findLoopBackEdges(F); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) MadeChange |= OptimizeBlock(*BB); EverMadeChange |= MadeChange; } return EverMadeChange; } /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, /// debug info directives, and an unconditional branch. Passes before isel /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for /// isel. Start by eliminating these blocks so we can split them the way we /// want them. bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isUnconditional()) continue; // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. BasicBlock::iterator BBI = BI; if (BBI != BB->begin()) { --BBI; while (isa(BBI)) { if (BBI == BB->begin()) break; --BBI; } if (!isa(BBI) && !isa(BBI)) continue; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) continue; if (!CanMergeBlocks(BB, DestBB)) continue; EliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a /// single uncond branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. BasicBlock::const_iterator BBI = BB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { const Instruction *User = cast(*UI); if (User->getParent() != DestBB || !isa(User)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (User->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast(User)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet BBPreds; if (const PHINode *BBPN = dyn_cast(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? BBI = DestBB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { const Value *V1 = PN->getIncomingValueForBlock(Pred); const Value *V2 = PN->getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and /// an unconditional branch in it. void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { if (SinglePred != DestBB) { // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(DestBB); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); DOUT << "AFTER:\n" << *DestBB << "\n\n\n"; return; } } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. PHINode *PN; for (BasicBlock::iterator BBI = DestBB->begin(); (PN = dyn_cast(BBI)); ++BBI) { // Remove the incoming value for BB, and remember it. Value *InVal = PN->removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN->addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); BB->eraseFromParent(); DOUT << "AFTER:\n" << *DestBB << "\n\n\n"; } /// SplitEdgeNicely - Split the critical edge from TI to its specified /// successor if it will improve codegen. We only do this if the successor has /// phi nodes (otherwise critical edges are ok). If there is already another /// predecessor of the succ that is empty (and thus has no phi nodes), use it /// instead of introducing a new block. static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, SmallSet, 8> &BackEdges, Pass *P) { BasicBlock *TIBB = TI->getParent(); BasicBlock *Dest = TI->getSuccessor(SuccNum); assert(isa(Dest->begin()) && "This should only be called if Dest has a PHI!"); // Do not split edges to EH landing pads. if (InvokeInst *Invoke = dyn_cast(TI)) { if (Invoke->getSuccessor(1) == Dest) return; } // As a hack, never split backedges of loops. Even though the copy for any // PHIs inserted on the backedge would be dead for exits from the loop, we // assume that the cost of *splitting* the backedge would be too high. if (BackEdges.count(std::make_pair(TIBB, Dest))) return; if (!FactorCommonPreds) { /// TIPHIValues - This array is lazily computed to determine the values of /// PHIs in Dest that TI would provide. SmallVector TIPHIValues; // Check to see if Dest has any blocks that can be used as a split edge for // this terminator. for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) { BasicBlock *Pred = *PI; // To be usable, the pred has to end with an uncond branch to the dest. BranchInst *PredBr = dyn_cast(Pred->getTerminator()); if (!PredBr || !PredBr->isUnconditional()) continue; // Must be empty other than the branch and debug info. BasicBlock::iterator I = Pred->begin(); while (isa(I)) I++; if (dyn_cast(I) != PredBr) continue; // Cannot be the entry block; its label does not get emitted. if (Pred == &(Dest->getParent()->getEntryBlock())) continue; // Finally, since we know that Dest has phi nodes in it, we have to make // sure that jumping to Pred will have the same effect as going to Dest in // terms of PHI values. PHINode *PN; unsigned PHINo = 0; bool FoundMatch = true; for (BasicBlock::iterator I = Dest->begin(); (PN = dyn_cast(I)); ++I, ++PHINo) { if (PHINo == TIPHIValues.size()) TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB)); // If the PHI entry doesn't work, we can't use this pred. if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) { FoundMatch = false; break; } } // If we found a workable predecessor, change TI to branch to Succ. if (FoundMatch) { Dest->removePredecessor(TIBB); TI->setSuccessor(SuccNum, Pred); return; } } SplitCriticalEdge(TI, SuccNum, P, true); return; } PHINode *PN; SmallVector TIPHIValues; for (BasicBlock::iterator I = Dest->begin(); (PN = dyn_cast(I)); ++I) TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB)); SmallVector IdenticalPreds; for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) { BasicBlock *Pred = *PI; if (BackEdges.count(std::make_pair(Pred, Dest))) continue; if (PI == TIBB) IdenticalPreds.push_back(Pred); else { bool Identical = true; unsigned PHINo = 0; for (BasicBlock::iterator I = Dest->begin(); (PN = dyn_cast(I)); ++I, ++PHINo) if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) { Identical = false; break; } if (Identical) IdenticalPreds.push_back(Pred); } } assert(!IdenticalPreds.empty()); SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(), ".critedge", P); } /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), /// sink it into user blocks to reduce the number of virtual /// registers that must be created and coalesced. /// /// Return true if any changes are made. /// static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ // If this is a noop copy, MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) SrcVT = TLI.getTypeToTransformTo(SrcVT); if (TLI.getTypeAction(DstVT) == TargetLowering::Promote) DstVT = TLI.getTypeToTransformTo(DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap InsertedCasts; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) { UserBB = PN->getIncomingBlock(UI); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce /// the number of virtual registers that must be created and coalesced. This is /// a clear win except on targets with multiple condition code registers /// (PowerPC), where it might lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool OptimizeCmpExpression(CmpInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCmp - Only insert a cmp in each block once. DenseMap InsertedCmps; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedCmp = CmpInst::Create(*DefBB->getContext(), CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", InsertPt); MadeChange = true; } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// /// IsNonLocalValue - Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast(V)) return I->getParent() != BB; return false; } /// OptimizeMemoryInst - Load and Store Instructions have often have /// addressing modes that can do significant amounts of computation. As such, /// instruction selection will try to get the load or store to do as much /// computation as possible for the program. The problem is that isel can only /// see within a single block. As such, we sink as much legal addressing mode /// stuff into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, const Type *AccessTy, DenseMap &SunkAddrs) { // Figure out what addressing mode will be built up for this operation. SmallVector AddrModeInsts; ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst, AddrModeInsts, *TLI); // Check to see if any of the instructions supersumed by this addr mode are // non-local to I's BB. bool AnyNonLocal = false; for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { AnyNonLocal = true; break; } } // If all the instructions matched are already in this BB, don't do anything. if (!AnyNonLocal) { DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. BasicBlock::iterator InsertPt = MemoryInst; // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse the // computation. Value *&SunkAddr = SunkAddrs[Addr]; if (SunkAddr) { DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); if (SunkAddr->getType() != Addr->getType()) SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt); } else { DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType(); Value *Result = 0; // Start with the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (isa(V->getType())) { V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); } else if (cast(IntPtrTy)->getBitWidth() < cast(V->getType())->getBitWidth()) { V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt); } else { V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt); } if (AddrMode.Scale != 1) V = BinaryOperator::CreateMul(V, Context->getConstantInt(IntPtrTy, AddrMode.Scale), "sunkaddr", InsertPt); Result = V; } // Add in the base register. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (isa(V->getType())) V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); if (V->getType() != IntPtrTy) V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr", InsertPt); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr", InsertPt); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = Context->getConstantInt(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } if (Result == 0) SunkAddr = Context->getNullValue(Addr->getType()); else SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt); } MemoryInst->replaceUsesOfWith(Addr, SunkAddr); if (Addr->use_empty()) RecursivelyDeleteTriviallyDeadInstructions(Addr); return true; } /// OptimizeInlineAsmInst - If there are any memory operands, use /// OptimizeMemoryInst to sink their address computing into the block when /// possible / profitable. bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS, DenseMap &SunkAddrs) { bool MadeChange = false; InlineAsm *IA = cast(CS.getCalledValue()); // Do a prepass over the constraints, canonicalizing them, and building up the // ConstraintOperands list. std::vector ConstraintInfos = IA->ParseConstraints(); /// ConstraintOperands - Information about all of the constraints. std::vector ConstraintOperands; unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { ConstraintOperands. push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i])); TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back(); // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: if (OpInfo.isIndirect) OpInfo.CallOperandVal = CS.getArgument(ArgNo++); break; case InlineAsm::isInput: OpInfo.CallOperandVal = CS.getArgument(ArgNo++); break; case InlineAsm::isClobber: // Nothing to do. break; } // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue(), OpInfo.ConstraintType == TargetLowering::C_Memory); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = OpInfo.CallOperandVal; MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs); } } return MadeChange; } bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If both result of the {s|z}xt and its source are live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa(Src) || DefBB != cast(Src)->getParent()) return false; bool DefIsLiveOut = false; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure non of the uses are PHI nodes. for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa(User) || isa(User) || isa(User)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap InsertedTruncs; bool MadeChange = false; for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); } // Replace a use of the {s|z}ext source with a use of the result. TheUse = InsertedTrunc; MadeChange = true; } return MadeChange; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { bool MadeChange = false; // Split all critical edges where the dest block has a PHI. TerminatorInst *BBTI = BB.getTerminator(); if (BBTI->getNumSuccessors() > 1) { for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) { BasicBlock *SuccBB = BBTI->getSuccessor(i); if (isa(SuccBB->begin()) && isCriticalEdge(BBTI, i, true)) SplitEdgeNicely(BBTI, i, BackEdges, this); } } // Keep track of non-local addresses that have been sunk into this block. // This allows us to avoid inserting duplicate code for blocks with multiple // load/stores of the same address. DenseMap SunkAddrs; for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) { Instruction *I = BBI++; if (CastInst *CI = dyn_cast(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa(CI->getOperand(0))) continue; bool Change = false; if (TLI) { Change = OptimizeNoopCopyExpression(CI, *TLI); MadeChange |= Change; } if (!Change && (isa(I) || isa(I))) MadeChange |= OptimizeExtUses(I); } else if (CmpInst *CI = dyn_cast(I)) { MadeChange |= OptimizeCmpExpression(CI); } else if (LoadInst *LI = dyn_cast(I)) { if (TLI) MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), SunkAddrs); } else if (StoreInst *SI = dyn_cast(I)) { if (TLI) MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType(), SunkAddrs); } else if (GetElementPtrInst *GEPI = dyn_cast(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); MadeChange = true; BBI = NC; } } else if (CallInst *CI = dyn_cast(I)) { // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa(CI->getCalledValue())) if (const TargetAsmInfo *TAI = TLI->getTargetMachine().getTargetAsmInfo()) { if (TAI->ExpandInlineAsm(CI)) { BBI = BB.begin(); // Avoid processing instructions out of order, which could cause // reuse before a value is defined. SunkAddrs.clear(); } else // Sink address computing for memory operands into the block. MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs); } } } return MadeChange; }