//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "Support/DepthFirstIterator.h" #include "Support/STLExtras.h" using namespace llvm; static RegisterAnalysis X("livevars", "Live Variable Analysis"); LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { assert(MRegisterInfo::isVirtualRegister(RegIdx) && "getVarInfo: not a virtual register!"); RegIdx -= MRegisterInfo::FirstVirtualRegister; if (RegIdx >= VirtRegInfo.size()) { if (RegIdx >= 2*VirtRegInfo.size()) VirtRegInfo.resize(RegIdx*2); else VirtRegInfo.resize(2*VirtRegInfo.size()); } return VirtRegInfo[RegIdx]; } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *MBB) { unsigned BBNum = MBB->getNumber(); // Check to see if this basic block is one of the killing blocks. If so, // remove it... for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i]->getParent() == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion if (VRInfo.AliveBlocks.size() <= BBNum) VRInfo.AliveBlocks.resize(BBNum+1); // Make space... if (VRInfo.AliveBlocks[BBNum]) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks[BBNum] = true; for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), E = MBB->pred_end(); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, *PI); } void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, MachineInstr *MI) { // Check to see if this basic block is already a kill block... if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back() = MI; return; } #ifndef NDEBUG for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); #endif assert(MBB != VRInfo.DefInst->getParent() && "Should have kill for defblock!"); // Add a new kill entry for this basic block. VRInfo.Kills.push_back(MI); // Update all dominating blocks to mark them known live. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), E = MBB->pred_end(); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, *PI); } void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = true; for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); unsigned Alias = *AliasSet; ++AliasSet) { PhysRegInfo[Alias] = MI; PhysRegUsed[Alias] = true; } } void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { // Does this kill a previous version of this register? if (MachineInstr *LastUse = PhysRegInfo[Reg]) { if (PhysRegUsed[Reg]) RegistersKilled.insert(std::make_pair(LastUse, Reg)); else RegistersDead.insert(std::make_pair(LastUse, Reg)); } PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = false; for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); unsigned Alias = *AliasSet; ++AliasSet) { if (MachineInstr *LastUse = PhysRegInfo[Alias]) { if (PhysRegUsed[Alias]) RegistersKilled.insert(std::make_pair(LastUse, Alias)); else RegistersDead.insert(std::make_pair(LastUse, Alias)); } PhysRegInfo[Alias] = MI; PhysRegUsed[Alias] = false; } } bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); RegInfo = MF.getTarget().getRegisterInfo(); assert(RegInfo && "Target doesn't have register information?"); AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); // PhysRegInfo - Keep track of which instruction was the last use of a // physical register. This is a purely local property, because all physical // register references as presumed dead across basic blocks. // MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; bool PhysRegUsedA[RegInfo->getNumRegs()]; std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); PhysRegInfo = PhysRegInfoA; PhysRegUsed = PhysRegUsedA; /// Get some space for a respectable number of registers... VirtRegInfo.resize(64); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). // MachineBasicBlock *Entry = MF.begin(); std::set Visited; for (df_ext_iterator DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { MachineBasicBlock *MBB = *DFI; unsigned BBNum = MBB->getNumber(); // Loop over all of the instructions, processing them. for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { MachineInstr *MI = I; const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI->getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI->getOpcode() == TargetInstrInfo::PHI) NumOperandsToProcess = 1; // Loop over implicit uses, using them. for (const unsigned *ImplicitUses = MID.ImplicitUses; *ImplicitUses; ++ImplicitUses) HandlePhysRegUse(*ImplicitUses, MI); // Process all explicit uses... for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isUse() && MO.isRegister() && MO.getReg()) { if (MRegisterInfo::isVirtualRegister(MO.getReg())){ HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && AllocatablePhysicalRegisters[MO.getReg()]) { HandlePhysRegUse(MO.getReg(), MI); } } } // Loop over implicit defs, defining them. for (const unsigned *ImplicitDefs = MID.ImplicitDefs; *ImplicitDefs; ++ImplicitDefs) HandlePhysRegDef(*ImplicitDefs, MI); // Process all explicit defs... for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isDef() && MO.isRegister() && MO.getReg()) { if (MRegisterInfo::isVirtualRegister(MO.getReg())) { VarInfo &VRInfo = getVarInfo(MO.getReg()); assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); VRInfo.DefInst = MI; // Defaults to dead VRInfo.Kills.push_back(MI); } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && AllocatablePhysicalRegisters[MO.getReg()]) { HandlePhysRegDef(MO.getReg(), MI); } } } } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), E = MBB->succ_end(); SI != E; ++SI) { MachineBasicBlock *Succ = *SI; // PHI nodes are guaranteed to be at the top of the block... for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { for (unsigned i = 1; ; i += 2) { assert(MI->getNumOperands() > i+1 && "Didn't find an entry for our predecessor??"); if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { MachineOperand &MO = MI->getOperand(i); if (!MO.getVRegValueOrNull()) { VarInfo &VRInfo = getVarInfo(MO.getReg()); // Only mark it alive only in the block we are representing... MarkVirtRegAliveInBlock(VRInfo, MBB); break; // Found the PHI entry for this block... } } } } } // Loop over PhysRegInfo, killing any registers that are available at the // end of the basic block. This also resets the PhysRegInfo map. for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) if (PhysRegInfo[i]) HandlePhysRegDef(i, 0); } // Convert the information we have gathered into VirtRegInfo and transform it // into a form usable by RegistersKilled. // for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j], i + MRegisterInfo::FirstVirtualRegister)); else RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j], i + MRegisterInfo::FirstVirtualRegister)); } // Check to make sure there are no unreachable blocks in the MC CFG for the // function. If so, it is due to a bug in the instruction selector or some // other part of the code generator if this happens. #ifndef NDEBUG for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) assert(Visited.count(&*i) != 0 && "unreachable basic block found"); #endif return false; } /// instructionChanged - When the address of an instruction changes, this /// method should be called so that live variables can update its internal /// data structures. This removes the records for OldMI, transfering them to /// the records for NewMI. void LiveVariables::instructionChanged(MachineInstr *OldMI, MachineInstr *NewMI) { // If the instruction defines any virtual registers, update the VarInfo for // the instruction. for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OldMI->getOperand(i); if (MO.isRegister() && MO.isDef() && MO.getReg() && MRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned Reg = MO.getReg(); VarInfo &VI = getVarInfo(Reg); if (VI.DefInst == OldMI) VI.DefInst = NewMI; } } // Move the killed information over... killed_iterator I, E; tie(I, E) = killed_range(OldMI); std::vector Regs; for (killed_iterator A = I; A != E; ++A) Regs.push_back(A->second); RegistersKilled.erase(I, E); for (unsigned i = 0, e = Regs.size(); i != e; ++i) RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); Regs.clear(); // Move the dead information over... tie(I, E) = dead_range(OldMI); for (killed_iterator A = I; A != E; ++A) Regs.push_back(A->second); RegistersDead.erase(I, E); for (unsigned i = 0, e = Regs.size(); i != e; ++i) RegistersDead.insert(std::make_pair(NewMI, Regs[i])); }