//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a strength reduction on array references inside loops that // have as one or more of their components the loop induction variable. This is // accomplished by creating a new Value to hold the initial value of the array // access for the first iteration, and then creating a new GEP instruction in // the loop to increment the value by the appropriate amount. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-reduce" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Type.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Support/CFG.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetLowering.h" #include #include using namespace llvm; STATISTIC(NumReduced , "Number of GEPs strength reduced"); STATISTIC(NumInserted, "Number of PHIs inserted"); STATISTIC(NumVariable, "Number of PHIs with variable strides"); STATISTIC(NumEliminated , "Number of strides eliminated"); namespace { struct BasedUser; /// IVStrideUse - Keep track of one use of a strided induction variable, where /// the stride is stored externally. The Offset member keeps track of the /// offset from the IV, User is the actual user of the operand, and /// 'OperandValToReplace' is the operand of the User that is the use. struct VISIBILITY_HIDDEN IVStrideUse { SCEVHandle Offset; Instruction *User; Value *OperandValToReplace; // isUseOfPostIncrementedValue - True if this should use the // post-incremented version of this IV, not the preincremented version. // This can only be set in special cases, such as the terminating setcc // instruction for a loop or uses dominated by the loop. bool isUseOfPostIncrementedValue; IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O) : Offset(Offs), User(U), OperandValToReplace(O), isUseOfPostIncrementedValue(false) {} }; /// IVUsersOfOneStride - This structure keeps track of all instructions that /// have an operand that is based on the trip count multiplied by some stride. /// The stride for all of these users is common and kept external to this /// structure. struct VISIBILITY_HIDDEN IVUsersOfOneStride { /// Users - Keep track of all of the users of this stride as well as the /// initial value and the operand that uses the IV. std::vector Users; void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) { Users.push_back(IVStrideUse(Offset, User, Operand)); } }; /// IVInfo - This structure keeps track of one IV expression inserted during /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as /// well as the PHI node and increment value created for rewrite. struct VISIBILITY_HIDDEN IVExpr { SCEVHandle Stride; SCEVHandle Base; PHINode *PHI; Value *IncV; IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi, Value *incv) : Stride(stride), Base(base), PHI(phi), IncV(incv) {} }; /// IVsOfOneStride - This structure keeps track of all IV expression inserted /// during StrengthReduceStridedIVUsers for a particular stride of the IV. struct VISIBILITY_HIDDEN IVsOfOneStride { std::vector IVs; void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI, Value *IncV) { IVs.push_back(IVExpr(Stride, Base, PHI, IncV)); } }; class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass { LoopInfo *LI; DominatorTree *DT; ScalarEvolution *SE; const TargetData *TD; const Type *UIntPtrTy; bool Changed; /// IVUsesByStride - Keep track of all uses of induction variables that we /// are interested in. The key of the map is the stride of the access. std::map IVUsesByStride; /// IVsByStride - Keep track of all IVs that have been inserted for a /// particular stride. std::map IVsByStride; /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable: /// We use this to iterate over the IVUsesByStride collection without being /// dependent on random ordering of pointers in the process. SmallVector StrideOrder; /// CastedValues - As we need to cast values to uintptr_t, this keeps track /// of the casted version of each value. This is accessed by /// getCastedVersionOf. DenseMap CastedPointers; /// DeadInsts - Keep track of instructions we may have made dead, so that /// we can remove them after we are done working. SetVector DeadInsts; /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetLowering *TLI; public: static char ID; // Pass ID, replacement for typeid explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : LoopPass((intptr_t)&ID), TLI(tli) { } bool runOnLoop(Loop *L, LPPassManager &LPM); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // We split critical edges, so we change the CFG. However, we do update // many analyses if they are around. AU.addPreservedID(LoopSimplifyID); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } /// getCastedVersionOf - Return the specified value casted to uintptr_t. /// Value *getCastedVersionOf(Instruction::CastOps opcode, Value *V); private: bool AddUsersIfInteresting(Instruction *I, Loop *L, SmallPtrSet &Processed); SCEVHandle GetExpressionSCEV(Instruction *E); ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond, IVStrideUse* &CondUse, const SCEVHandle* &CondStride); void OptimizeIndvars(Loop *L); bool FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse, const SCEVHandle *&CondStride); bool RequiresTypeConversion(const Type *Ty, const Type *NewTy); unsigned CheckForIVReuse(bool, bool, const SCEVHandle&, IVExpr&, const Type*, const std::vector& UsersToProcess); bool ValidStride(bool, int64_t, const std::vector& UsersToProcess); SCEVHandle CollectIVUsers(const SCEVHandle &Stride, IVUsersOfOneStride &Uses, Loop *L, bool &AllUsesAreAddresses, std::vector &UsersToProcess); void StrengthReduceStridedIVUsers(const SCEVHandle &Stride, IVUsersOfOneStride &Uses, Loop *L, bool isOnlyStride); void DeleteTriviallyDeadInstructions(SetVector &Insts); }; } char LoopStrengthReduce::ID = 0; static RegisterPass X("loop-reduce", "Loop Strength Reduction"); LoopPass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { return new LoopStrengthReduce(TLI); } /// getCastedVersionOf - Return the specified value casted to uintptr_t. This /// assumes that the Value* V is of integer or pointer type only. /// Value *LoopStrengthReduce::getCastedVersionOf(Instruction::CastOps opcode, Value *V) { if (V->getType() == UIntPtrTy) return V; if (Constant *CB = dyn_cast(V)) return ConstantExpr::getCast(opcode, CB, UIntPtrTy); Value *&New = CastedPointers[V]; if (New) return New; New = SCEVExpander::InsertCastOfTo(opcode, V, UIntPtrTy); DeadInsts.insert(cast(New)); return New; } /// DeleteTriviallyDeadInstructions - If any of the instructions is the /// specified set are trivially dead, delete them and see if this makes any of /// their operands subsequently dead. void LoopStrengthReduce:: DeleteTriviallyDeadInstructions(SetVector &Insts) { while (!Insts.empty()) { Instruction *I = Insts.back(); Insts.pop_back(); if (PHINode *PN = dyn_cast(I)) { // If all incoming values to the Phi are the same, we can replace the Phi // with that value. if (Value *PNV = PN->hasConstantValue()) { if (Instruction *U = dyn_cast(PNV)) Insts.insert(U); SE->deleteValueFromRecords(PN); PN->replaceAllUsesWith(PNV); PN->eraseFromParent(); Changed = true; continue; } } if (isInstructionTriviallyDead(I)) { for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) if (Instruction *U = dyn_cast(*i)) Insts.insert(U); SE->deleteValueFromRecords(I); I->eraseFromParent(); Changed = true; } } } /// GetExpressionSCEV - Compute and return the SCEV for the specified /// instruction. SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp) { // Pointer to pointer bitcast instructions return the same value as their // operand. if (BitCastInst *BCI = dyn_cast(Exp)) { if (SE->hasSCEV(BCI) || !isa(BCI->getOperand(0))) return SE->getSCEV(BCI); SCEVHandle R = GetExpressionSCEV(cast(BCI->getOperand(0))); SE->setSCEV(BCI, R); return R; } // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions. // If this is a GEP that SE doesn't know about, compute it now and insert it. // If this is not a GEP, or if we have already done this computation, just let // SE figure it out. GetElementPtrInst *GEP = dyn_cast(Exp); if (!GEP || SE->hasSCEV(GEP)) return SE->getSCEV(Exp); // Analyze all of the subscripts of this getelementptr instruction, looking // for uses that are determined by the trip count of the loop. First, skip // all operands the are not dependent on the IV. // Build up the base expression. Insert an LLVM cast of the pointer to // uintptr_t first. SCEVHandle GEPVal = SE->getUnknown( getCastedVersionOf(Instruction::PtrToInt, GEP->getOperand(0))); gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; ++i, ++GTI) { // If this is a use of a recurrence that we can analyze, and it comes before // Op does in the GEP operand list, we will handle this when we process this // operand. if (const StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast(*i)->getZExtValue(); uint64_t Offset = SL->getElementOffset(Idx); GEPVal = SE->getAddExpr(GEPVal, SE->getIntegerSCEV(Offset, UIntPtrTy)); } else { unsigned GEPOpiBits = (*i)->getType()->getPrimitiveSizeInBits(); unsigned IntPtrBits = UIntPtrTy->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (GEPOpiBits < IntPtrBits ? Instruction::SExt : (GEPOpiBits > IntPtrBits ? Instruction::Trunc : Instruction::BitCast)); Value *OpVal = getCastedVersionOf(opcode, *i); SCEVHandle Idx = SE->getSCEV(OpVal); uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType()); if (TypeSize != 1) Idx = SE->getMulExpr(Idx, SE->getConstant(ConstantInt::get(UIntPtrTy, TypeSize))); GEPVal = SE->getAddExpr(GEPVal, Idx); } } SE->setSCEV(GEP, GEPVal); return GEPVal; } /// getSCEVStartAndStride - Compute the start and stride of this expression, /// returning false if the expression is not a start/stride pair, or true if it /// is. The stride must be a loop invariant expression, but the start may be /// a mix of loop invariant and loop variant expressions. static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L, SCEVHandle &Start, SCEVHandle &Stride, ScalarEvolution *SE) { SCEVHandle TheAddRec = Start; // Initialize to zero. // If the outer level is an AddExpr, the operands are all start values except // for a nested AddRecExpr. if (SCEVAddExpr *AE = dyn_cast(SH)) { for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i) if (SCEVAddRecExpr *AddRec = dyn_cast(AE->getOperand(i))) { if (AddRec->getLoop() == L) TheAddRec = SE->getAddExpr(AddRec, TheAddRec); else return false; // Nested IV of some sort? } else { Start = SE->getAddExpr(Start, AE->getOperand(i)); } } else if (isa(SH)) { TheAddRec = SH; } else { return false; // not analyzable. } SCEVAddRecExpr *AddRec = dyn_cast(TheAddRec); if (!AddRec || AddRec->getLoop() != L) return false; // FIXME: Generalize to non-affine IV's. if (!AddRec->isAffine()) return false; Start = SE->getAddExpr(Start, AddRec->getOperand(0)); if (!isa(AddRec->getOperand(1))) DOUT << "[" << L->getHeader()->getName() << "] Variable stride: " << *AddRec << "\n"; Stride = AddRec->getOperand(1); return true; } /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression /// and now we need to decide whether the user should use the preinc or post-inc /// value. If this user should use the post-inc version of the IV, return true. /// /// Choosing wrong here can break dominance properties (if we choose to use the /// post-inc value when we cannot) or it can end up adding extra live-ranges to /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we /// should use the post-inc value). static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV, Loop *L, DominatorTree *DT, Pass *P, SetVector &DeadInsts){ // If the user is in the loop, use the preinc value. if (L->contains(User->getParent())) return false; BasicBlock *LatchBlock = L->getLoopLatch(); // Ok, the user is outside of the loop. If it is dominated by the latch // block, use the post-inc value. if (DT->dominates(LatchBlock, User->getParent())) return true; // There is one case we have to be careful of: PHI nodes. These little guys // can live in blocks that do not dominate the latch block, but (since their // uses occur in the predecessor block, not the block the PHI lives in) should // still use the post-inc value. Check for this case now. PHINode *PN = dyn_cast(User); if (!PN) return false; // not a phi, not dominated by latch block. // Look at all of the uses of IV by the PHI node. If any use corresponds to // a block that is not dominated by the latch block, give up and use the // preincremented value. unsigned NumUses = 0; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == IV) { ++NumUses; if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i))) return false; } // Okay, all uses of IV by PN are in predecessor blocks that really are // dominated by the latch block. Split the critical edges and use the // post-incremented value. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == IV) { SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P, false); // Splitting the critical edge can reduce the number of entries in this // PHI. e = PN->getNumIncomingValues(); if (--NumUses == 0) break; } // PHI node might have become a constant value after SplitCriticalEdge. DeadInsts.insert(User); return true; } /// AddUsersIfInteresting - Inspect the specified instruction. If it is a /// reducible SCEV, recursively add its users to the IVUsesByStride set and /// return true. Otherwise, return false. bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L, SmallPtrSet &Processed) { if (!I->getType()->isInteger() && !isa(I->getType())) return false; // Void and FP expressions cannot be reduced. if (!Processed.insert(I)) return true; // Instruction already handled. // Get the symbolic expression for this instruction. SCEVHandle ISE = GetExpressionSCEV(I); if (isa(ISE)) return false; // Get the start and stride for this expression. SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType()); SCEVHandle Stride = Start; if (!getSCEVStartAndStride(ISE, L, Start, Stride, SE)) return false; // Non-reducible symbolic expression, bail out. std::vector IUsers; // Collect all I uses now because IVUseShouldUsePostIncValue may // invalidate use_iterator. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) IUsers.push_back(cast(*UI)); for (unsigned iused_index = 0, iused_size = IUsers.size(); iused_index != iused_size; ++iused_index) { Instruction *User = IUsers[iused_index]; // Do not infinitely recurse on PHI nodes. if (isa(User) && Processed.count(User)) continue; // If this is an instruction defined in a nested loop, or outside this loop, // don't recurse into it. bool AddUserToIVUsers = false; if (LI->getLoopFor(User->getParent()) != L) { DOUT << "FOUND USER in other loop: " << *User << " OF SCEV: " << *ISE << "\n"; AddUserToIVUsers = true; } else if (!AddUsersIfInteresting(User, L, Processed)) { DOUT << "FOUND USER: " << *User << " OF SCEV: " << *ISE << "\n"; AddUserToIVUsers = true; } if (AddUserToIVUsers) { IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride]; if (StrideUses.Users.empty()) // First occurance of this stride? StrideOrder.push_back(Stride); // Okay, we found a user that we cannot reduce. Analyze the instruction // and decide what to do with it. If we are a use inside of the loop, use // the value before incrementation, otherwise use it after incrementation. if (IVUseShouldUsePostIncValue(User, I, L, DT, this, DeadInsts)) { // The value used will be incremented by the stride more than we are // expecting, so subtract this off. SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride); StrideUses.addUser(NewStart, User, I); StrideUses.Users.back().isUseOfPostIncrementedValue = true; DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n"; } else { StrideUses.addUser(Start, User, I); } } } return true; } namespace { /// BasedUser - For a particular base value, keep information about how we've /// partitioned the expression so far. struct BasedUser { /// SE - The current ScalarEvolution object. ScalarEvolution *SE; /// Base - The Base value for the PHI node that needs to be inserted for /// this use. As the use is processed, information gets moved from this /// field to the Imm field (below). BasedUser values are sorted by this /// field. SCEVHandle Base; /// Inst - The instruction using the induction variable. Instruction *Inst; /// OperandValToReplace - The operand value of Inst to replace with the /// EmittedBase. Value *OperandValToReplace; /// Imm - The immediate value that should be added to the base immediately /// before Inst, because it will be folded into the imm field of the /// instruction. SCEVHandle Imm; /// EmittedBase - The actual value* to use for the base value of this /// operation. This is null if we should just use zero so far. Value *EmittedBase; // isUseOfPostIncrementedValue - True if this should use the // post-incremented version of this IV, not the preincremented version. // This can only be set in special cases, such as the terminating setcc // instruction for a loop and uses outside the loop that are dominated by // the loop. bool isUseOfPostIncrementedValue; BasedUser(IVStrideUse &IVSU, ScalarEvolution *se) : SE(se), Base(IVSU.Offset), Inst(IVSU.User), OperandValToReplace(IVSU.OperandValToReplace), Imm(SE->getIntegerSCEV(0, Base->getType())), EmittedBase(0), isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {} // Once we rewrite the code to insert the new IVs we want, update the // operands of Inst to use the new expression 'NewBase', with 'Imm' added // to it. void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase, Instruction *InsertPt, SCEVExpander &Rewriter, Loop *L, Pass *P, SetVector &DeadInsts); Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, SCEVExpander &Rewriter, Instruction *IP, Loop *L); void dump() const; }; } void BasedUser::dump() const { cerr << " Base=" << *Base; cerr << " Imm=" << *Imm; if (EmittedBase) cerr << " EB=" << *EmittedBase; cerr << " Inst: " << *Inst; } Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, SCEVExpander &Rewriter, Instruction *IP, Loop *L) { // Figure out where we *really* want to insert this code. In particular, if // the user is inside of a loop that is nested inside of L, we really don't // want to insert this expression before the user, we'd rather pull it out as // many loops as possible. LoopInfo &LI = Rewriter.getLoopInfo(); Instruction *BaseInsertPt = IP; // Figure out the most-nested loop that IP is in. Loop *InsertLoop = LI.getLoopFor(IP->getParent()); // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out // the preheader of the outer-most loop where NewBase is not loop invariant. while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) { BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator(); InsertLoop = InsertLoop->getParentLoop(); } // If there is no immediate value, skip the next part. if (Imm->isZero()) return Rewriter.expandCodeFor(NewBase, BaseInsertPt); Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt); // If we are inserting the base and imm values in the same block, make sure to // adjust the IP position if insertion reused a result. if (IP == BaseInsertPt) IP = Rewriter.getInsertionPoint(); // Always emit the immediate (if non-zero) into the same block as the user. SCEVHandle NewValSCEV = SE->getAddExpr(SE->getUnknown(Base), Imm); return Rewriter.expandCodeFor(NewValSCEV, IP); } // Once we rewrite the code to insert the new IVs we want, update the // operands of Inst to use the new expression 'NewBase', with 'Imm' added // to it. NewBasePt is the last instruction which contributes to the // value of NewBase in the case that it's a diffferent instruction from // the PHI that NewBase is computed from, or null otherwise. // void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase, Instruction *NewBasePt, SCEVExpander &Rewriter, Loop *L, Pass *P, SetVector &DeadInsts) { if (!isa(Inst)) { // By default, insert code at the user instruction. BasicBlock::iterator InsertPt = Inst; // However, if the Operand is itself an instruction, the (potentially // complex) inserted code may be shared by many users. Because of this, we // want to emit code for the computation of the operand right before its old // computation. This is usually safe, because we obviously used to use the // computation when it was computed in its current block. However, in some // cases (e.g. use of a post-incremented induction variable) the NewBase // value will be pinned to live somewhere after the original computation. // In this case, we have to back off. if (!isUseOfPostIncrementedValue) { if (NewBasePt && isa(OperandValToReplace)) { InsertPt = NewBasePt; ++InsertPt; } else if (Instruction *OpInst = dyn_cast(OperandValToReplace)) { InsertPt = OpInst; while (isa(InsertPt)) ++InsertPt; } } Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L); // Adjust the type back to match the Inst. Note that we can't use InsertPt // here because the SCEVExpander may have inserted the instructions after // that point, in its efforts to avoid inserting redundant expressions. if (isa(OperandValToReplace->getType())) { NewVal = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, NewVal, OperandValToReplace->getType()); } // Replace the use of the operand Value with the new Phi we just created. Inst->replaceUsesOfWith(OperandValToReplace, NewVal); DOUT << " CHANGED: IMM =" << *Imm; DOUT << " \tNEWBASE =" << *NewBase; DOUT << " \tInst = " << *Inst; return; } // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm // expression into each operand block that uses it. Note that PHI nodes can // have multiple entries for the same predecessor. We use a map to make sure // that a PHI node only has a single Value* for each predecessor (which also // prevents us from inserting duplicate code in some blocks). DenseMap InsertedCode; PHINode *PN = cast(Inst); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { if (PN->getIncomingValue(i) == OperandValToReplace) { // If this is a critical edge, split the edge so that we do not insert the // code on all predecessor/successor paths. We do this unless this is the // canonical backedge for this loop, as this can make some inserted code // be in an illegal position. BasicBlock *PHIPred = PN->getIncomingBlock(i); if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 && (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) { // First step, split the critical edge. SplitCriticalEdge(PHIPred, PN->getParent(), P, false); // Next step: move the basic block. In particular, if the PHI node // is outside of the loop, and PredTI is in the loop, we want to // move the block to be immediately before the PHI block, not // immediately after PredTI. if (L->contains(PHIPred) && !L->contains(PN->getParent())) { BasicBlock *NewBB = PN->getIncomingBlock(i); NewBB->moveBefore(PN->getParent()); } // Splitting the edge can reduce the number of PHI entries we have. e = PN->getNumIncomingValues(); } Value *&Code = InsertedCode[PN->getIncomingBlock(i)]; if (!Code) { // Insert the code into the end of the predecessor block. Instruction *InsertPt = PN->getIncomingBlock(i)->getTerminator(); Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L); // Adjust the type back to match the PHI. Note that we can't use // InsertPt here because the SCEVExpander may have inserted its // instructions after that point, in its efforts to avoid inserting // redundant expressions. if (isa(PN->getType())) { Code = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, Code, PN->getType()); } } // Replace the use of the operand Value with the new Phi we just created. PN->setIncomingValue(i, Code); Rewriter.clear(); } } // PHI node might have become a constant value after SplitCriticalEdge. DeadInsts.insert(Inst); DOUT << " CHANGED: IMM =" << *Imm << " Inst = " << *Inst; } /// isTargetConstant - Return true if the following can be referenced by the /// immediate field of a target instruction. static bool isTargetConstant(const SCEVHandle &V, const Type *UseTy, const TargetLowering *TLI) { if (SCEVConstant *SC = dyn_cast(V)) { int64_t VC = SC->getValue()->getSExtValue(); if (TLI) { TargetLowering::AddrMode AM; AM.BaseOffs = VC; return TLI->isLegalAddressingMode(AM, UseTy); } else { // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field. return (VC > -(1 << 16) && VC < (1 << 16)-1); } } if (SCEVUnknown *SU = dyn_cast(V)) if (ConstantExpr *CE = dyn_cast(SU->getValue())) if (TLI && CE->getOpcode() == Instruction::PtrToInt) { Constant *Op0 = CE->getOperand(0); if (GlobalValue *GV = dyn_cast(Op0)) { TargetLowering::AddrMode AM; AM.BaseGV = GV; return TLI->isLegalAddressingMode(AM, UseTy); } } return false; } /// MoveLoopVariantsToImediateField - Move any subexpressions from Val that are /// loop varying to the Imm operand. static void MoveLoopVariantsToImediateField(SCEVHandle &Val, SCEVHandle &Imm, Loop *L, ScalarEvolution *SE) { if (Val->isLoopInvariant(L)) return; // Nothing to do. if (SCEVAddExpr *SAE = dyn_cast(Val)) { std::vector NewOps; NewOps.reserve(SAE->getNumOperands()); for (unsigned i = 0; i != SAE->getNumOperands(); ++i) if (!SAE->getOperand(i)->isLoopInvariant(L)) { // If this is a loop-variant expression, it must stay in the immediate // field of the expression. Imm = SE->getAddExpr(Imm, SAE->getOperand(i)); } else { NewOps.push_back(SAE->getOperand(i)); } if (NewOps.empty()) Val = SE->getIntegerSCEV(0, Val->getType()); else Val = SE->getAddExpr(NewOps); } else if (SCEVAddRecExpr *SARE = dyn_cast(Val)) { // Try to pull immediates out of the start value of nested addrec's. SCEVHandle Start = SARE->getStart(); MoveLoopVariantsToImediateField(Start, Imm, L, SE); std::vector Ops(SARE->op_begin(), SARE->op_end()); Ops[0] = Start; Val = SE->getAddRecExpr(Ops, SARE->getLoop()); } else { // Otherwise, all of Val is variant, move the whole thing over. Imm = SE->getAddExpr(Imm, Val); Val = SE->getIntegerSCEV(0, Val->getType()); } } /// MoveImmediateValues - Look at Val, and pull out any additions of constants /// that can fit into the immediate field of instructions in the target. /// Accumulate these immediate values into the Imm value. static void MoveImmediateValues(const TargetLowering *TLI, Instruction *User, SCEVHandle &Val, SCEVHandle &Imm, bool isAddress, Loop *L, ScalarEvolution *SE) { const Type *UseTy = User->getType(); if (StoreInst *SI = dyn_cast(User)) UseTy = SI->getOperand(0)->getType(); if (SCEVAddExpr *SAE = dyn_cast(Val)) { std::vector NewOps; NewOps.reserve(SAE->getNumOperands()); for (unsigned i = 0; i != SAE->getNumOperands(); ++i) { SCEVHandle NewOp = SAE->getOperand(i); MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L, SE); if (!NewOp->isLoopInvariant(L)) { // If this is a loop-variant expression, it must stay in the immediate // field of the expression. Imm = SE->getAddExpr(Imm, NewOp); } else { NewOps.push_back(NewOp); } } if (NewOps.empty()) Val = SE->getIntegerSCEV(0, Val->getType()); else Val = SE->getAddExpr(NewOps); return; } else if (SCEVAddRecExpr *SARE = dyn_cast(Val)) { // Try to pull immediates out of the start value of nested addrec's. SCEVHandle Start = SARE->getStart(); MoveImmediateValues(TLI, User, Start, Imm, isAddress, L, SE); if (Start != SARE->getStart()) { std::vector Ops(SARE->op_begin(), SARE->op_end()); Ops[0] = Start; Val = SE->getAddRecExpr(Ops, SARE->getLoop()); } return; } else if (SCEVMulExpr *SME = dyn_cast(Val)) { // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field. if (isAddress && isTargetConstant(SME->getOperand(0), UseTy, TLI) && SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) { SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType()); SCEVHandle NewOp = SME->getOperand(1); MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L, SE); // If we extracted something out of the subexpressions, see if we can // simplify this! if (NewOp != SME->getOperand(1)) { // Scale SubImm up by "8". If the result is a target constant, we are // good. SubImm = SE->getMulExpr(SubImm, SME->getOperand(0)); if (isTargetConstant(SubImm, UseTy, TLI)) { // Accumulate the immediate. Imm = SE->getAddExpr(Imm, SubImm); // Update what is left of 'Val'. Val = SE->getMulExpr(SME->getOperand(0), NewOp); return; } } } } // Loop-variant expressions must stay in the immediate field of the // expression. if ((isAddress && isTargetConstant(Val, UseTy, TLI)) || !Val->isLoopInvariant(L)) { Imm = SE->getAddExpr(Imm, Val); Val = SE->getIntegerSCEV(0, Val->getType()); return; } // Otherwise, no immediates to move. } /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are /// added together. This is used to reassociate common addition subexprs /// together for maximal sharing when rewriting bases. static void SeparateSubExprs(std::vector &SubExprs, SCEVHandle Expr, ScalarEvolution *SE) { if (SCEVAddExpr *AE = dyn_cast(Expr)) { for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j) SeparateSubExprs(SubExprs, AE->getOperand(j), SE); } else if (SCEVAddRecExpr *SARE = dyn_cast(Expr)) { SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType()); if (SARE->getOperand(0) == Zero) { SubExprs.push_back(Expr); } else { // Compute the addrec with zero as its base. std::vector Ops(SARE->op_begin(), SARE->op_end()); Ops[0] = Zero; // Start with zero base. SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop())); SeparateSubExprs(SubExprs, SARE->getOperand(0), SE); } } else if (!Expr->isZero()) { // Do not add zero. SubExprs.push_back(Expr); } } /// RemoveCommonExpressionsFromUseBases - Look through all of the uses in Bases, /// removing any common subexpressions from it. Anything truly common is /// removed, accumulated, and returned. This looks for things like (a+b+c) and /// (a+c+d) -> (a+c). The common expression is *removed* from the Bases. static SCEVHandle RemoveCommonExpressionsFromUseBases(std::vector &Uses, ScalarEvolution *SE) { unsigned NumUses = Uses.size(); // Only one use? Use its base, regardless of what it is! SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType()); SCEVHandle Result = Zero; if (NumUses == 1) { std::swap(Result, Uses[0].Base); return Result; } // To find common subexpressions, count how many of Uses use each expression. // If any subexpressions are used Uses.size() times, they are common. std::map SubExpressionUseCounts; // UniqueSubExprs - Keep track of all of the subexpressions we see in the // order we see them. std::vector UniqueSubExprs; std::vector SubExprs; for (unsigned i = 0; i != NumUses; ++i) { // If the base is zero (which is common), return zero now, there are no // CSEs we can find. if (Uses[i].Base == Zero) return Zero; // Split the expression into subexprs. SeparateSubExprs(SubExprs, Uses[i].Base, SE); // Add one to SubExpressionUseCounts for each subexpr present. for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) if (++SubExpressionUseCounts[SubExprs[j]] == 1) UniqueSubExprs.push_back(SubExprs[j]); SubExprs.clear(); } // Now that we know how many times each is used, build Result. Iterate over // UniqueSubexprs so that we have a stable ordering. for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) { std::map::iterator I = SubExpressionUseCounts.find(UniqueSubExprs[i]); assert(I != SubExpressionUseCounts.end() && "Entry not found?"); if (I->second == NumUses) { // Found CSE! Result = SE->getAddExpr(Result, I->first); } else { // Remove non-cse's from SubExpressionUseCounts. SubExpressionUseCounts.erase(I); } } // If we found no CSE's, return now. if (Result == Zero) return Result; // Otherwise, remove all of the CSE's we found from each of the base values. for (unsigned i = 0; i != NumUses; ++i) { // Split the expression into subexprs. SeparateSubExprs(SubExprs, Uses[i].Base, SE); // Remove any common subexpressions. for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) if (SubExpressionUseCounts.count(SubExprs[j])) { SubExprs.erase(SubExprs.begin()+j); --j; --e; } // Finally, the non-shared expressions together. if (SubExprs.empty()) Uses[i].Base = Zero; else Uses[i].Base = SE->getAddExpr(SubExprs); SubExprs.clear(); } return Result; } /// ValidStride - Check whether the given Scale is valid for all loads and /// stores in UsersToProcess. /// bool LoopStrengthReduce::ValidStride(bool HasBaseReg, int64_t Scale, const std::vector& UsersToProcess) { if (!TLI) return true; for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) { // If this is a load or other access, pass the type of the access in. const Type *AccessTy = Type::VoidTy; if (StoreInst *SI = dyn_cast(UsersToProcess[i].Inst)) AccessTy = SI->getOperand(0)->getType(); else if (LoadInst *LI = dyn_cast(UsersToProcess[i].Inst)) AccessTy = LI->getType(); else if (isa(UsersToProcess[i].Inst)) continue; TargetLowering::AddrMode AM; if (SCEVConstant *SC = dyn_cast(UsersToProcess[i].Imm)) AM.BaseOffs = SC->getValue()->getSExtValue(); AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); AM.Scale = Scale; // If load[imm+r*scale] is illegal, bail out. if (!TLI->isLegalAddressingMode(AM, AccessTy)) return false; } return true; } /// RequiresTypeConversion - Returns true if converting Ty to NewTy is not /// a nop. bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1, const Type *Ty2) { if (Ty1 == Ty2) return false; if (TLI && TLI->isTruncateFree(Ty1, Ty2)) return false; return (!Ty1->canLosslesslyBitCastTo(Ty2) && !(isa(Ty2) && Ty1->canLosslesslyBitCastTo(UIntPtrTy)) && !(isa(Ty1) && Ty2->canLosslesslyBitCastTo(UIntPtrTy))); } /// CheckForIVReuse - Returns the multiple if the stride is the multiple /// of a previous stride and it is a legal value for the target addressing /// mode scale component and optional base reg. This allows the users of /// this stride to be rewritten as prev iv * factor. It returns 0 if no /// reuse is possible. unsigned LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg, bool AllUsesAreAddresses, const SCEVHandle &Stride, IVExpr &IV, const Type *Ty, const std::vector& UsersToProcess) { if (SCEVConstant *SC = dyn_cast(Stride)) { int64_t SInt = SC->getValue()->getSExtValue(); for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e; ++NewStride) { std::map::iterator SI = IVsByStride.find(StrideOrder[NewStride]); if (SI == IVsByStride.end()) continue; int64_t SSInt = cast(SI->first)->getValue()->getSExtValue(); if (SI->first != Stride && (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0)) continue; int64_t Scale = SInt / SSInt; // Check that this stride is valid for all the types used for loads and // stores; if it can be used for some and not others, we might as well use // the original stride everywhere, since we have to create the IV for it // anyway. If the scale is 1, then we don't need to worry about folding // multiplications. if (Scale == 1 || (AllUsesAreAddresses && ValidStride(HasBaseReg, Scale, UsersToProcess))) for (std::vector::iterator II = SI->second.IVs.begin(), IE = SI->second.IVs.end(); II != IE; ++II) // FIXME: Only handle base == 0 for now. // Only reuse previous IV if it would not require a type conversion. if (II->Base->isZero() && !RequiresTypeConversion(II->Base->getType(), Ty)) { IV = *II; return Scale; } } } return 0; } /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that /// returns true if Val's isUseOfPostIncrementedValue is true. static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) { return Val.isUseOfPostIncrementedValue; } /// isNonConstantNegative - Return true if the specified scev is negated, but /// not a constant. static bool isNonConstantNegative(const SCEVHandle &Expr) { SCEVMulExpr *Mul = dyn_cast(Expr); if (!Mul) return false; // If there is a constant factor, it will be first. SCEVConstant *SC = dyn_cast(Mul->getOperand(0)); if (!SC) return false; // Return true if the value is negative, this matches things like (-42 * V). return SC->getValue()->getValue().isNegative(); } /// isAddress - Returns true if the specified instruction is using the /// specified value as an address. static bool isAddressUse(Instruction *Inst, Value *OperandVal) { bool isAddress = isa(Inst); if (StoreInst *SI = dyn_cast(Inst)) { if (SI->getOperand(1) == OperandVal) isAddress = true; } else if (IntrinsicInst *II = dyn_cast(Inst)) { // Addressing modes can also be folded into prefetches and a variety // of intrinsics. switch (II->getIntrinsicID()) { default: break; case Intrinsic::prefetch: case Intrinsic::x86_sse2_loadu_dq: case Intrinsic::x86_sse2_loadu_pd: case Intrinsic::x86_sse_loadu_ps: case Intrinsic::x86_sse_storeu_ps: case Intrinsic::x86_sse2_storeu_pd: case Intrinsic::x86_sse2_storeu_dq: case Intrinsic::x86_sse2_storel_dq: if (II->getOperand(1) == OperandVal) isAddress = true; break; } } return isAddress; } // CollectIVUsers - Transform our list of users and offsets to a bit more // complex table. In this new vector, each 'BasedUser' contains 'Base' the base // of the strided accessas well as the old information from Uses. We // progressively move information from the Base field to the Imm field, until // we eventually have the full access expression to rewrite the use. SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride, IVUsersOfOneStride &Uses, Loop *L, bool &AllUsesAreAddresses, std::vector &UsersToProcess) { UsersToProcess.reserve(Uses.Users.size()); for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) { UsersToProcess.push_back(BasedUser(Uses.Users[i], SE)); // Move any loop invariant operands from the offset field to the immediate // field of the use, so that we don't try to use something before it is // computed. MoveLoopVariantsToImediateField(UsersToProcess.back().Base, UsersToProcess.back().Imm, L, SE); assert(UsersToProcess.back().Base->isLoopInvariant(L) && "Base value is not loop invariant!"); } // We now have a whole bunch of uses of like-strided induction variables, but // they might all have different bases. We want to emit one PHI node for this // stride which we fold as many common expressions (between the IVs) into as // possible. Start by identifying the common expressions in the base values // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find // "A+B"), emit it to the preheader, then remove the expression from the // UsersToProcess base values. SCEVHandle CommonExprs = RemoveCommonExpressionsFromUseBases(UsersToProcess, SE); // Next, figure out what we can represent in the immediate fields of // instructions. If we can represent anything there, move it to the imm // fields of the BasedUsers. We do this so that it increases the commonality // of the remaining uses. unsigned NumPHI = 0; for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { // If the user is not in the current loop, this means it is using the exit // value of the IV. Do not put anything in the base, make sure it's all in // the immediate field to allow as much factoring as possible. if (!L->contains(UsersToProcess[i].Inst->getParent())) { UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, UsersToProcess[i].Base); UsersToProcess[i].Base = SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType()); } else { // Addressing modes can be folded into loads and stores. Be careful that // the store is through the expression, not of the expression though. bool isPHI = false; bool isAddress = isAddressUse(UsersToProcess[i].Inst, UsersToProcess[i].OperandValToReplace); if (isa(UsersToProcess[i].Inst)) { isPHI = true; ++NumPHI; } // If this use isn't an address, then not all uses are addresses. if (!isAddress && !isPHI) AllUsesAreAddresses = false; MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base, UsersToProcess[i].Imm, isAddress, L, SE); } } // If one of the use if a PHI node and all other uses are addresses, still // allow iv reuse. Essentially we are trading one constant multiplication // for one fewer iv. if (NumPHI > 1) AllUsesAreAddresses = false; return CommonExprs; } /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single /// stride of IV. All of the users may have different starting values, and this /// may not be the only stride (we know it is if isOnlyStride is true). void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride, IVUsersOfOneStride &Uses, Loop *L, bool isOnlyStride) { // If all the users are moved to another stride, then there is nothing to do. if (Uses.Users.empty()) return; // Keep track if every use in UsersToProcess is an address. If they all are, // we may be able to rewrite the entire collection of them in terms of a // smaller-stride IV. bool AllUsesAreAddresses = true; // Transform our list of users and offsets to a bit more complex table. In // this new vector, each 'BasedUser' contains 'Base' the base of the // strided accessas well as the old information from Uses. We progressively // move information from the Base field to the Imm field, until we eventually // have the full access expression to rewrite the use. std::vector UsersToProcess; SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses, UsersToProcess); // If we managed to find some expressions in common, we'll need to carry // their value in a register and add it in for each use. This will take up // a register operand, which potentially restricts what stride values are // valid. bool HaveCommonExprs = !CommonExprs->isZero(); // If all uses are addresses, check if it is possible to reuse an IV with a // stride that is a factor of this stride. And that the multiple is a number // that can be encoded in the scale field of the target addressing mode. And // that we will have a valid instruction after this substition, including the // immediate field, if any. PHINode *NewPHI = NULL; Value *IncV = NULL; IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty), SE->getIntegerSCEV(0, Type::Int32Ty), 0, 0); unsigned RewriteFactor = 0; RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses, Stride, ReuseIV, CommonExprs->getType(), UsersToProcess); if (RewriteFactor != 0) { DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << " :\n"; NewPHI = ReuseIV.PHI; IncV = ReuseIV.IncV; } const Type *ReplacedTy = CommonExprs->getType(); // Now that we know what we need to do, insert the PHI node itself. // DOUT << "INSERTING IV of TYPE " << *ReplacedTy << " of STRIDE " << *Stride << " and BASE " << *CommonExprs << ": "; SCEVExpander Rewriter(*SE, *LI); SCEVExpander PreheaderRewriter(*SE, *LI); BasicBlock *Preheader = L->getLoopPreheader(); Instruction *PreInsertPt = Preheader->getTerminator(); Instruction *PhiInsertBefore = L->getHeader()->begin(); BasicBlock *LatchBlock = L->getLoopLatch(); // Emit the initial base value into the loop preheader. Value *CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt); if (RewriteFactor == 0) { // Create a new Phi for this base, and stick it in the loop header. NewPHI = PHINode::Create(ReplacedTy, "iv.", PhiInsertBefore); ++NumInserted; // Add common base to the new Phi node. NewPHI->addIncoming(CommonBaseV, Preheader); // If the stride is negative, insert a sub instead of an add for the // increment. bool isNegative = isNonConstantNegative(Stride); SCEVHandle IncAmount = Stride; if (isNegative) IncAmount = SE->getNegativeSCEV(Stride); // Insert the stride into the preheader. Value *StrideV = PreheaderRewriter.expandCodeFor(IncAmount, PreInsertPt); if (!isa(StrideV)) ++NumVariable; // Emit the increment of the base value before the terminator of the loop // latch block, and add it to the Phi node. SCEVHandle IncExp = SE->getUnknown(StrideV); if (isNegative) IncExp = SE->getNegativeSCEV(IncExp); IncExp = SE->getAddExpr(SE->getUnknown(NewPHI), IncExp); IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator()); IncV->setName(NewPHI->getName()+".inc"); NewPHI->addIncoming(IncV, LatchBlock); // Remember this in case a later stride is multiple of this. IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV); DOUT << " IV=%" << NewPHI->getNameStr() << " INC=%" << IncV->getNameStr(); } else { Constant *C = dyn_cast(CommonBaseV); if (!C || (!C->isNullValue() && !isTargetConstant(SE->getUnknown(CommonBaseV), ReplacedTy, TLI))) // We want the common base emitted into the preheader! This is just // using cast as a copy so BitCast (no-op cast) is appropriate CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), "commonbase", PreInsertPt); } DOUT << "\n"; // We want to emit code for users inside the loop first. To do this, we // rearrange BasedUser so that the entries at the end have // isUseOfPostIncrementedValue = false, because we pop off the end of the // vector (so we handle them first). std::partition(UsersToProcess.begin(), UsersToProcess.end(), PartitionByIsUseOfPostIncrementedValue); // Sort this by base, so that things with the same base are handled // together. By partitioning first and stable-sorting later, we are // guaranteed that within each base we will pop off users from within the // loop before users outside of the loop with a particular base. // // We would like to use stable_sort here, but we can't. The problem is that // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so // we don't have anything to do a '<' comparison on. Because we think the // number of uses is small, do a horrible bubble sort which just relies on // ==. for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { // Get a base value. SCEVHandle Base = UsersToProcess[i].Base; // Compact everything with this base to be consequtive with this one. for (unsigned j = i+1; j != e; ++j) { if (UsersToProcess[j].Base == Base) { std::swap(UsersToProcess[i+1], UsersToProcess[j]); ++i; } } } // Process all the users now. This outer loop handles all bases, the inner // loop handles all users of a particular base. while (!UsersToProcess.empty()) { SCEVHandle Base = UsersToProcess.back().Base; // Emit the code for Base into the preheader. Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt); DOUT << " INSERTING code for BASE = " << *Base << ":"; if (BaseV->hasName()) DOUT << " Result value name = %" << BaseV->getNameStr(); DOUT << "\n"; // If BaseV is a constant other than 0, make sure that it gets inserted into // the preheader, instead of being forward substituted into the uses. We do // this by forcing a BitCast (noop cast) to be inserted into the preheader // in this case. if (Constant *C = dyn_cast(BaseV)) { if (!C->isNullValue() && !isTargetConstant(Base, ReplacedTy, TLI)) { // We want this constant emitted into the preheader! This is just // using cast as a copy so BitCast (no-op cast) is appropriate BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert", PreInsertPt); } } // Emit the code to add the immediate offset to the Phi value, just before // the instructions that we identified as using this stride and base. do { // FIXME: Use emitted users to emit other users. BasedUser &User = UsersToProcess.back(); // If this instruction wants to use the post-incremented value, move it // after the post-inc and use its value instead of the PHI. Value *RewriteOp = NewPHI; if (User.isUseOfPostIncrementedValue) { RewriteOp = IncV; // If this user is in the loop, make sure it is the last thing in the // loop to ensure it is dominated by the increment. if (L->contains(User.Inst->getParent())) User.Inst->moveBefore(LatchBlock->getTerminator()); } if (RewriteOp->getType() != ReplacedTy) { Instruction::CastOps opcode = Instruction::Trunc; if (ReplacedTy->getPrimitiveSizeInBits() == RewriteOp->getType()->getPrimitiveSizeInBits()) opcode = Instruction::BitCast; RewriteOp = SCEVExpander::InsertCastOfTo(opcode, RewriteOp, ReplacedTy); } SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp); // If we had to insert new instrutions for RewriteOp, we have to // consider that they may not have been able to end up immediately // next to RewriteOp, because non-PHI instructions may never precede // PHI instructions in a block. In this case, remember where the last // instruction was inserted so that if we're replacing a different // PHI node, we can use the later point to expand the final // RewriteExpr. Instruction *NewBasePt = dyn_cast(RewriteOp); if (RewriteOp == NewPHI) NewBasePt = 0; // Clear the SCEVExpander's expression map so that we are guaranteed // to have the code emitted where we expect it. Rewriter.clear(); // If we are reusing the iv, then it must be multiplied by a constant // factor take advantage of addressing mode scale component. if (RewriteFactor != 0) { RewriteExpr = SE->getMulExpr(SE->getIntegerSCEV(RewriteFactor, RewriteExpr->getType()), RewriteExpr); // The common base is emitted in the loop preheader. But since we // are reusing an IV, it has not been used to initialize the PHI node. // Add it to the expression used to rewrite the uses. if (!isa(CommonBaseV) || !cast(CommonBaseV)->isZero()) RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(CommonBaseV)); } // Now that we know what we need to do, insert code before User for the // immediate and any loop-variant expressions. if (!isa(BaseV) || !cast(BaseV)->isZero()) // Add BaseV to the PHI value if needed. RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV)); User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt, Rewriter, L, this, DeadInsts); // Mark old value we replaced as possibly dead, so that it is elminated // if we just replaced the last use of that value. DeadInsts.insert(cast(User.OperandValToReplace)); UsersToProcess.pop_back(); ++NumReduced; // If there are any more users to process with the same base, process them // now. We sorted by base above, so we just have to check the last elt. } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base); // TODO: Next, find out which base index is the most common, pull it out. } // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but // different starting values, into different PHIs. } /// FindIVForUser - If Cond has an operand that is an expression of an IV, /// set the IV user and stride information and return true, otherwise return /// false. bool LoopStrengthReduce::FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse, const SCEVHandle *&CondStride) { for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse; ++Stride) { std::map::iterator SI = IVUsesByStride.find(StrideOrder[Stride]); assert(SI != IVUsesByStride.end() && "Stride doesn't exist!"); for (std::vector::iterator UI = SI->second.Users.begin(), E = SI->second.Users.end(); UI != E; ++UI) if (UI->User == Cond) { // NOTE: we could handle setcc instructions with multiple uses here, but // InstCombine does it as well for simple uses, it's not clear that it // occurs enough in real life to handle. CondUse = &*UI; CondStride = &SI->first; return true; } } return false; } namespace { // Constant strides come first which in turns are sorted by their absolute // values. If absolute values are the same, then positive strides comes first. // e.g. // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X struct StrideCompare { bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) { SCEVConstant *LHSC = dyn_cast(LHS); SCEVConstant *RHSC = dyn_cast(RHS); if (LHSC && RHSC) { int64_t LV = LHSC->getValue()->getSExtValue(); int64_t RV = RHSC->getValue()->getSExtValue(); uint64_t ALV = (LV < 0) ? -LV : LV; uint64_t ARV = (RV < 0) ? -RV : RV; if (ALV == ARV) return LV > RV; else return ALV < ARV; } return (LHSC && !RHSC); } }; } /// ChangeCompareStride - If a loop termination compare instruction is the /// only use of its stride, and the compaison is against a constant value, /// try eliminate the stride by moving the compare instruction to another /// stride and change its constant operand accordingly. e.g. /// /// loop: /// ... /// v1 = v1 + 3 /// v2 = v2 + 1 /// if (v2 < 10) goto loop /// => /// loop: /// ... /// v1 = v1 + 3 /// if (v1 < 30) goto loop ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond, IVStrideUse* &CondUse, const SCEVHandle* &CondStride) { if (StrideOrder.size() < 2 || IVUsesByStride[*CondStride].Users.size() != 1) return Cond; const SCEVConstant *SC = dyn_cast(*CondStride); if (!SC) return Cond; ConstantInt *C = dyn_cast(Cond->getOperand(1)); if (!C) return Cond; ICmpInst::Predicate Predicate = Cond->getPredicate(); int64_t CmpSSInt = SC->getValue()->getSExtValue(); int64_t CmpVal = C->getValue().getSExtValue(); unsigned BitWidth = C->getValue().getBitWidth(); uint64_t SignBit = 1ULL << (BitWidth-1); const Type *CmpTy = C->getType(); const Type *NewCmpTy = NULL; unsigned TyBits = CmpTy->getPrimitiveSizeInBits(); unsigned NewTyBits = 0; int64_t NewCmpVal = CmpVal; SCEVHandle *NewStride = NULL; Value *NewIncV = NULL; int64_t Scale = 1; // Look for a suitable stride / iv as replacement. std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare()); for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) { std::map::iterator SI = IVUsesByStride.find(StrideOrder[i]); if (!isa(SI->first)) continue; int64_t SSInt = cast(SI->first)->getValue()->getSExtValue(); if (abs(SSInt) <= abs(CmpSSInt) || (SSInt % CmpSSInt) != 0) continue; Scale = SSInt / CmpSSInt; NewCmpVal = CmpVal * Scale; APInt Mul = APInt(BitWidth, NewCmpVal); // Check for overflow. if (Mul.getSExtValue() != NewCmpVal) { NewCmpVal = CmpVal; continue; } // Watch out for overflow. if (ICmpInst::isSignedPredicate(Predicate) && (CmpVal & SignBit) != (NewCmpVal & SignBit)) NewCmpVal = CmpVal; if (NewCmpVal != CmpVal) { // Pick the best iv to use trying to avoid a cast. NewIncV = NULL; for (std::vector::iterator UI = SI->second.Users.begin(), E = SI->second.Users.end(); UI != E; ++UI) { NewIncV = UI->OperandValToReplace; if (NewIncV->getType() == CmpTy) break; } if (!NewIncV) { NewCmpVal = CmpVal; continue; } NewCmpTy = NewIncV->getType(); NewTyBits = isa(NewCmpTy) ? UIntPtrTy->getPrimitiveSizeInBits() : NewCmpTy->getPrimitiveSizeInBits(); if (RequiresTypeConversion(NewCmpTy, CmpTy)) { // Check if it is possible to rewrite it using // an iv / stride of a smaller integer type. bool TruncOk = false; if (NewCmpTy->isInteger()) { unsigned Bits = NewTyBits; if (ICmpInst::isSignedPredicate(Predicate)) --Bits; uint64_t Mask = (1ULL << Bits) - 1; if (((uint64_t)NewCmpVal & Mask) == (uint64_t)NewCmpVal) TruncOk = true; } if (!TruncOk) { NewCmpVal = CmpVal; continue; } } // Don't rewrite if use offset is non-constant and the new type is // of a different type. // FIXME: too conservative? if (NewTyBits != TyBits && !isa(CondUse->Offset)) { NewCmpVal = CmpVal; continue; } bool AllUsesAreAddresses = true; std::vector UsersToProcess; SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L, AllUsesAreAddresses, UsersToProcess); // Avoid rewriting the compare instruction with an iv of new stride // if it's likely the new stride uses will be rewritten using the if (AllUsesAreAddresses && ValidStride(!CommonExprs->isZero(), Scale, UsersToProcess)) { NewCmpVal = CmpVal; continue; } // If scale is negative, use inverse predicate unless it's testing // for equality. if (Scale < 0 && !Cond->isEquality()) Predicate = ICmpInst::getInversePredicate(Predicate); NewStride = &StrideOrder[i]; break; } } // Forgo this transformation if it the increment happens to be // unfortunately positioned after the condition, and the condition // has multiple uses which prevent it from being moved immediately // before the branch. See // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll // for an example of this situation. if (!Cond->hasOneUse()) for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end(); I != E; ++I) if (I == NewIncV) return Cond; if (NewCmpVal != CmpVal) { // Create a new compare instruction using new stride / iv. ICmpInst *OldCond = Cond; Value *RHS; if (!isa(NewCmpTy)) RHS = ConstantInt::get(NewCmpTy, NewCmpVal); else { RHS = ConstantInt::get(UIntPtrTy, NewCmpVal); RHS = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, RHS, NewCmpTy); } // Insert new compare instruction. Cond = new ICmpInst(Predicate, NewIncV, RHS, L->getHeader()->getName() + ".termcond", OldCond); // Remove the old compare instruction. The old indvar is probably dead too. DeadInsts.insert(cast(CondUse->OperandValToReplace)); SE->deleteValueFromRecords(OldCond); OldCond->replaceAllUsesWith(Cond); OldCond->eraseFromParent(); IVUsesByStride[*CondStride].Users.pop_back(); SCEVHandle NewOffset = TyBits == NewTyBits ? SE->getMulExpr(CondUse->Offset, SE->getConstant(ConstantInt::get(CmpTy, Scale))) : SE->getConstant(ConstantInt::get(NewCmpTy, cast(CondUse->Offset)->getValue()->getSExtValue()*Scale)); IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewIncV); CondUse = &IVUsesByStride[*NewStride].Users.back(); CondStride = NewStride; ++NumEliminated; } return Cond; } // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar // uses in the loop, look to see if we can eliminate some, in favor of using // common indvars for the different uses. void LoopStrengthReduce::OptimizeIndvars(Loop *L) { // TODO: implement optzns here. // Finally, get the terminating condition for the loop if possible. If we // can, we want to change it to use a post-incremented version of its // induction variable, to allow coalescing the live ranges for the IV into // one register value. PHINode *SomePHI = cast(L->getHeader()->begin()); BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *LatchBlock = SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader); BranchInst *TermBr = dyn_cast(LatchBlock->getTerminator()); if (!TermBr || TermBr->isUnconditional() || !isa(TermBr->getCondition())) return; ICmpInst *Cond = cast(TermBr->getCondition()); // Search IVUsesByStride to find Cond's IVUse if there is one. IVStrideUse *CondUse = 0; const SCEVHandle *CondStride = 0; if (!FindIVForUser(Cond, CondUse, CondStride)) return; // setcc doesn't use the IV. // If possible, change stride and operands of the compare instruction to // eliminate one stride. Cond = ChangeCompareStride(L, Cond, CondUse, CondStride); // It's possible for the setcc instruction to be anywhere in the loop, and // possible for it to have multiple users. If it is not immediately before // the latch block branch, move it. if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) { if (Cond->hasOneUse()) { // Condition has a single use, just move it. Cond->moveBefore(TermBr); } else { // Otherwise, clone the terminating condition and insert into the loopend. Cond = cast(Cond->clone()); Cond->setName(L->getHeader()->getName() + ".termcond"); LatchBlock->getInstList().insert(TermBr, Cond); // Clone the IVUse, as the old use still exists! IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond, CondUse->OperandValToReplace); CondUse = &IVUsesByStride[*CondStride].Users.back(); } } // If we get to here, we know that we can transform the setcc instruction to // use the post-incremented version of the IV, allowing us to coalesce the // live ranges for the IV correctly. CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride); CondUse->isUseOfPostIncrementedValue = true; } bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) { LI = &getAnalysis(); DT = &getAnalysis(); SE = &getAnalysis(); TD = &getAnalysis(); UIntPtrTy = TD->getIntPtrType(); // Find all uses of induction variables in this loop, and catagorize // them by stride. Start by finding all of the PHI nodes in the header for // this loop. If they are induction variables, inspect their uses. SmallPtrSet Processed; // Don't reprocess instructions. for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) AddUsersIfInteresting(I, L, Processed); // If we have nothing to do, return. if (IVUsesByStride.empty()) return false; // Optimize induction variables. Some indvar uses can be transformed to use // strides that will be needed for other purposes. A common example of this // is the exit test for the loop, which can often be rewritten to use the // computation of some other indvar to decide when to terminate the loop. OptimizeIndvars(L); // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of // doing computation in byte values, promote to 32-bit values if safe. // FIXME: Attempt to reuse values across multiple IV's. In particular, we // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. Need // to be careful that IV's are all the same type. Only works for intptr_t // indvars. // If we only have one stride, we can more aggressively eliminate some things. bool HasOneStride = IVUsesByStride.size() == 1; #ifndef NDEBUG DOUT << "\nLSR on "; DEBUG(L->dump()); #endif // IVsByStride keeps IVs for one particular loop. assert(IVsByStride.empty() && "Stale entries in IVsByStride?"); // Sort the StrideOrder so we process larger strides first. std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare()); // Note: this processes each stride/type pair individually. All users passed // into StrengthReduceStridedIVUsers have the same type AND stride. Also, // note that we iterate over IVUsesByStride indirectly by using StrideOrder. // This extra layer of indirection makes the ordering of strides deterministic // - not dependent on map order. for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) { std::map::iterator SI = IVUsesByStride.find(StrideOrder[Stride]); assert(SI != IVUsesByStride.end() && "Stride doesn't exist!"); StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride); } // We're done analyzing this loop; release all the state we built up for it. CastedPointers.clear(); IVUsesByStride.clear(); IVsByStride.clear(); StrideOrder.clear(); // Clean up after ourselves if (!DeadInsts.empty()) { DeleteTriviallyDeadInstructions(DeadInsts); BasicBlock::iterator I = L->getHeader()->begin(); while (PHINode *PN = dyn_cast(I++)) { // At this point, we know that we have killed one or more IV users. // It is worth checking to see if the cann indvar is also // dead, so that we can remove it as well. // // We can remove a PHI if it is on a cycle in the def-use graph // where each node in the cycle has degree one, i.e. only one use, // and is an instruction with no side effects. // // FIXME: this needs to eliminate an induction variable even if it's being // compared against some value to decide loop termination. if (PN->hasOneUse()) { for (Instruction *J = dyn_cast(*PN->use_begin()); J && J->hasOneUse() && !J->mayWriteToMemory(); J = dyn_cast(*J->use_begin())) { // If we find the original PHI, we've discovered a cycle. if (J == PN) { // Break the cycle and mark the PHI for deletion. SE->deleteValueFromRecords(PN); PN->replaceAllUsesWith(UndefValue::get(PN->getType())); DeadInsts.insert(PN); break; } } } } DeleteTriviallyDeadInstructions(DeadInsts); } return false; }