//===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "LTOModule.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Host.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/system_error.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; static cl::opt EnableFPMAD("enable-fp-mad", cl::desc("Enable less precise MAD instructions to be generated"), cl::init(false)); static cl::opt DisableFPElim("disable-fp-elim", cl::desc("Disable frame pointer elimination optimization"), cl::init(false)); static cl::opt DisableFPElimNonLeaf("disable-non-leaf-fp-elim", cl::desc("Disable frame pointer elimination optimization for non-leaf funcs"), cl::init(false)); static cl::opt EnableUnsafeFPMath("enable-unsafe-fp-math", cl::desc("Enable optimizations that may decrease FP precision"), cl::init(false)); static cl::opt EnableNoInfsFPMath("enable-no-infs-fp-math", cl::desc("Enable FP math optimizations that assume no +-Infs"), cl::init(false)); static cl::opt EnableNoNaNsFPMath("enable-no-nans-fp-math", cl::desc("Enable FP math optimizations that assume no NaNs"), cl::init(false)); static cl::opt EnableHonorSignDependentRoundingFPMath("enable-sign-dependent-rounding-fp-math", cl::Hidden, cl::desc("Force codegen to assume rounding mode can change dynamically"), cl::init(false)); static cl::opt GenerateSoftFloatCalls("soft-float", cl::desc("Generate software floating point library calls"), cl::init(false)); static cl::opt FloatABIForCalls("float-abi", cl::desc("Choose float ABI type"), cl::init(FloatABI::Default), cl::values( clEnumValN(FloatABI::Default, "default", "Target default float ABI type"), clEnumValN(FloatABI::Soft, "soft", "Soft float ABI (implied by -soft-float)"), clEnumValN(FloatABI::Hard, "hard", "Hard float ABI (uses FP registers)"), clEnumValEnd)); static cl::opt FuseFPOps("fp-contract", cl::desc("Enable aggresive formation of fused FP ops"), cl::init(FPOpFusion::Standard), cl::values( clEnumValN(FPOpFusion::Fast, "fast", "Fuse FP ops whenever profitable"), clEnumValN(FPOpFusion::Standard, "on", "Only fuse 'blessed' FP ops."), clEnumValN(FPOpFusion::Strict, "off", "Only fuse FP ops when the result won't be effected."), clEnumValEnd)); static cl::opt DontPlaceZerosInBSS("nozero-initialized-in-bss", cl::desc("Don't place zero-initialized symbols into bss section"), cl::init(false)); static cl::opt EnableGuaranteedTailCallOpt("tailcallopt", cl::desc("Turn fastcc calls into tail calls by (potentially) changing ABI."), cl::init(false)); static cl::opt DisableTailCalls("disable-tail-calls", cl::desc("Never emit tail calls"), cl::init(false)); static cl::opt OverrideStackAlignment("stack-alignment", cl::desc("Override default stack alignment"), cl::init(0)); static cl::opt EnableRealignStack("realign-stack", cl::desc("Realign stack if needed"), cl::init(true)); static cl::opt TrapFuncName("trap-func", cl::Hidden, cl::desc("Emit a call to trap function rather than a trap instruction"), cl::init("")); static cl::opt EnablePIE("enable-pie", cl::desc("Assume the creation of a position independent executable."), cl::init(false)); static cl::opt SegmentedStacks("segmented-stacks", cl::desc("Use segmented stacks if possible."), cl::init(false)); static cl::opt UseInitArray("use-init-array", cl::desc("Use .init_array instead of .ctors."), cl::init(false)); static cl::opt SSPBufferSize("stack-protector-buffer-size", cl::init(8), cl::desc("Lower bound for a buffer to be considered for " "stack protection")); LTOModule::LTOModule(llvm::Module *m, llvm::TargetMachine *t) : _module(m), _target(t), _context(_target->getMCAsmInfo(), _target->getRegisterInfo(), NULL), _mangler(_context, t) {} /// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM /// bitcode. bool LTOModule::isBitcodeFile(const void *mem, size_t length) { return sys::fs::identify_magic(StringRef((const char *)mem, length)) == sys::fs::file_magic::bitcode; } bool LTOModule::isBitcodeFile(const char *path) { sys::fs::file_magic type; if (sys::fs::identify_magic(path, type)) return false; return type == sys::fs::file_magic::bitcode; } /// isBitcodeFileForTarget - Returns 'true' if the file (or memory contents) is /// LLVM bitcode for the specified triple. bool LTOModule::isBitcodeFileForTarget(const void *mem, size_t length, const char *triplePrefix) { MemoryBuffer *buffer = makeBuffer(mem, length); if (!buffer) return false; return isTargetMatch(buffer, triplePrefix); } bool LTOModule::isBitcodeFileForTarget(const char *path, const char *triplePrefix) { OwningPtr buffer; if (MemoryBuffer::getFile(path, buffer)) return false; return isTargetMatch(buffer.take(), triplePrefix); } /// isTargetMatch - Returns 'true' if the memory buffer is for the specified /// target triple. bool LTOModule::isTargetMatch(MemoryBuffer *buffer, const char *triplePrefix) { std::string Triple = getBitcodeTargetTriple(buffer, getGlobalContext()); delete buffer; return strncmp(Triple.c_str(), triplePrefix, strlen(triplePrefix)) == 0; } /// makeLTOModule - Create an LTOModule. N.B. These methods take ownership of /// the buffer. LTOModule *LTOModule::makeLTOModule(const char *path, std::string &errMsg) { OwningPtr buffer; if (error_code ec = MemoryBuffer::getFile(path, buffer)) { errMsg = ec.message(); return NULL; } return makeLTOModule(buffer.take(), errMsg); } LTOModule *LTOModule::makeLTOModule(int fd, const char *path, size_t size, std::string &errMsg) { return makeLTOModule(fd, path, size, size, 0, errMsg); } LTOModule *LTOModule::makeLTOModule(int fd, const char *path, size_t file_size, size_t map_size, off_t offset, std::string &errMsg) { OwningPtr buffer; if (error_code ec = MemoryBuffer::getOpenFile(fd, path, buffer, file_size, map_size, offset, false)) { errMsg = ec.message(); return NULL; } return makeLTOModule(buffer.take(), errMsg); } LTOModule *LTOModule::makeLTOModule(const void *mem, size_t length, std::string &errMsg) { OwningPtr buffer(makeBuffer(mem, length)); if (!buffer) return NULL; return makeLTOModule(buffer.take(), errMsg); } void LTOModule::getTargetOptions(TargetOptions &Options) { Options.LessPreciseFPMADOption = EnableFPMAD; Options.NoFramePointerElim = DisableFPElim; Options.NoFramePointerElimNonLeaf = DisableFPElimNonLeaf; Options.AllowFPOpFusion = FuseFPOps; Options.UnsafeFPMath = EnableUnsafeFPMath; Options.NoInfsFPMath = EnableNoInfsFPMath; Options.NoNaNsFPMath = EnableNoNaNsFPMath; Options.HonorSignDependentRoundingFPMathOption = EnableHonorSignDependentRoundingFPMath; Options.UseSoftFloat = GenerateSoftFloatCalls; if (FloatABIForCalls != FloatABI::Default) Options.FloatABIType = FloatABIForCalls; Options.NoZerosInBSS = DontPlaceZerosInBSS; Options.GuaranteedTailCallOpt = EnableGuaranteedTailCallOpt; Options.DisableTailCalls = DisableTailCalls; Options.StackAlignmentOverride = OverrideStackAlignment; Options.RealignStack = EnableRealignStack; Options.TrapFuncName = TrapFuncName; Options.PositionIndependentExecutable = EnablePIE; Options.EnableSegmentedStacks = SegmentedStacks; Options.UseInitArray = UseInitArray; Options.SSPBufferSize = SSPBufferSize; } LTOModule *LTOModule::makeLTOModule(MemoryBuffer *buffer, std::string &errMsg) { static bool Initialized = false; if (!Initialized) { InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmParsers(); Initialized = true; } // parse bitcode buffer OwningPtr m(getLazyBitcodeModule(buffer, getGlobalContext(), &errMsg)); if (!m) { delete buffer; return NULL; } std::string TripleStr = m->getTargetTriple(); if (TripleStr.empty()) TripleStr = sys::getDefaultTargetTriple(); llvm::Triple Triple(TripleStr); // find machine architecture for this module const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg); if (!march) return NULL; // construct LTOModule, hand over ownership of module and target SubtargetFeatures Features; Features.getDefaultSubtargetFeatures(Triple); std::string FeatureStr = Features.getString(); // Set a default CPU for Darwin triples. std::string CPU; if (Triple.isOSDarwin()) { if (Triple.getArch() == llvm::Triple::x86_64) CPU = "core2"; else if (Triple.getArch() == llvm::Triple::x86) CPU = "yonah"; } TargetOptions Options; getTargetOptions(Options); TargetMachine *target = march->createTargetMachine(TripleStr, CPU, FeatureStr, Options); LTOModule *Ret = new LTOModule(m.take(), target); if (Ret->parseSymbols(errMsg)) { delete Ret; return NULL; } return Ret; } /// makeBuffer - Create a MemoryBuffer from a memory range. MemoryBuffer *LTOModule::makeBuffer(const void *mem, size_t length) { const char *startPtr = (const char*)mem; return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), "", false); } /// objcClassNameFromExpression - Get string that the data pointer points to. bool LTOModule::objcClassNameFromExpression(const Constant *c, std::string &name) { if (const ConstantExpr *ce = dyn_cast(c)) { Constant *op = ce->getOperand(0); if (GlobalVariable *gvn = dyn_cast(op)) { Constant *cn = gvn->getInitializer(); if (ConstantDataArray *ca = dyn_cast(cn)) { if (ca->isCString()) { name = ".objc_class_name_" + ca->getAsCString().str(); return true; } } } } return false; } /// addObjCClass - Parse i386/ppc ObjC class data structure. void LTOModule::addObjCClass(const GlobalVariable *clgv) { const ConstantStruct *c = dyn_cast(clgv->getInitializer()); if (!c) return; // second slot in __OBJC,__class is pointer to superclass name std::string superclassName; if (objcClassNameFromExpression(c->getOperand(1), superclassName)) { NameAndAttributes info; StringMap::value_type &entry = _undefines.GetOrCreateValue(superclassName); if (!entry.getValue().name) { const char *symbolName = entry.getKey().data(); info.name = symbolName; info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; info.isFunction = false; info.symbol = clgv; entry.setValue(info); } } // third slot in __OBJC,__class is pointer to class name std::string className; if (objcClassNameFromExpression(c->getOperand(2), className)) { StringSet::value_type &entry = _defines.GetOrCreateValue(className); entry.setValue(1); NameAndAttributes info; info.name = entry.getKey().data(); info.attributes = LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT; info.isFunction = false; info.symbol = clgv; _symbols.push_back(info); } } /// addObjCCategory - Parse i386/ppc ObjC category data structure. void LTOModule::addObjCCategory(const GlobalVariable *clgv) { const ConstantStruct *c = dyn_cast(clgv->getInitializer()); if (!c) return; // second slot in __OBJC,__category is pointer to target class name std::string targetclassName; if (!objcClassNameFromExpression(c->getOperand(1), targetclassName)) return; NameAndAttributes info; StringMap::value_type &entry = _undefines.GetOrCreateValue(targetclassName); if (entry.getValue().name) return; const char *symbolName = entry.getKey().data(); info.name = symbolName; info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; info.isFunction = false; info.symbol = clgv; entry.setValue(info); } /// addObjCClassRef - Parse i386/ppc ObjC class list data structure. void LTOModule::addObjCClassRef(const GlobalVariable *clgv) { std::string targetclassName; if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName)) return; NameAndAttributes info; StringMap::value_type &entry = _undefines.GetOrCreateValue(targetclassName); if (entry.getValue().name) return; const char *symbolName = entry.getKey().data(); info.name = symbolName; info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; info.isFunction = false; info.symbol = clgv; entry.setValue(info); } /// addDefinedDataSymbol - Add a data symbol as defined to the list. void LTOModule::addDefinedDataSymbol(const GlobalValue *v) { // Add to list of defined symbols. addDefinedSymbol(v, false); if (!v->hasSection() /* || !isTargetDarwin */) return; // Special case i386/ppc ObjC data structures in magic sections: // The issue is that the old ObjC object format did some strange // contortions to avoid real linker symbols. For instance, the // ObjC class data structure is allocated statically in the executable // that defines that class. That data structures contains a pointer to // its superclass. But instead of just initializing that part of the // struct to the address of its superclass, and letting the static and // dynamic linkers do the rest, the runtime works by having that field // instead point to a C-string that is the name of the superclass. // At runtime the objc initialization updates that pointer and sets // it to point to the actual super class. As far as the linker // knows it is just a pointer to a string. But then someone wanted the // linker to issue errors at build time if the superclass was not found. // So they figured out a way in mach-o object format to use an absolute // symbols (.objc_class_name_Foo = 0) and a floating reference // (.reference .objc_class_name_Bar) to cause the linker into erroring when // a class was missing. // The following synthesizes the implicit .objc_* symbols for the linker // from the ObjC data structures generated by the front end. // special case if this data blob is an ObjC class definition if (v->getSection().compare(0, 15, "__OBJC,__class,") == 0) { if (const GlobalVariable *gv = dyn_cast(v)) { addObjCClass(gv); } } // special case if this data blob is an ObjC category definition else if (v->getSection().compare(0, 18, "__OBJC,__category,") == 0) { if (const GlobalVariable *gv = dyn_cast(v)) { addObjCCategory(gv); } } // special case if this data blob is the list of referenced classes else if (v->getSection().compare(0, 18, "__OBJC,__cls_refs,") == 0) { if (const GlobalVariable *gv = dyn_cast(v)) { addObjCClassRef(gv); } } } /// addDefinedFunctionSymbol - Add a function symbol as defined to the list. void LTOModule::addDefinedFunctionSymbol(const Function *f) { // add to list of defined symbols addDefinedSymbol(f, true); } /// addDefinedSymbol - Add a defined symbol to the list. void LTOModule::addDefinedSymbol(const GlobalValue *def, bool isFunction) { // ignore all llvm.* symbols if (def->getName().startswith("llvm.")) return; // string is owned by _defines SmallString<64> Buffer; _mangler.getNameWithPrefix(Buffer, def, false); // set alignment part log2() can have rounding errors uint32_t align = def->getAlignment(); uint32_t attr = align ? countTrailingZeros(def->getAlignment()) : 0; // set permissions part if (isFunction) { attr |= LTO_SYMBOL_PERMISSIONS_CODE; } else { const GlobalVariable *gv = dyn_cast(def); if (gv && gv->isConstant()) attr |= LTO_SYMBOL_PERMISSIONS_RODATA; else attr |= LTO_SYMBOL_PERMISSIONS_DATA; } // set definition part if (def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasLinkerPrivateWeakLinkage()) attr |= LTO_SYMBOL_DEFINITION_WEAK; else if (def->hasCommonLinkage()) attr |= LTO_SYMBOL_DEFINITION_TENTATIVE; else attr |= LTO_SYMBOL_DEFINITION_REGULAR; // set scope part if (def->hasHiddenVisibility()) attr |= LTO_SYMBOL_SCOPE_HIDDEN; else if (def->hasProtectedVisibility()) attr |= LTO_SYMBOL_SCOPE_PROTECTED; else if (def->hasExternalLinkage() || def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasCommonLinkage() || def->hasLinkerPrivateWeakLinkage()) attr |= LTO_SYMBOL_SCOPE_DEFAULT; else if (def->hasLinkOnceODRAutoHideLinkage()) attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN; else attr |= LTO_SYMBOL_SCOPE_INTERNAL; StringSet::value_type &entry = _defines.GetOrCreateValue(Buffer); entry.setValue(1); // fill information structure NameAndAttributes info; StringRef Name = entry.getKey(); info.name = Name.data(); assert(info.name[Name.size()] == '\0'); info.attributes = attr; info.isFunction = isFunction; info.symbol = def; // add to table of symbols _symbols.push_back(info); } /// addAsmGlobalSymbol - Add a global symbol from module-level ASM to the /// defined list. void LTOModule::addAsmGlobalSymbol(const char *name, lto_symbol_attributes scope) { StringSet::value_type &entry = _defines.GetOrCreateValue(name); // only add new define if not already defined if (entry.getValue()) return; entry.setValue(1); NameAndAttributes &info = _undefines[entry.getKey().data()]; if (info.symbol == 0) { // FIXME: This is trying to take care of module ASM like this: // // module asm ".zerofill __FOO, __foo, _bar_baz_qux, 0" // // but is gross and its mother dresses it funny. Have the ASM parser give us // more details for this type of situation so that we're not guessing so // much. // fill information structure info.name = entry.getKey().data(); info.attributes = LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope; info.isFunction = false; info.symbol = 0; // add to table of symbols _symbols.push_back(info); return; } if (info.isFunction) addDefinedFunctionSymbol(cast(info.symbol)); else addDefinedDataSymbol(info.symbol); _symbols.back().attributes &= ~LTO_SYMBOL_SCOPE_MASK; _symbols.back().attributes |= scope; } /// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the /// undefined list. void LTOModule::addAsmGlobalSymbolUndef(const char *name) { StringMap::value_type &entry = _undefines.GetOrCreateValue(name); _asm_undefines.push_back(entry.getKey().data()); // we already have the symbol if (entry.getValue().name) return; uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;; attr |= LTO_SYMBOL_SCOPE_DEFAULT; NameAndAttributes info; info.name = entry.getKey().data(); info.attributes = attr; info.isFunction = false; info.symbol = 0; entry.setValue(info); } /// addPotentialUndefinedSymbol - Add a symbol which isn't defined just yet to a /// list to be resolved later. void LTOModule::addPotentialUndefinedSymbol(const GlobalValue *decl, bool isFunc) { // ignore all llvm.* symbols if (decl->getName().startswith("llvm.")) return; // ignore all aliases if (isa(decl)) return; SmallString<64> name; _mangler.getNameWithPrefix(name, decl, false); StringMap::value_type &entry = _undefines.GetOrCreateValue(name); // we already have the symbol if (entry.getValue().name) return; NameAndAttributes info; info.name = entry.getKey().data(); if (decl->hasExternalWeakLinkage()) info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF; else info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; info.isFunction = isFunc; info.symbol = decl; entry.setValue(info); } namespace { class RecordStreamer : public MCStreamer { public: enum State { NeverSeen, Global, Defined, DefinedGlobal, Used }; private: StringMap Symbols; void markDefined(const MCSymbol &Symbol) { State &S = Symbols[Symbol.getName()]; switch (S) { case DefinedGlobal: case Global: S = DefinedGlobal; break; case NeverSeen: case Defined: case Used: S = Defined; break; } } void markGlobal(const MCSymbol &Symbol) { State &S = Symbols[Symbol.getName()]; switch (S) { case DefinedGlobal: case Defined: S = DefinedGlobal; break; case NeverSeen: case Global: case Used: S = Global; break; } } void markUsed(const MCSymbol &Symbol) { State &S = Symbols[Symbol.getName()]; switch (S) { case DefinedGlobal: case Defined: case Global: break; case NeverSeen: case Used: S = Used; break; } } // FIXME: mostly copied for the obj streamer. void AddValueSymbols(const MCExpr *Value) { switch (Value->getKind()) { case MCExpr::Target: // FIXME: What should we do in here? break; case MCExpr::Constant: break; case MCExpr::Binary: { const MCBinaryExpr *BE = cast(Value); AddValueSymbols(BE->getLHS()); AddValueSymbols(BE->getRHS()); break; } case MCExpr::SymbolRef: markUsed(cast(Value)->getSymbol()); break; case MCExpr::Unary: AddValueSymbols(cast(Value)->getSubExpr()); break; } } public: typedef StringMap::const_iterator const_iterator; const_iterator begin() { return Symbols.begin(); } const_iterator end() { return Symbols.end(); } RecordStreamer(MCContext &Context) : MCStreamer(SK_RecordStreamer, Context) {} virtual void EmitInstruction(const MCInst &Inst) { // Scan for values. for (unsigned i = Inst.getNumOperands(); i--; ) if (Inst.getOperand(i).isExpr()) AddValueSymbols(Inst.getOperand(i).getExpr()); } virtual void EmitLabel(MCSymbol *Symbol) { Symbol->setSection(*getCurrentSection().first); markDefined(*Symbol); } virtual void EmitDebugLabel(MCSymbol *Symbol) { EmitLabel(Symbol); } virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) { // FIXME: should we handle aliases? markDefined(*Symbol); } virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) { if (Attribute == MCSA_Global) markGlobal(*Symbol); } virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol, uint64_t Size , unsigned ByteAlignment) { markDefined(*Symbol); } virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { markDefined(*Symbol); } virtual void EmitBundleAlignMode(unsigned AlignPow2) {} virtual void EmitBundleLock(bool AlignToEnd) {} virtual void EmitBundleUnlock() {} // Noop calls. virtual void ChangeSection(const MCSection *Section, const MCExpr *Subsection) {} virtual void InitToTextSection() {} virtual void InitSections() {} virtual void EmitAssemblerFlag(MCAssemblerFlag Flag) {} virtual void EmitThumbFunc(MCSymbol *Func) {} virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {} virtual void EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) {} virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol) {} virtual void EmitCOFFSymbolStorageClass(int StorageClass) {} virtual void EmitCOFFSymbolType(int Type) {} virtual void EndCOFFSymbolDef() {} virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) {} virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) {} virtual void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) {} virtual void EmitBytes(StringRef Data) {} virtual void EmitValueImpl(const MCExpr *Value, unsigned Size) {} virtual void EmitULEB128Value(const MCExpr *Value) {} virtual void EmitSLEB128Value(const MCExpr *Value) {} virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit) {} virtual void EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit) {} virtual bool EmitValueToOffset(const MCExpr *Offset, unsigned char Value ) { return false; } virtual void EmitFileDirective(StringRef Filename) {} virtual void EmitDwarfAdvanceLineAddr(int64_t LineDelta, const MCSymbol *LastLabel, const MCSymbol *Label, unsigned PointerSize) {} virtual void FinishImpl() {} static bool classof(const MCStreamer *S) { return S->getKind() == SK_RecordStreamer; } }; } // end anonymous namespace /// addAsmGlobalSymbols - Add global symbols from module-level ASM to the /// defined or undefined lists. bool LTOModule::addAsmGlobalSymbols(std::string &errMsg) { const std::string &inlineAsm = _module->getModuleInlineAsm(); if (inlineAsm.empty()) return false; OwningPtr Streamer(new RecordStreamer(_context)); MemoryBuffer *Buffer = MemoryBuffer::getMemBuffer(inlineAsm); SourceMgr SrcMgr; SrcMgr.AddNewSourceBuffer(Buffer, SMLoc()); OwningPtr Parser(createMCAsmParser(SrcMgr, _context, *Streamer, *_target->getMCAsmInfo())); const Target &T = _target->getTarget(); OwningPtr STI(T.createMCSubtargetInfo(_target->getTargetTriple(), _target->getTargetCPU(), _target->getTargetFeatureString())); OwningPtr TAP(T.createMCAsmParser(*STI, *Parser.get())); if (!TAP) { errMsg = "target " + std::string(T.getName()) + " does not define AsmParser."; return true; } Parser->setTargetParser(*TAP); if (Parser->Run(false)) return true; for (RecordStreamer::const_iterator i = Streamer->begin(), e = Streamer->end(); i != e; ++i) { StringRef Key = i->first(); RecordStreamer::State Value = i->second; if (Value == RecordStreamer::DefinedGlobal) addAsmGlobalSymbol(Key.data(), LTO_SYMBOL_SCOPE_DEFAULT); else if (Value == RecordStreamer::Defined) addAsmGlobalSymbol(Key.data(), LTO_SYMBOL_SCOPE_INTERNAL); else if (Value == RecordStreamer::Global || Value == RecordStreamer::Used) addAsmGlobalSymbolUndef(Key.data()); } return false; } /// isDeclaration - Return 'true' if the global value is a declaration. static bool isDeclaration(const GlobalValue &V) { if (V.hasAvailableExternallyLinkage()) return true; if (V.isMaterializable()) return false; return V.isDeclaration(); } /// parseSymbols - Parse the symbols from the module and model-level ASM and add /// them to either the defined or undefined lists. bool LTOModule::parseSymbols(std::string &errMsg) { // add functions for (Module::iterator f = _module->begin(), e = _module->end(); f != e; ++f) { if (isDeclaration(*f)) addPotentialUndefinedSymbol(f, true); else addDefinedFunctionSymbol(f); } // add data for (Module::global_iterator v = _module->global_begin(), e = _module->global_end(); v != e; ++v) { if (isDeclaration(*v)) addPotentialUndefinedSymbol(v, false); else addDefinedDataSymbol(v); } // add asm globals if (addAsmGlobalSymbols(errMsg)) return true; // add aliases for (Module::alias_iterator a = _module->alias_begin(), e = _module->alias_end(); a != e; ++a) { if (isDeclaration(*a->getAliasedGlobal())) // Is an alias to a declaration. addPotentialUndefinedSymbol(a, false); else addDefinedDataSymbol(a); } // make symbols for all undefines for (StringMap::iterator u =_undefines.begin(), e = _undefines.end(); u != e; ++u) { // If this symbol also has a definition, then don't make an undefine because // it is a tentative definition. if (_defines.count(u->getKey())) continue; NameAndAttributes info = u->getValue(); _symbols.push_back(info); } return false; }