//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the Instruction class, which is the // base class for all of the LLVM instructions. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INSTRUCTION_H #define LLVM_IR_INSTRUCTION_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/ilist_node.h" #include "llvm/IR/User.h" #include "llvm/Support/DebugLoc.h" namespace llvm { class FastMathFlags; class LLVMContext; class MDNode; template class SymbolTableListTraits; class Instruction : public User, public ilist_node { void operator=(const Instruction &) LLVM_DELETED_FUNCTION; Instruction(const Instruction &) LLVM_DELETED_FUNCTION; BasicBlock *Parent; DebugLoc DbgLoc; // 'dbg' Metadata cache. enum { /// HasMetadataBit - This is a bit stored in the SubClassData field which /// indicates whether this instruction has metadata attached to it or not. HasMetadataBit = 1 << 15 }; public: // Out of line virtual method, so the vtable, etc has a home. ~Instruction(); /// use_back - Specialize the methods defined in Value, as we know that an /// instruction can only be used by other instructions. Instruction *use_back() { return cast(*use_begin());} const Instruction *use_back() const { return cast(*use_begin());} inline const BasicBlock *getParent() const { return Parent; } inline BasicBlock *getParent() { return Parent; } const DataLayout *getDataLayout() const; /// removeFromParent - This method unlinks 'this' from the containing basic /// block, but does not delete it. /// void removeFromParent(); /// eraseFromParent - This method unlinks 'this' from the containing basic /// block and deletes it. /// void eraseFromParent(); /// insertBefore - Insert an unlinked instructions into a basic block /// immediately before the specified instruction. void insertBefore(Instruction *InsertPos); /// insertAfter - Insert an unlinked instructions into a basic block /// immediately after the specified instruction. void insertAfter(Instruction *InsertPos); /// moveBefore - Unlink this instruction from its current basic block and /// insert it into the basic block that MovePos lives in, right before /// MovePos. void moveBefore(Instruction *MovePos); //===--------------------------------------------------------------------===// // Subclass classification. //===--------------------------------------------------------------------===// /// getOpcode() returns a member of one of the enums like Instruction::Add. unsigned getOpcode() const { return getValueID() - InstructionVal; } const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } bool isTerminator() const { return isTerminator(getOpcode()); } bool isBinaryOp() const { return isBinaryOp(getOpcode()); } bool isShift() { return isShift(getOpcode()); } bool isCast() const { return isCast(getOpcode()); } static const char* getOpcodeName(unsigned OpCode); static inline bool isTerminator(unsigned OpCode) { return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; } static inline bool isBinaryOp(unsigned Opcode) { return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; } /// @brief Determine if the Opcode is one of the shift instructions. static inline bool isShift(unsigned Opcode) { return Opcode >= Shl && Opcode <= AShr; } /// isLogicalShift - Return true if this is a logical shift left or a logical /// shift right. inline bool isLogicalShift() const { return getOpcode() == Shl || getOpcode() == LShr; } /// isArithmeticShift - Return true if this is an arithmetic shift right. inline bool isArithmeticShift() const { return getOpcode() == AShr; } /// @brief Determine if the OpCode is one of the CastInst instructions. static inline bool isCast(unsigned OpCode) { return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; } //===--------------------------------------------------------------------===// // Metadata manipulation. //===--------------------------------------------------------------------===// /// hasMetadata() - Return true if this instruction has any metadata attached /// to it. bool hasMetadata() const { return !DbgLoc.isUnknown() || hasMetadataHashEntry(); } /// hasMetadataOtherThanDebugLoc - Return true if this instruction has /// metadata attached to it other than a debug location. bool hasMetadataOtherThanDebugLoc() const { return hasMetadataHashEntry(); } /// getMetadata - Get the metadata of given kind attached to this Instruction. /// If the metadata is not found then return null. MDNode *getMetadata(unsigned KindID) const { if (!hasMetadata()) return 0; return getMetadataImpl(KindID); } /// getMetadata - Get the metadata of given kind attached to this Instruction. /// If the metadata is not found then return null. MDNode *getMetadata(StringRef Kind) const { if (!hasMetadata()) return 0; return getMetadataImpl(Kind); } /// getAllMetadata - Get all metadata attached to this Instruction. The first /// element of each pair returned is the KindID, the second element is the /// metadata value. This list is returned sorted by the KindID. void getAllMetadata(SmallVectorImpl > &MDs)const{ if (hasMetadata()) getAllMetadataImpl(MDs); } /// getAllMetadataOtherThanDebugLoc - This does the same thing as /// getAllMetadata, except that it filters out the debug location. void getAllMetadataOtherThanDebugLoc(SmallVectorImpl > &MDs) const { if (hasMetadataOtherThanDebugLoc()) getAllMetadataOtherThanDebugLocImpl(MDs); } /// setMetadata - Set the metadata of the specified kind to the specified /// node. This updates/replaces metadata if already present, or removes it if /// Node is null. void setMetadata(unsigned KindID, MDNode *Node); void setMetadata(StringRef Kind, MDNode *Node); /// \brief Drop unknown metadata. /// Passes are required to drop metadata they don't understand. This is a /// convenience method for passes to do so. void dropUnknownMetadata(ArrayRef KnownIDs); void dropUnknownMetadata() { return dropUnknownMetadata(ArrayRef()); } void dropUnknownMetadata(unsigned ID1) { return dropUnknownMetadata(makeArrayRef(ID1)); } void dropUnknownMetadata(unsigned ID1, unsigned ID2) { unsigned IDs[] = {ID1, ID2}; return dropUnknownMetadata(IDs); } /// setDebugLoc - Set the debug location information for this instruction. void setDebugLoc(const DebugLoc &Loc) { DbgLoc = Loc; } /// getDebugLoc - Return the debug location for this node as a DebugLoc. const DebugLoc &getDebugLoc() const { return DbgLoc; } /// Set or clear the unsafe-algebra flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of /// this flag. void setHasUnsafeAlgebra(bool B); /// Set or clear the no-nans flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of /// this flag. void setHasNoNaNs(bool B); /// Set or clear the no-infs flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of /// this flag. void setHasNoInfs(bool B); /// Set or clear the no-signed-zeros flag on this instruction, which must be /// an operator which supports this flag. See LangRef.html for the meaning of /// this flag. void setHasNoSignedZeros(bool B); /// Set or clear the allow-reciprocal flag on this instruction, which must be /// an operator which supports this flag. See LangRef.html for the meaning of /// this flag. void setHasAllowReciprocal(bool B); /// Convenience function for setting all the fast-math flags on this /// instruction, which must be an operator which supports these flags. See /// LangRef.html for the meaning of these flats. void setFastMathFlags(FastMathFlags FMF); /// Determine whether the unsafe-algebra flag is set. bool hasUnsafeAlgebra() const; /// Determine whether the no-NaNs flag is set. bool hasNoNaNs() const; /// Determine whether the no-infs flag is set. bool hasNoInfs() const; /// Determine whether the no-signed-zeros flag is set. bool hasNoSignedZeros() const; /// Determine whether the allow-reciprocal flag is set. bool hasAllowReciprocal() const; /// Convenience function for getting all the fast-math flags, which must be an /// operator which supports these flags. See LangRef.html for the meaning of /// these flats. FastMathFlags getFastMathFlags() const; /// Copy I's fast-math flags void copyFastMathFlags(const Instruction *I); private: /// hasMetadataHashEntry - Return true if we have an entry in the on-the-side /// metadata hash. bool hasMetadataHashEntry() const { return (getSubclassDataFromValue() & HasMetadataBit) != 0; } // These are all implemented in Metadata.cpp. MDNode *getMetadataImpl(unsigned KindID) const; MDNode *getMetadataImpl(StringRef Kind) const; void getAllMetadataImpl(SmallVectorImpl > &)const; void getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl > &) const; void clearMetadataHashEntries(); public: //===--------------------------------------------------------------------===// // Predicates and helper methods. //===--------------------------------------------------------------------===// /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. /// bool isAssociative() const; static bool isAssociative(unsigned op); /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satisfy: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool isCommutative() const { return isCommutative(getOpcode()); } static bool isCommutative(unsigned op); /// isIdempotent - Return true if the instruction is idempotent: /// /// Idempotent operators satisfy: x op x === x /// /// In LLVM, the And and Or operators are idempotent. /// bool isIdempotent() const { return isIdempotent(getOpcode()); } static bool isIdempotent(unsigned op); /// isNilpotent - Return true if the instruction is nilpotent: /// /// Nilpotent operators satisfy: x op x === Id, /// /// where Id is the identity for the operator, i.e. a constant such that /// x op Id === x and Id op x === x for all x. /// /// In LLVM, the Xor operator is nilpotent. /// bool isNilpotent() const { return isNilpotent(getOpcode()); } static bool isNilpotent(unsigned op); /// mayWriteToMemory - Return true if this instruction may modify memory. /// bool mayWriteToMemory() const; /// mayReadFromMemory - Return true if this instruction may read memory. /// bool mayReadFromMemory() const; /// mayReadOrWriteMemory - Return true if this instruction may read or /// write memory. /// bool mayReadOrWriteMemory() const { return mayReadFromMemory() || mayWriteToMemory(); } /// mayThrow - Return true if this instruction may throw an exception. /// bool mayThrow() const; /// mayReturn - Return true if this is a function that may return. /// this is true for all normal instructions. The only exception /// is functions that are marked with the 'noreturn' attribute. /// bool mayReturn() const; /// mayHaveSideEffects - Return true if the instruction may have side effects. /// /// Note that this does not consider malloc and alloca to have side /// effects because the newly allocated memory is completely invisible to /// instructions which don't used the returned value. For cases where this /// matters, isSafeToSpeculativelyExecute may be more appropriate. bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow() || !mayReturn(); } /// clone() - Create a copy of 'this' instruction that is identical in all /// ways except the following: /// * The instruction has no parent /// * The instruction has no name /// Instruction *clone() const; /// isIdenticalTo - Return true if the specified instruction is exactly /// identical to the current one. This means that all operands match and any /// extra information (e.g. load is volatile) agree. bool isIdenticalTo(const Instruction *I) const; /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it /// ignores the SubclassOptionalData flags, which specify conditions /// under which the instruction's result is undefined. bool isIdenticalToWhenDefined(const Instruction *I) const; /// When checking for operation equivalence (using isSameOperationAs) it is /// sometimes useful to ignore certain attributes. enum OperationEquivalenceFlags { /// Check for equivalence ignoring load/store alignment. CompareIgnoringAlignment = 1<<0, /// Check for equivalence treating a type and a vector of that type /// as equivalent. CompareUsingScalarTypes = 1<<1 }; /// This function determines if the specified instruction executes the same /// operation as the current one. This means that the opcodes, type, operand /// types and any other factors affecting the operation must be the same. This /// is similar to isIdenticalTo except the operands themselves don't have to /// be identical. /// @returns true if the specified instruction is the same operation as /// the current one. /// @brief Determine if one instruction is the same operation as another. bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const; /// isUsedOutsideOfBlock - Return true if there are any uses of this /// instruction in blocks other than the specified block. Note that PHI nodes /// are considered to evaluate their operands in the corresponding predecessor /// block. bool isUsedOutsideOfBlock(const BasicBlock *BB) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Value *V) { return V->getValueID() >= Value::InstructionVal; } //---------------------------------------------------------------------- // Exported enumerations. // enum TermOps { // These terminate basic blocks #define FIRST_TERM_INST(N) TermOpsBegin = N, #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, #define LAST_TERM_INST(N) TermOpsEnd = N+1 #include "llvm/IR/Instruction.def" }; enum BinaryOps { #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 #include "llvm/IR/Instruction.def" }; enum MemoryOps { #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 #include "llvm/IR/Instruction.def" }; enum CastOps { #define FIRST_CAST_INST(N) CastOpsBegin = N, #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, #define LAST_CAST_INST(N) CastOpsEnd = N+1 #include "llvm/IR/Instruction.def" }; enum OtherOps { #define FIRST_OTHER_INST(N) OtherOpsBegin = N, #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 #include "llvm/IR/Instruction.def" }; private: // Shadow Value::setValueSubclassData with a private forwarding method so that // subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } unsigned short getSubclassDataFromValue() const { return Value::getSubclassDataFromValue(); } void setHasMetadataHashEntry(bool V) { setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) | (V ? HasMetadataBit : 0)); } friend class SymbolTableListTraits; void setParent(BasicBlock *P); protected: // Instruction subclasses can stick up to 15 bits of stuff into the // SubclassData field of instruction with these members. // Verify that only the low 15 bits are used. void setInstructionSubclassData(unsigned short D) { assert((D & HasMetadataBit) == 0 && "Out of range value put into field"); setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D); } unsigned getSubclassDataFromInstruction() const { return getSubclassDataFromValue() & ~HasMetadataBit; } Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, Instruction *InsertBefore = 0); Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd); virtual Instruction *clone_impl() const = 0; }; // Instruction* is only 4-byte aligned. template<> class PointerLikeTypeTraits { typedef Instruction* PT; public: static inline void *getAsVoidPointer(PT P) { return P; } static inline PT getFromVoidPointer(void *P) { return static_cast(P); } enum { NumLowBitsAvailable = 2 }; }; } // End llvm namespace #endif