//==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 x87 FPU instruction set, defining the // instructions, and properties of the instructions which are needed for code // generation, machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // FPStack specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, SDTCisVT<1, f80>]>; def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, [SDNPHasChain, SDNPMayLoad]>; def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, [SDNPHasChain, SDNPInFlag, SDNPMayStore]>; def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, [SDNPHasChain, SDNPMayLoad]>; def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, [SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>; def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, [SDNPHasChain, SDNPMayStore]>; def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, [SDNPHasChain, SDNPMayStore]>; def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, [SDNPHasChain, SDNPMayStore]>; def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, [SDNPHasChain, SDNPMayStore, SDNPSideEffect]>; //===----------------------------------------------------------------------===// // FPStack pattern fragments //===----------------------------------------------------------------------===// def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; def fpimm1 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+1.0); }]>; def fpimmneg1 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-1.0); }]>; // Some 'special' instructions let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler. def FP32_TO_INT16_IN_MEM : I<0, Pseudo, (outs), (ins i16mem:$dst, RFP32:$src), "##FP32_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT32_IN_MEM : I<0, Pseudo, (outs), (ins i32mem:$dst, RFP32:$src), "##FP32_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT64_IN_MEM : I<0, Pseudo, (outs), (ins i64mem:$dst, RFP32:$src), "##FP32_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; def FP64_TO_INT16_IN_MEM : I<0, Pseudo, (outs), (ins i16mem:$dst, RFP64:$src), "##FP64_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT32_IN_MEM : I<0, Pseudo, (outs), (ins i32mem:$dst, RFP64:$src), "##FP64_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT64_IN_MEM : I<0, Pseudo, (outs), (ins i64mem:$dst, RFP64:$src), "##FP64_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; def FP80_TO_INT16_IN_MEM : I<0, Pseudo, (outs), (ins i16mem:$dst, RFP80:$src), "##FP80_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; def FP80_TO_INT32_IN_MEM : I<0, Pseudo, (outs), (ins i32mem:$dst, RFP80:$src), "##FP80_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; def FP80_TO_INT64_IN_MEM : I<0, Pseudo, (outs), (ins i64mem:$dst, RFP80:$src), "##FP80_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; } let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in def FP_REG_KILL : I<0, Pseudo, (outs), (ins), "##FP_REG_KILL", []>; // All FP Stack operations are represented with four instructions here. The // first three instructions, generated by the instruction selector, use "RFP32" // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, // 64-bit or 80-bit floating point values. These sizes apply to the values, // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be // copied to each other without losing information. These instructions are all // pseudo instructions and use the "_Fp" suffix. // In some cases there are additional variants with a mixture of different // register sizes. // The second instruction is defined with FPI, which is the actual instruction // emitted by the assembler. These use "RST" registers, although frequently // the actual register(s) used are implicit. These are always 80 bits. // The FP stackifier pass converts one to the other after register allocation // occurs. // // Note that the FpI instruction should have instruction selection info (e.g. // a pattern) and the FPI instruction should have emission info (e.g. opcode // encoding and asm printing info). // Pseudo Instructions for FP stack return values. def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0) def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0) def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0) // FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when // there are two values live out on the stack from a call or inlineasm. This // magic is handled by the stackifier. It is not valid to emit FpGET_ST1* and // then FpGET_ST0*. In addition, it is invalid for any FP-using operations to // occur between them. def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1) def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1) def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1) let Defs = [ST0] in { def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR } let Defs = [ST1] in { def FpSET_ST1_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(1) = FPR def FpSET_ST1_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(1) = FPR def FpSET_ST1_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(1) = FPR } // FpIf32, FpIf64 - Floating Point Psuedo Instruction template. // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. // f80 instructions cannot use SSE and use neither of these. class FpIf32 pattern> : FpI_, Requires<[FPStackf32]>; class FpIf64 pattern> : FpI_, Requires<[FPStackf64]>; // Register copies. Just copies, the shortening ones do not truncate. let neverHasSideEffects = 1 in { def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; def MOV_Fp8080 : FpI_ <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; } // Factoring for arithmetic. multiclass FPBinary_rr { // Register op register -> register // These are separated out because they have no reversed form. def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; } // The FopST0 series are not included here because of the irregularities // in where the 'r' goes in assembly output. // These instructions cannot address 80-bit memory. multiclass FPBinary { // ST(0) = ST(0) + [mem] def _Fp32m : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>; def _Fp64m : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>; def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>; def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>; def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>; def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), !strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; } def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), !strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; } // ST(0) = ST(0) + [memint] def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i16)))]>; def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i32)))]>; def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i16)))]>; def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i32)))]>; def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src1, (X86fild addr:$src2, i16)))]>; def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src1, (X86fild addr:$src2, i32)))]>; def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; } def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; } } defm ADD : FPBinary_rr; defm SUB : FPBinary_rr; defm MUL : FPBinary_rr; defm DIV : FPBinary_rr; defm ADD : FPBinary; defm SUB : FPBinary; defm SUBR: FPBinary; defm MUL : FPBinary; defm DIV : FPBinary; defm DIVR: FPBinary; class FPST0rInst o, string asm> : FPI, D8; class FPrST0Inst o, string asm> : FPI, DC; class FPrST0PInst o, string asm> : FPI, DE; // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, // we have to put some 'r's in and take them out of weird places. def ADD_FST0r : FPST0rInst <0xC0, "fadd\t$op">; def ADD_FrST0 : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, %ST(0)}">; def ADD_FPrST0 : FPrST0PInst<0xC0, "faddp\t$op">; def SUBR_FST0r : FPST0rInst <0xE8, "fsubr\t$op">; def SUB_FrST0 : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, %ST(0)}">; def SUB_FPrST0 : FPrST0PInst<0xE8, "fsub{r}p\t$op">; def SUB_FST0r : FPST0rInst <0xE0, "fsub\t$op">; def SUBR_FrST0 : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, %ST(0)}">; def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">; def MUL_FST0r : FPST0rInst <0xC8, "fmul\t$op">; def MUL_FrST0 : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, %ST(0)}">; def MUL_FPrST0 : FPrST0PInst<0xC8, "fmulp\t$op">; def DIVR_FST0r : FPST0rInst <0xF8, "fdivr\t$op">; def DIV_FrST0 : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, %ST(0)}">; def DIV_FPrST0 : FPrST0PInst<0xF8, "fdiv{r}p\t$op">; def DIV_FST0r : FPST0rInst <0xF0, "fdiv\t$op">; def DIVR_FrST0 : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, %ST(0)}">; def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">; // Unary operations. multiclass FPUnary opcode, string asmstring> { def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src))]>; def _F : FPI, D9; } defm CHS : FPUnary; defm ABS : FPUnary; defm SQRT: FPUnary; defm SIN : FPUnary; defm COS : FPUnary; let neverHasSideEffects = 1 in { def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; } def TST_F : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9; // Versions of FP instructions that take a single memory operand. Added for the // disassembler; remove as they are included with patterns elsewhere. def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom\t$src">; def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp\t$src">; def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; def FSTENVm : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fstenv\t$dst">; def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom\t$src">; def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp\t$src">; def FISTTP32m: FPI<0xDD, MRM1m, (outs i32mem:$dst), (ins), "fisttp{l}\t$dst">; def FRSTORm : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">; def FSAVEm : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fsave\t$dst">; def FSTSWm : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fstsw\t$dst">; def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{w}\t$src">; def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{w}\t$src">; def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">; def FBSTPm : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">; // Floating point cmovs. multiclass FPCMov { def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), CondMovFP, [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, cc, EFLAGS))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), CondMovFP, [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, cc, EFLAGS))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), CondMovFP, [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, cc, EFLAGS))]>; } let Uses = [EFLAGS], isTwoAddress = 1 in { defm CMOVB : FPCMov; defm CMOVBE : FPCMov; defm CMOVE : FPCMov; defm CMOVP : FPCMov; defm CMOVNB : FPCMov; defm CMOVNBE: FPCMov; defm CMOVNE : FPCMov; defm CMOVNP : FPCMov; } // These are not factored because there's no clean way to pass DA/DB. def CMOVB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), "fcmovb\t{$op, %st(0)|%ST(0), $op}">, DA; def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), "fcmovbe\t{$op, %st(0)|%ST(0), $op}">, DA; def CMOVE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), "fcmove\t{$op, %st(0)|%ST(0), $op}">, DA; def CMOVP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), "fcmovu\t {$op, %st(0)|%ST(0), $op}">, DA; def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), "fcmovnb\t{$op, %st(0)|%ST(0), $op}">, DB; def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), "fcmovnbe\t{$op, %st(0)|%ST(0), $op}">, DB; def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), "fcmovne\t{$op, %st(0)|%ST(0), $op}">, DB; def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB; // Floating point loads & stores. let canFoldAsLoad = 1 in { def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP32:$dst, (loadf32 addr:$src))]>; let isReMaterializable = 1, mayHaveSideEffects = 1 in def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP64:$dst, (loadf64 addr:$src))]>; def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, [(set RFP80:$dst, (loadf80 addr:$src))]>; } def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i16))]>; def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i32))]>; def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i64))]>; def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i16))]>; def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i32))]>; def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i64))]>; def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i16))]>; def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i32))]>; def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i64))]>; def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, [(store RFP32:$src, addr:$op)]>; def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, [(truncstoref32 RFP64:$src, addr:$op)]>; def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, [(store RFP64:$src, addr:$op)]>; def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, [(truncstoref32 RFP80:$src, addr:$op)]>; def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, [(truncstoref64 RFP80:$src, addr:$op)]>; // FST does not support 80-bit memory target; FSTP must be used. let mayStore = 1, neverHasSideEffects = 1 in { def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; } def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, [(store RFP80:$src, addr:$op)]>; let mayStore = 1, neverHasSideEffects = 1 in { def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; } let mayLoad = 1 in { def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; } let mayStore = 1 in { def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; } // FISTTP requires SSE3 even though it's a FPStack op. def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i16mem RFP32:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i32mem RFP32:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i64mem RFP32:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i16mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i32mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i64mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i16mem RFP80:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i32mem RFP80:$src, addr:$op)]>, Requires<[HasSSE3]>; def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i64mem RFP80:$src, addr:$op)]>, Requires<[HasSSE3]>; let mayStore = 1 in { def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; } // FP Stack manipulation instructions. def LD_Frr : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9; def ST_Frr : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD; def ST_FPrr : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD; def XCH_F : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9; // Floating point constant loads. let isReMaterializable = 1 in { def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm0)]>; def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm1)]>; def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm0)]>; def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm1)]>; def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm0)]>; def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm1)]>; } def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9; def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9; // Floating point compares. let Defs = [EFLAGS] in { def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>; // FPSW = cmp ST(0) with ST(i) def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>; // FPSW = cmp ST(0) with ST(i) def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>; // FPSW = cmp ST(0) with ST(i) def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(X86cmp RFP32:$lhs, RFP32:$rhs), (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(X86cmp RFP64:$lhs, RFP64:$rhs), (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, [(X86cmp RFP80:$lhs, RFP80:$rhs), (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) } let Defs = [EFLAGS], Uses = [ST0] in { def UCOM_Fr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i) (outs), (ins RST:$reg), "fucom\t$reg">, DD; def UCOM_FPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop (outs), (ins RST:$reg), "fucomp\t$reg">, DD; def UCOM_FPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop (outs), (ins), "fucompp">, DA; def UCOM_FIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i) (outs), (ins RST:$reg), "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB; def UCOM_FIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop (outs), (ins RST:$reg), "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF; } // Floating point flag ops. let Defs = [AX] in def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags (outs), (ins), "fnstsw", []>, DF; def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world (outs), (ins i16mem:$dst), "fnstcw\t$dst", [(X86fp_cwd_get16 addr:$dst)]>; let mayLoad = 1 in def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] (outs), (ins i16mem:$dst), "fldcw\t$dst", []>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Required for RET of f32 / f64 / f80 values. def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; // Required for CALL which return f32 / f64 / f80 values. def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>; def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>; def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>; // Floating point constant -0.0 and -1.0 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; // Used to conv. i64 to f64 since there isn't a SSE version. def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; // FP extensions map onto simple pseudo-value conversions if they are to/from // the FP stack. def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, Requires<[FPStackf32]>; def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, Requires<[FPStackf32]>; def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, Requires<[FPStackf64]>; // FP truncations map onto simple pseudo-value conversions if they are to/from // the FP stack. We have validated that only value-preserving truncations make // it through isel. def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>, Requires<[FPStackf32]>; def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>, Requires<[FPStackf32]>; def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>, Requires<[FPStackf64]>;