//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Place garbage collection safepoints at appropriate locations in the IR. This // does not make relocation semantics or variable liveness explicit. That's // done by RewriteStatepointsForGC. // // This pass will insert: // - Call parse points ("call safepoints") for any call which may need to // reach a safepoint during the execution of the callee function. // - Backedge safepoint polls and entry safepoint polls to ensure that // executing code reaches a safepoint poll in a finite amount of time. // - We do not currently support return statepoints, but adding them would not // be hard. They are not required for correctness - entry safepoints are an // alternative - but some GCs may prefer them. Patches welcome. // // There are restrictions on the IR accepted. We require that: // - Pointer values may not be cast to integers and back. // - Pointers to GC objects must be tagged with address space #1 // - Pointers loaded from the heap or global variables must refer to the // base of an object. In practice, interior pointers are probably fine as // long as your GC can handle them, but exterior pointers loaded to from the // heap or globals are explicitly unsupported at this time. // // In addition to these fundemental limitations, we currently do not support: // - use of indirectbr (in loops which need backedge safepoints) // - aggregate types which contain pointers to GC objects // - constant pointers to GC objects (other than null) // - use of gc_root // // Patches welcome for the later class of items. // // This code is organized in two key concepts: // - "parse point" - at these locations (all calls in the current // implementation), the garbage collector must be able to inspect // and modify all pointers to garbage collected objects. The objects // may be arbitrarily relocated and thus the pointers may be modified. // - "poll" - this is a location where the compiled code needs to // check (or poll) if the running thread needs to collaborate with // the garbage collector by taking some action. In this code, the // checking condition and action are abstracted via a frontend // provided "safepoint_poll" function. // //===----------------------------------------------------------------------===// #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #define DEBUG_TYPE "safepoint-placement" STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); STATISTIC(NumCallSafepoints, "Number of call safepoints inserted"); STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop"); STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution"); using namespace llvm; // Ignore oppurtunities to avoid placing safepoints on backedges, useful for // validation static cl::opt AllBackedges("spp-all-backedges", cl::init(false)); /// If true, do not place backedge safepoints in counted loops. static cl::opt SkipCounted("spp-counted", cl::init(true)); // If true, split the backedge of a loop when placing the safepoint, otherwise // split the latch block itself. Both are useful to support for // experimentation, but in practice, it looks like splitting the backedge // optimizes better. static cl::opt SplitBackedge("spp-split-backedge", cl::init(false)); // Print tracing output cl::opt TraceLSP("spp-trace", cl::init(false)); namespace { /** An analysis pass whose purpose is to identify each of the backedges in the function which require a safepoint poll to be inserted. */ struct PlaceBackedgeSafepointsImpl : public LoopPass { static char ID; /// The output of the pass - gives a list of each backedge (described by /// pointing at the branch) which need a poll inserted. std::vector PollLocations; /// True unless we're running spp-no-calls in which case we need to disable /// the call dependend placement opts. bool CallSafepointsEnabled; PlaceBackedgeSafepointsImpl(bool CallSafepoints = false) : LoopPass(ID), CallSafepointsEnabled(CallSafepoints) { initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *, LPPassManager &LPM) override; void getAnalysisUsage(AnalysisUsage &AU) const override { // needed for determining if the loop is finite AU.addRequired(); // to ensure each edge has a single backedge // TODO: is this still required? AU.addRequiredID(LoopSimplifyID); // We no longer modify the IR at all in this pass. Thus all // analysis are preserved. AU.setPreservesAll(); } }; } static cl::opt NoEntry("spp-no-entry", cl::init(false)); static cl::opt NoCall("spp-no-call", cl::init(false)); static cl::opt NoBackedge("spp-no-backedge", cl::init(false)); namespace { struct PlaceSafepoints : public ModulePass { static char ID; // Pass identification, replacement for typeid bool EnableEntrySafepoints; bool EnableBackedgeSafepoints; bool EnableCallSafepoints; PlaceSafepoints() : ModulePass(ID) { initializePlaceSafepointsPass(*PassRegistry::getPassRegistry()); EnableEntrySafepoints = !NoEntry; EnableBackedgeSafepoints = !NoBackedge; EnableCallSafepoints = !NoCall; } bool runOnModule(Module &M) override { bool modified = false; for (Function &F : M) { modified |= runOnFunction(F); } return modified; } bool runOnFunction(Function &F); void getAnalysisUsage(AnalysisUsage &AU) const override { // We modify the graph wholesale (inlining, block insertion, etc). We // preserve nothing at the moment. We could potentially preserve dom tree // if that was worth doing } }; } // Insert a safepoint poll immediately before the given instruction. Does // not handle the parsability of state at the runtime call, that's the // callers job. static void InsertSafepointPoll(DominatorTree &DT, Instruction *after, std::vector &ParsePointsNeeded /*rval*/); static bool isGCLeafFunction(const CallSite &CS); static bool needsStatepoint(const CallSite &CS) { if (isGCLeafFunction(CS)) return false; if (CS.isCall()) { CallInst *call = cast(CS.getInstruction()); if (call->isInlineAsm()) return false; } if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) { return false; } return true; } static Value *ReplaceWithStatepoint(const CallSite &CS, Pass *P); /// Returns true if this loop is known to contain a call safepoint which /// must unconditionally execute on any iteration of the loop which returns /// to the loop header via an edge from Pred. Returns a conservative correct /// answer; i.e. false is always valid. static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, BasicBlock *Pred, DominatorTree &DT) { // In general, we're looking for any cut of the graph which ensures // there's a call safepoint along every edge between Header and Pred. // For the moment, we look only for the 'cuts' that consist of a single call // instruction in a block which is dominated by the Header and dominates the // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain // of such dominating blocks gets substaintially more occurences than just // checking the Pred and Header blocks themselves. This may be due to the // density of loop exit conditions caused by range and null checks. // TODO: structure this as an analysis pass, cache the result for subloops, // avoid dom tree recalculations assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); BasicBlock *Current = Pred; while (true) { for (Instruction &I : *Current) { if (CallSite CS = &I) // Note: Technically, needing a safepoint isn't quite the right // condition here. We should instead be checking if the target method // has an // unconditional poll. In practice, this is only a theoretical concern // since we don't have any methods with conditional-only safepoint // polls. if (needsStatepoint(CS)) return true; } if (Current == Header) break; Current = DT.getNode(Current)->getIDom()->getBlock(); } return false; } /// Returns true if this loop is known to terminate in a finite number of /// iterations. Note that this function may return false for a loop which /// does actual terminate in a finite constant number of iterations due to /// conservatism in the analysis. static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, BasicBlock *Pred) { // Only used when SkipCounted is off const unsigned upperTripBound = 8192; // A conservative bound on the loop as a whole. const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L); if (MaxTrips != SE->getCouldNotCompute()) { if (SE->getUnsignedRange(MaxTrips).getUnsignedMax().ult(upperTripBound)) return true; if (SkipCounted && SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(32)) return true; } // If this is a conditional branch to the header with the alternate path // being outside the loop, we can ask questions about the execution frequency // of the exit block. if (L->isLoopExiting(Pred)) { // This returns an exact expression only. TODO: We really only need an // upper bound here, but SE doesn't expose that. const SCEV *MaxExec = SE->getExitCount(L, Pred); if (MaxExec != SE->getCouldNotCompute()) { if (SE->getUnsignedRange(MaxExec).getUnsignedMax().ult(upperTripBound)) return true; if (SkipCounted && SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(32)) return true; } } return /* not finite */ false; } static void scanOneBB(Instruction *start, Instruction *end, std::vector &calls, std::set &seen, std::vector &worklist) { for (BasicBlock::iterator itr(start); itr != start->getParent()->end() && itr != BasicBlock::iterator(end); itr++) { if (CallInst *CI = dyn_cast(&*itr)) { calls.push_back(CI); } // FIXME: This code does not handle invokes assert(!dyn_cast(&*itr) && "support for invokes in poll code needed"); // Only add the successor blocks if we reach the terminator instruction // without encountering end first if (itr->isTerminator()) { BasicBlock *BB = itr->getParent(); for (succ_iterator PI = succ_begin(BB), E = succ_end(BB); PI != E; ++PI) { BasicBlock *Succ = *PI; if (seen.count(Succ) == 0) { worklist.push_back(Succ); seen.insert(Succ); } } } } } static void scanInlinedCode(Instruction *start, Instruction *end, std::vector &calls, std::set &seen) { calls.clear(); std::vector worklist; seen.insert(start->getParent()); scanOneBB(start, end, calls, seen, worklist); while (!worklist.empty()) { BasicBlock *BB = worklist.back(); worklist.pop_back(); scanOneBB(&*BB->begin(), end, calls, seen, worklist); } } bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L, LPPassManager &LPM) { ScalarEvolution *SE = &getAnalysis(); // Loop through all predecessors of the loop header and identify all // backedges. We need to place a safepoint on every backedge (potentially). // Note: Due to LoopSimplify there should only be one. Assert? Or can we // relax this? BasicBlock *header = L->getHeader(); // TODO: Use the analysis pass infrastructure for this. There is no reason // to recalculate this here. DominatorTree DT; DT.recalculate(*header->getParent()); bool modified = false; for (pred_iterator PI = pred_begin(header), E = pred_end(header); PI != E; PI++) { BasicBlock *pred = *PI; if (!L->contains(pred)) { // This is not a backedge, it's coming from outside the loop continue; } // Make a policy decision about whether this loop needs a safepoint or // not. Note that this is about unburdening the optimizer in loops, not // avoiding the runtime cost of the actual safepoint. if (!AllBackedges) { if (mustBeFiniteCountedLoop(L, SE, pred)) { if (TraceLSP) errs() << "skipping safepoint placement in finite loop\n"; FiniteExecution++; continue; } if (CallSafepointsEnabled && containsUnconditionalCallSafepoint(L, header, pred, DT)) { // Note: This is only semantically legal since we won't do any further // IPO or inlining before the actual call insertion.. If we hadn't, we // might latter loose this call safepoint. if (TraceLSP) errs() << "skipping safepoint placement due to unconditional call\n"; CallInLoop++; continue; } } // TODO: We can create an inner loop which runs a finite number of // iterations with an outer loop which contains a safepoint. This would // not help runtime performance that much, but it might help our ability to // optimize the inner loop. // We're unconditionally going to modify this loop. modified = true; // Safepoint insertion would involve creating a new basic block (as the // target of the current backedge) which does the safepoint (of all live // variables) and branches to the true header TerminatorInst *term = pred->getTerminator(); if (TraceLSP) { errs() << "[LSP] terminator instruction: "; term->dump(); } PollLocations.push_back(term); } return modified; } static Instruction *findLocationForEntrySafepoint(Function &F, DominatorTree &DT) { // Conceptually, this poll needs to be on method entry, but in // practice, we place it as late in the entry block as possible. We // can place it as late as we want as long as it dominates all calls // that can grow the stack. This, combined with backedge polls, // give us all the progress guarantees we need. // Due to the way the frontend generates IR, we may have a couple of initial // basic blocks before the first bytecode. These will be single-entry // single-exit blocks which conceptually are just part of the first 'real // basic block'. Since we don't have deopt state until the first bytecode, // walk forward until we've found the first unconditional branch or merge. // hasNextInstruction and nextInstruction are used to iterate // through a "straight line" execution sequence. auto hasNextInstruction = [](Instruction *I) { if (!I->isTerminator()) { return true; } BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); return nextBB && (nextBB->getUniquePredecessor() != nullptr); }; auto nextInstruction = [&hasNextInstruction](Instruction *I) { assert(hasNextInstruction(I) && "first check if there is a next instruction!"); if (I->isTerminator()) { return I->getParent()->getUniqueSuccessor()->begin(); } else { return std::next(BasicBlock::iterator(I)); } }; Instruction *cursor = nullptr; for (cursor = F.getEntryBlock().begin(); hasNextInstruction(cursor); cursor = nextInstruction(cursor)) { // We need to stop going forward as soon as we see a call that can // grow the stack (i.e. the call target has a non-zero frame // size). if (CallSite CS = cursor) { (void)CS; // Silence an unused variable warning by gcc 4.8.2 if (IntrinsicInst *II = dyn_cast(cursor)) { // llvm.assume(...) are not really calls. if (II->getIntrinsicID() == Intrinsic::assume) { continue; } } break; } } assert((hasNextInstruction(cursor) || cursor->isTerminator()) && "either we stopped because of a call, or because of terminator"); if (cursor->isTerminator()) { return cursor; } BasicBlock *BB = cursor->getParent(); SplitBlock(BB, cursor, nullptr); // Note: SplitBlock modifies the DT. Simply passing a Pass (which is a // module pass) is not enough. DT.recalculate(F); #ifndef NDEBUG // SplitBlock updates the DT DT.verifyDomTree(); #endif return BB->getTerminator(); } /// Identify the list of call sites which need to be have parseable state static void findCallSafepoints(Function &F, std::vector &Found /*rval*/) { assert(Found.empty() && "must be empty!"); for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; itr++) { Instruction *inst = &*itr; if (isa(inst) || isa(inst)) { CallSite CS(inst); // No safepoint needed or wanted if (!needsStatepoint(CS)) { continue; } Found.push_back(CS); } } } /// Implement a unique function which doesn't require we sort the input /// vector. Doing so has the effect of changing the output of a couple of /// tests in ways which make them less useful in testing fused safepoints. template static void unique_unsorted(std::vector &vec) { std::set seen; std::vector tmp; vec.reserve(vec.size()); std::swap(tmp, vec); for (auto V : tmp) { if (seen.insert(V).second) { vec.push_back(V); } } } bool PlaceSafepoints::runOnFunction(Function &F) { if (F.isDeclaration() || F.empty()) { // This is a declaration, nothing to do. Must exit early to avoid crash in // dom tree calculation return false; } bool modified = false; // In various bits below, we rely on the fact that uses are reachable from // defs. When there are basic blocks unreachable from the entry, dominance // and reachablity queries return non-sensical results. Thus, we preprocess // the function to ensure these properties hold. modified |= removeUnreachableBlocks(F); // STEP 1 - Insert the safepoint polling locations. We do not need to // actually insert parse points yet. That will be done for all polls and // calls in a single pass. // Note: With the migration, we need to recompute this for each 'pass'. Once // we merge these, we'll do it once before the analysis DominatorTree DT; std::vector ParsePointNeeded; if (EnableBackedgeSafepoints) { // Construct a pass manager to run the LoopPass backedge logic. We // need the pass manager to handle scheduling all the loop passes // appropriately. Doing this by hand is painful and just not worth messing // with for the moment. FunctionPassManager FPM(F.getParent()); PlaceBackedgeSafepointsImpl *PBS = new PlaceBackedgeSafepointsImpl(EnableCallSafepoints); FPM.add(PBS); // Note: While the analysis pass itself won't modify the IR, LoopSimplify // (which it depends on) may. i.e. analysis must be recalculated after run FPM.run(F); // We preserve dominance information when inserting the poll, otherwise // we'd have to recalculate this on every insert DT.recalculate(F); // Insert a poll at each point the analysis pass identified for (size_t i = 0; i < PBS->PollLocations.size(); i++) { // We are inserting a poll, the function is modified modified = true; // The poll location must be the terminator of a loop latch block. TerminatorInst *Term = PBS->PollLocations[i]; std::vector ParsePoints; if (SplitBackedge) { // Split the backedge of the loop and insert the poll within that new // basic block. This creates a loop with two latches per original // latch (which is non-ideal), but this appears to be easier to // optimize in practice than inserting the poll immediately before the // latch test. // Since this is a latch, at least one of the successors must dominate // it. Its possible that we have a) duplicate edges to the same header // and b) edges to distinct loop headers. We need to insert pools on // each. (Note: This still relies on LoopSimplify.) DenseSet Headers; for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { BasicBlock *Succ = Term->getSuccessor(i); if (DT.dominates(Succ, Term->getParent())) { Headers.insert(Succ); } } assert(!Headers.empty() && "poll location is not a loop latch?"); // The split loop structure here is so that we only need to recalculate // the dominator tree once. Alternatively, we could just keep it up to // date and use a more natural merged loop. DenseSet SplitBackedges; for (BasicBlock *Header : Headers) { BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, nullptr); SplitBackedges.insert(NewBB); } DT.recalculate(F); for (BasicBlock *NewBB : SplitBackedges) { InsertSafepointPoll(DT, NewBB->getTerminator(), ParsePoints); NumBackedgeSafepoints++; } } else { // Split the latch block itself, right before the terminator. InsertSafepointPoll(DT, Term, ParsePoints); NumBackedgeSafepoints++; } // Record the parse points for later use ParsePointNeeded.insert(ParsePointNeeded.end(), ParsePoints.begin(), ParsePoints.end()); } } if (EnableEntrySafepoints) { DT.recalculate(F); Instruction *term = findLocationForEntrySafepoint(F, DT); if (!term) { // policy choice not to insert? } else { std::vector RuntimeCalls; InsertSafepointPoll(DT, term, RuntimeCalls); modified = true; NumEntrySafepoints++; ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(), RuntimeCalls.end()); } } if (EnableCallSafepoints) { DT.recalculate(F); std::vector Calls; findCallSafepoints(F, Calls); NumCallSafepoints += Calls.size(); ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end()); } // Unique the vectors since we can end up with duplicates if we scan the call // site for call safepoints after we add it for entry or backedge. The // only reason we need tracking at all is that some functions might have // polls but not call safepoints and thus we might miss marking the runtime // calls for the polls. (This is useful in test cases!) unique_unsorted(ParsePointNeeded); // Any parse point (no matter what source) will be handled here DT.recalculate(F); // Needed? // We're about to start modifying the function if (!ParsePointNeeded.empty()) modified = true; // Now run through and insert the safepoints, but do _NOT_ update or remove // any existing uses. We have references to live variables that need to // survive to the last iteration of this loop. std::vector Results; Results.reserve(ParsePointNeeded.size()); for (size_t i = 0; i < ParsePointNeeded.size(); i++) { CallSite &CS = ParsePointNeeded[i]; Value *GCResult = ReplaceWithStatepoint(CS, nullptr); Results.push_back(GCResult); } assert(Results.size() == ParsePointNeeded.size()); // Adjust all users of the old call sites to use the new ones instead for (size_t i = 0; i < ParsePointNeeded.size(); i++) { CallSite &CS = ParsePointNeeded[i]; Value *GCResult = Results[i]; if (GCResult) { // In case if we inserted result in a different basic block than the // original safepoint (this can happen for invokes). We need to be sure // that // original result value was not used in any of the phi nodes at the // beginning of basic block with gc result. Because we know that all such // blocks will have single predecessor we can safely assume that all phi // nodes have single entry (because of normalizeBBForInvokeSafepoint). // Just remove them all here. if (CS.isInvoke()) { FoldSingleEntryPHINodes(cast(GCResult)->getParent(), nullptr); assert( !isa(cast(GCResult)->getParent()->begin())); } // Replace all uses with the new call CS.getInstruction()->replaceAllUsesWith(GCResult); } // Now that we've handled all uses, remove the original call itself // Note: The insert point can't be the deleted instruction! CS.getInstruction()->eraseFromParent(); } return modified; } char PlaceBackedgeSafepointsImpl::ID = 0; char PlaceSafepoints::ID = 0; ModulePass *llvm::createPlaceSafepointsPass() { return new PlaceSafepoints(); } INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl, "place-backedge-safepoints-impl", "Place Backedge Safepoints", false, false) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl, "place-backedge-safepoints-impl", "Place Backedge Safepoints", false, false) INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints", false, false) INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints", false, false) static bool isGCLeafFunction(const CallSite &CS) { Instruction *inst = CS.getInstruction(); if (isa(inst)) { // Most LLVM intrinsics are things which can never take a safepoint. // As a result, we don't need to have the stack parsable at the // callsite. This is a highly useful optimization since intrinsic // calls are fairly prevelent, particularly in debug builds. return true; } // If this function is marked explicitly as a leaf call, we don't need to // place a safepoint of it. In fact, for correctness we *can't* in many // cases. Note: Indirect calls return Null for the called function, // these obviously aren't runtime functions with attributes // TODO: Support attributes on the call site as well. const Function *F = CS.getCalledFunction(); bool isLeaf = F && F->getFnAttribute("gc-leaf-function").getValueAsString().equals("true"); if (isLeaf) { return true; } return false; } static void InsertSafepointPoll(DominatorTree &DT, Instruction *term, std::vector &ParsePointsNeeded /*rval*/) { Module *M = term->getParent()->getParent()->getParent(); assert(M); // Inline the safepoint poll implementation - this will get all the branch, // control flow, etc.. Most importantly, it will introduce the actual slow // path call - where we need to insert a safepoint (parsepoint). FunctionType *ftype = FunctionType::get(Type::getVoidTy(M->getContext()), false); assert(ftype && "null?"); // Note: This cast can fail if there's a function of the same name with a // different type inserted previously Function *F = dyn_cast(M->getOrInsertFunction("gc.safepoint_poll", ftype)); assert(F && !F->empty() && "definition must exist"); CallInst *poll = CallInst::Create(F, "", term); // Record some information about the call site we're replacing BasicBlock *OrigBB = term->getParent(); BasicBlock::iterator before(poll), after(poll); bool isBegin(false); if (before == term->getParent()->begin()) { isBegin = true; } else { before--; } after++; assert(after != poll->getParent()->end() && "must have successor"); assert(DT.dominates(before, after) && "trivially true"); // do the actual inlining InlineFunctionInfo IFI; bool inlineStatus = InlineFunction(poll, IFI); assert(inlineStatus && "inline must succeed"); (void)inlineStatus; // suppress warning in release-asserts // Check post conditions assert(IFI.StaticAllocas.empty() && "can't have allocs"); std::vector calls; // new calls std::set BBs; // new BBs + insertee // Include only the newly inserted instructions, Note: begin may not be valid // if we inserted to the beginning of the basic block BasicBlock::iterator start; if (isBegin) { start = OrigBB->begin(); } else { start = before; start++; } // If your poll function includes an unreachable at the end, that's not // valid. Bugpoint likes to create this, so check for it. assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) && "malformed poll function"); scanInlinedCode(&*(start), &*(after), calls, BBs); // Recompute since we've invalidated cached data. Conceptually we // shouldn't need to do this, but implementation wise we appear to. Needed // so we can insert safepoints correctly. // TODO: update more cheaply DT.recalculate(*after->getParent()->getParent()); assert(!calls.empty() && "slow path not found for safepoint poll"); // Record the fact we need a parsable state at the runtime call contained in // the poll function. This is required so that the runtime knows how to // parse the last frame when we actually take the safepoint (i.e. execute // the slow path) assert(ParsePointsNeeded.empty()); for (size_t i = 0; i < calls.size(); i++) { // No safepoint needed or wanted if (!needsStatepoint(calls[i])) { continue; } // These are likely runtime calls. Should we assert that via calling // convention or something? ParsePointsNeeded.push_back(CallSite(calls[i])); } assert(ParsePointsNeeded.size() <= calls.size()); } // Normalize basic block to make it ready to be target of invoke statepoint. // It means spliting it to have single predecessor. Return newly created BB // ready to be successor of invoke statepoint. static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent) { BasicBlock *ret = BB; if (!BB->getUniquePredecessor()) { ret = SplitBlockPredecessors(BB, InvokeParent, ""); } // Another requirement for such basic blocks is to not have any phi nodes. // Since we just ensured that new BB will have single predecessor, // all phi nodes in it will have one value. Here it would be naturall place // to // remove them all. But we can not do this because we are risking to remove // one of the values stored in liveset of another statepoint. We will do it // later after placing all safepoints. return ret; } /// Replaces the given call site (Call or Invoke) with a gc.statepoint /// intrinsic with an empty deoptimization arguments list. This does /// NOT do explicit relocation for GC support. static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */ Pass *P) { BasicBlock *BB = CS.getInstruction()->getParent(); Function *F = BB->getParent(); Module *M = F->getParent(); assert(M && "must be set"); // TODO: technically, a pass is not allowed to get functions from within a // function pass since it might trigger a new function addition. Refactor // this logic out to the initialization of the pass. Doesn't appear to // matter in practice. // Fill in the one generic type'd argument (the function is also vararg) std::vector argTypes; argTypes.push_back(CS.getCalledValue()->getType()); Function *gc_statepoint_decl = Intrinsic::getDeclaration( M, Intrinsic::experimental_gc_statepoint, argTypes); // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. Instruction *insertBefore = CS.getInstruction(); IRBuilder<> Builder(insertBefore); // First, create the statepoint (with all live ptrs as arguments). std::vector args; // target, #args, unused, args Value *Target = CS.getCalledValue(); args.push_back(Target); int callArgSize = CS.arg_size(); args.push_back( ConstantInt::get(Type::getInt32Ty(M->getContext()), callArgSize)); // TODO: add a 'Needs GC-rewrite' later flag args.push_back(ConstantInt::get(Type::getInt32Ty(M->getContext()), 0)); // Copy all the arguments of the original call args.insert(args.end(), CS.arg_begin(), CS.arg_end()); // Create the statepoint given all the arguments Instruction *token = nullptr; AttributeSet return_attributes; if (CS.isCall()) { CallInst *toReplace = cast(CS.getInstruction()); CallInst *call = Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); call->setTailCall(toReplace->isTailCall()); call->setCallingConv(toReplace->getCallingConv()); // Before we have to worry about GC semantics, all attributes are legal AttributeSet new_attrs = toReplace->getAttributes(); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. call->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); // TODO: handle param attributes token = call; // Put the following gc_result and gc_relocate calls immediately after the // the old call (which we're about to delete) BasicBlock::iterator next(toReplace); assert(BB->end() != next && "not a terminator, must have next"); next++; Instruction *IP = &*(next); Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(IP->getDebugLoc()); } else if (CS.isInvoke()) { InvokeInst *toReplace = cast(CS.getInstruction()); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. InvokeInst *invoke = InvokeInst::Create( gc_statepoint_decl, toReplace->getNormalDest(), toReplace->getUnwindDest(), args, "", toReplace->getParent()); invoke->setCallingConv(toReplace->getCallingConv()); // Currently we will fail on parameter attributes and on certain // function attributes. AttributeSet new_attrs = toReplace->getAttributes(); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. invoke->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); token = invoke; // We'll insert the gc.result into the normal block BasicBlock *normalDest = normalizeBBForInvokeSafepoint( toReplace->getNormalDest(), invoke->getParent()); Instruction *IP = &*(normalDest->getFirstInsertionPt()); Builder.SetInsertPoint(IP); } else { llvm_unreachable("unexpect type of CallSite"); } assert(token); // Handle the return value of the original call - update all uses to use a // gc_result hanging off the statepoint node we just inserted // Only add the gc_result iff there is actually a used result if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { Instruction *gc_result = nullptr; std::vector types; // one per 'any' type types.push_back(CS.getType()); // result type auto get_gc_result_id = [&](Type &Ty) { if (Ty.isIntegerTy()) { return Intrinsic::experimental_gc_result_int; } else if (Ty.isFloatingPointTy()) { return Intrinsic::experimental_gc_result_float; } else if (Ty.isPointerTy()) { return Intrinsic::experimental_gc_result_ptr; } else { llvm_unreachable("non java type encountered"); } }; Intrinsic::ID Id = get_gc_result_id(*CS.getType()); Value *gc_result_func = Intrinsic::getDeclaration(M, Id, types); std::vector args; args.push_back(token); gc_result = Builder.CreateCall( gc_result_func, args, CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""); cast(gc_result)->setAttributes(return_attributes); return gc_result; } else { // No return value for the call. return nullptr; } }