//===- Reader.cpp - Code to read bytecode files ---------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library implements the functionality defined in llvm/Bytecode/Reader.h // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // // TODO: Allow passing in an option to ignore the symbol table // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/Bytecode/Reader.h" #include "llvm/Bytecode/Format.h" #include "llvm/Module.h" #include "Support/StringExtras.h" using namespace llvm; unsigned BytecodeParser::getTypeSlot(const Type *Ty) { if (Ty->isPrimitiveType()) return Ty->getTypeID(); // Scan the compaction table for the type if needed. if (CompactionTable.size() > Type::TypeTyID) { std::vector &Plane = CompactionTable[Type::TypeTyID]; if (!Plane.empty()) { std::vector::iterator I = find(Plane.begin(), Plane.end(), const_cast(Ty)); if (I == Plane.end()) throw std::string("Couldn't find type specified in compaction table!"); return Type::FirstDerivedTyID + (&*I - &Plane[0]); } } // Check the function level types first... TypeValuesListTy::iterator I = find(FunctionTypeValues.begin(), FunctionTypeValues.end(), Ty); if (I != FunctionTypeValues.end()) return Type::FirstDerivedTyID + ModuleTypeValues.size() + (&*I - &FunctionTypeValues[0]); I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty); if (I == ModuleTypeValues.end()) throw std::string("Didn't find type in ModuleTypeValues."); return Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]); } const Type *BytecodeParser::getType(unsigned ID) { //cerr << "Looking up Type ID: " << ID << "\n"; if (ID < Type::FirstDerivedTyID) if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID)) return T; // Asked for a primitive type... // Otherwise, derived types need offset... ID -= Type::FirstDerivedTyID; if (CompactionTable.size() > Type::TypeTyID && !CompactionTable[Type::TypeTyID].empty()) { if (ID >= CompactionTable[Type::TypeTyID].size()) throw std::string("Type ID out of range for compaction table!"); return cast(CompactionTable[Type::TypeTyID][ID]); } // Is it a module-level type? if (ID < ModuleTypeValues.size()) return ModuleTypeValues[ID].get(); // Nope, is it a function-level type? ID -= ModuleTypeValues.size(); if (ID < FunctionTypeValues.size()) return FunctionTypeValues[ID].get(); throw std::string("Illegal type reference!"); } static inline bool hasImplicitNull(unsigned TyID, bool EncodesPrimitiveZeros) { if (!EncodesPrimitiveZeros) return TyID != Type::LabelTyID && TyID != Type::TypeTyID && TyID != Type::VoidTyID; return TyID >= Type::FirstDerivedTyID; } unsigned BytecodeParser::insertValue(Value *Val, unsigned type, ValueTable &ValueTab) { assert((!isa(Val) || !cast(Val)->isNullValue()) || !hasImplicitNull(type, hasExplicitPrimitiveZeros) && "Cannot read null values from bytecode!"); assert(type != Type::TypeTyID && "Types should never be insertValue'd!"); if (ValueTab.size() <= type) ValueTab.resize(type+1); if (!ValueTab[type]) ValueTab[type] = new ValueList(); //cerr << "insertValue Values[" << type << "][" << ValueTab[type].size() // << "] = " << Val << "\n"; ValueTab[type]->push_back(Val); bool HasOffset = hasImplicitNull(type, hasExplicitPrimitiveZeros); return ValueTab[type]->size()-1 + HasOffset; } Value *BytecodeParser::getValue(unsigned type, unsigned oNum, bool Create) { assert(type != Type::TypeTyID && "getValue() cannot get types!"); assert(type != Type::LabelTyID && "getValue() cannot get blocks!"); unsigned Num = oNum; // If there is a compaction table active, it defines the low-level numbers. // If not, the module values define the low-level numbers. if (CompactionTable.size() > type && !CompactionTable[type].empty()) { if (Num < CompactionTable[type].size()) return CompactionTable[type][Num]; Num -= CompactionTable[type].size(); } else { // If the type plane was compactified, figure out the global type ID. unsigned GlobalTyID = type; if (CompactionTable.size() > Type::TypeTyID && !CompactionTable[Type::TypeTyID].empty() && type >= Type::FirstDerivedTyID) { std::vector &TypePlane = CompactionTable[Type::TypeTyID]; const Type *Ty = cast(TypePlane[type-Type::FirstDerivedTyID]); TypeValuesListTy::iterator I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty); assert(I != ModuleTypeValues.end()); GlobalTyID = Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]); } if (hasImplicitNull(GlobalTyID, hasExplicitPrimitiveZeros)) { if (Num == 0) return Constant::getNullValue(getType(type)); --Num; } if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) { if (Num < ModuleValues[GlobalTyID]->size()) return ModuleValues[GlobalTyID]->getOperand(Num); Num -= ModuleValues[GlobalTyID]->size(); } } if (Values.size() > type && Values[type] && Num < Values[type]->size()) return Values[type]->getOperand(Num); if (!Create) return 0; // Do not create a placeholder? std::pair KeyValue(type, oNum); std::map, Value*>::iterator I = ForwardReferences.lower_bound(KeyValue); if (I != ForwardReferences.end() && I->first == KeyValue) return I->second; // We have already created this placeholder Value *Val = new Argument(getType(type)); ForwardReferences.insert(I, std::make_pair(KeyValue, Val)); return Val; } /// getBasicBlock - Get a particular numbered basic block, which might be a /// forward reference. This works together with ParseBasicBlock to handle these /// forward references in a clean manner. /// BasicBlock *BytecodeParser::getBasicBlock(unsigned ID) { // Make sure there is room in the table... if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1); // First check to see if this is a backwards reference, i.e., ParseBasicBlock // has already created this block, or if the forward reference has already // been created. if (ParsedBasicBlocks[ID]) return ParsedBasicBlocks[ID]; // Otherwise, the basic block has not yet been created. Do so and add it to // the ParsedBasicBlocks list. return ParsedBasicBlocks[ID] = new BasicBlock(); } /// getConstantValue - Just like getValue, except that it returns a null pointer /// only on error. It always returns a constant (meaning that if the value is /// defined, but is not a constant, that is an error). If the specified /// constant hasn't been parsed yet, a placeholder is defined and used. Later, /// after the real value is parsed, the placeholder is eliminated. /// Constant *BytecodeParser::getConstantValue(unsigned TypeSlot, unsigned Slot) { if (Value *V = getValue(TypeSlot, Slot, false)) if (Constant *C = dyn_cast(V)) return C; // If we already have the value parsed, just return it else if (GlobalValue *GV = dyn_cast(V)) // ConstantPointerRef's are an abomination, but at least they don't have // to infest bytecode files. return ConstantPointerRef::get(GV); else throw std::string("Reference of a value is expected to be a constant!"); const Type *Ty = getType(TypeSlot); std::pair Key(Ty, Slot); ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key); if (I != ConstantFwdRefs.end() && I->first == Key) { BCR_TRACE(5, "Previous forward ref found!\n"); return I->second; } else { // Create a placeholder for the constant reference and // keep track of the fact that we have a forward ref to recycle it BCR_TRACE(5, "Creating new forward ref to a constant!\n"); Constant *C = new ConstPHolder(Ty, Slot); // Keep track of the fact that we have a forward ref to recycle it ConstantFwdRefs.insert(I, std::make_pair(Key, C)); return C; } } /// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one /// basicblock at a time. This method reads in one of the basicblock packets. BasicBlock *BytecodeParser::ParseBasicBlock(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned BlockNo) { BasicBlock *BB; if (ParsedBasicBlocks.size() == BlockNo) ParsedBasicBlocks.push_back(BB = new BasicBlock()); else if (ParsedBasicBlocks[BlockNo] == 0) BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); else BB = ParsedBasicBlocks[BlockNo]; std::vector Args; while (Buf < EndBuf) ParseInstruction(Buf, EndBuf, Args, BB); return BB; } /// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the /// body of a function. In post 1.0 bytecode files, we no longer emit basic /// block individually, in order to avoid per-basic-block overhead. unsigned BytecodeParser::ParseInstructionList(Function *F, const unsigned char *&Buf, const unsigned char *EndBuf) { unsigned BlockNo = 0; std::vector Args; while (Buf < EndBuf) { BasicBlock *BB; if (ParsedBasicBlocks.size() == BlockNo) ParsedBasicBlocks.push_back(BB = new BasicBlock()); else if (ParsedBasicBlocks[BlockNo] == 0) BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); else BB = ParsedBasicBlocks[BlockNo]; ++BlockNo; F->getBasicBlockList().push_back(BB); // Read instructions into this basic block until we get to a terminator while (Buf < EndBuf && !BB->getTerminator()) ParseInstruction(Buf, EndBuf, Args, BB); if (!BB->getTerminator()) throw std::string("Non-terminated basic block found!"); } return BlockNo; } void BytecodeParser::ParseSymbolTable(const unsigned char *&Buf, const unsigned char *EndBuf, SymbolTable *ST, Function *CurrentFunction) { // Allow efficient basic block lookup by number. std::vector BBMap; if (CurrentFunction) for (Function::iterator I = CurrentFunction->begin(), E = CurrentFunction->end(); I != E; ++I) BBMap.push_back(I); while (Buf < EndBuf) { // Symtab block header: [num entries][type id number] unsigned NumEntries = read_vbr_uint(Buf, EndBuf); unsigned Typ = read_vbr_uint(Buf, EndBuf); const Type *Ty = getType(Typ); BCR_TRACE(3, "Plane Type: '" << *Ty << "' with " << NumEntries << " entries\n"); for (unsigned i = 0; i != NumEntries; ++i) { // Symtab entry: [def slot #][name] unsigned slot = read_vbr_uint(Buf, EndBuf); std::string Name = read_str(Buf, EndBuf); Value *V = 0; if (Typ == Type::TypeTyID) V = (Value*)getType(slot); else if (Typ == Type::LabelTyID) { if (slot < BBMap.size()) V = BBMap[slot]; } else { V = getValue(Typ, slot, false); // Find mapping... } if (V == 0) throw "Failed value look-up for name '" + Name + "'"; BCR_TRACE(4, "Map: '" << Name << "' to #" << slot << ":" << *V; if (!isa(V)) std::cerr << "\n"); V->setName(Name, ST); } } if (Buf > EndBuf) throw std::string("Tried to read past end of buffer."); } void BytecodeParser::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){ ConstantRefsType::iterator I = ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot)); if (I == ConstantFwdRefs.end()) return; // Never forward referenced? BCR_TRACE(3, "Mutating forward refs!\n"); Value *PH = I->second; // Get the placeholder... PH->replaceAllUsesWith(NewV); delete PH; // Delete the old placeholder ConstantFwdRefs.erase(I); // Remove the map entry for it } void BytecodeParser::ParseFunction(const unsigned char *&Buf, const unsigned char *EndBuf) { if (FunctionSignatureList.empty()) throw std::string("FunctionSignatureList empty!"); Function *F = FunctionSignatureList.back(); FunctionSignatureList.pop_back(); // Save the information for future reading of the function LazyFunctionLoadMap[F] = LazyFunctionInfo(Buf, EndBuf); // Pretend we've `parsed' this function Buf = EndBuf; } void BytecodeParser::materializeFunction(Function* F) { // Find {start, end} pointers and slot in the map. If not there, we're done. std::map::iterator Fi = LazyFunctionLoadMap.find(F); if (Fi == LazyFunctionLoadMap.end()) return; const unsigned char *Buf = Fi->second.Buf; const unsigned char *EndBuf = Fi->second.EndBuf; LazyFunctionLoadMap.erase(Fi); GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage; unsigned LinkageType = read_vbr_uint(Buf, EndBuf); if (LinkageType > 4) throw std::string("Invalid linkage type for Function."); switch (LinkageType) { case 0: Linkage = GlobalValue::ExternalLinkage; break; case 1: Linkage = GlobalValue::WeakLinkage; break; case 2: Linkage = GlobalValue::AppendingLinkage; break; case 3: Linkage = GlobalValue::InternalLinkage; break; case 4: Linkage = GlobalValue::LinkOnceLinkage; break; } F->setLinkage(Linkage); // Keep track of how many basic blocks we have read in... unsigned BlockNum = 0; bool InsertedArguments = false; while (Buf < EndBuf) { unsigned Type, Size; const unsigned char *OldBuf = Buf; readBlock(Buf, EndBuf, Type, Size); switch (Type) { case BytecodeFormat::ConstantPool: if (!InsertedArguments) { // Insert arguments into the value table before we parse the first basic // block in the function, but after we potentially read in the // compaction table. const FunctionType *FT = F->getFunctionType(); Function::aiterator AI = F->abegin(); for (FunctionType::param_iterator It = FT->param_begin(); It != FT->param_end(); ++It, ++AI) insertValue(AI, getTypeSlot(AI->getType()), Values); InsertedArguments = true; } BCR_TRACE(2, "BLOCK BytecodeFormat::ConstantPool: {\n"); ParseConstantPool(Buf, Buf+Size, Values, FunctionTypeValues); break; case BytecodeFormat::CompactionTable: BCR_TRACE(2, "BLOCK BytecodeFormat::CompactionTable: {\n"); ParseCompactionTable(Buf, Buf+Size); break; case BytecodeFormat::BasicBlock: { if (!InsertedArguments) { // Insert arguments into the value table before we parse the first basic // block in the function, but after we potentially read in the // compaction table. const FunctionType *FT = F->getFunctionType(); Function::aiterator AI = F->abegin(); for (FunctionType::param_iterator It = FT->param_begin(); It != FT->param_end(); ++It, ++AI) insertValue(AI, getTypeSlot(AI->getType()), Values); InsertedArguments = true; } BCR_TRACE(2, "BLOCK BytecodeFormat::BasicBlock: {\n"); BasicBlock *BB = ParseBasicBlock(Buf, Buf+Size, BlockNum++); F->getBasicBlockList().push_back(BB); break; } case BytecodeFormat::InstructionList: { // Insert arguments into the value table before we parse the instruction // list for the function, but after we potentially read in the compaction // table. if (!InsertedArguments) { const FunctionType *FT = F->getFunctionType(); Function::aiterator AI = F->abegin(); for (FunctionType::param_iterator It = FT->param_begin(); It != FT->param_end(); ++It, ++AI) insertValue(AI, getTypeSlot(AI->getType()), Values); InsertedArguments = true; } BCR_TRACE(2, "BLOCK BytecodeFormat::InstructionList: {\n"); if (BlockNum) throw std::string("Already parsed basic blocks!"); BlockNum = ParseInstructionList(F, Buf, Buf+Size); break; } case BytecodeFormat::SymbolTable: BCR_TRACE(2, "BLOCK BytecodeFormat::SymbolTable: {\n"); ParseSymbolTable(Buf, Buf+Size, &F->getSymbolTable(), F); break; default: BCR_TRACE(2, "BLOCK :ignored! {\n"); Buf += Size; if (OldBuf > Buf) throw std::string("Wrapped around reading bytecode."); break; } BCR_TRACE(2, "} end block\n"); // Malformed bc file if read past end of block. align32(Buf, EndBuf); } // Make sure there were no references to non-existant basic blocks. if (BlockNum != ParsedBasicBlocks.size()) throw std::string("Illegal basic block operand reference"); ParsedBasicBlocks.clear(); // Resolve forward references. Replace any uses of a forward reference value // with the real value. // replaceAllUsesWith is very inefficient for instructions which have a LARGE // number of operands. PHI nodes often have forward references, and can also // often have a very large number of operands. // // FIXME: REEVALUATE. replaceAllUsesWith is _much_ faster now, and this code // should be simplified back to using it! // std::map ForwardRefMapping; for (std::map, Value*>::iterator I = ForwardReferences.begin(), E = ForwardReferences.end(); I != E; ++I) ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second, false); for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Argument *A = dyn_cast(I->getOperand(i))) { std::map::iterator It = ForwardRefMapping.find(A); if (It != ForwardRefMapping.end()) I->setOperand(i, It->second); } while (!ForwardReferences.empty()) { std::map, Value*>::iterator I = ForwardReferences.begin(); Value *PlaceHolder = I->second; ForwardReferences.erase(I); // Now that all the uses are gone, delete the placeholder... // If we couldn't find a def (error case), then leak a little // memory, because otherwise we can't remove all uses! delete PlaceHolder; } // Clear out function-level types... FunctionTypeValues.clear(); CompactionTable.clear(); freeTable(Values); } void BytecodeParser::ParseCompactionTable(const unsigned char *&Buf, const unsigned char *End) { while (Buf != End) { unsigned NumEntries = read_vbr_uint(Buf, End); unsigned Ty; if ((NumEntries & 3) == 3) { NumEntries >>= 2; Ty = read_vbr_uint(Buf, End); } else { Ty = NumEntries >> 2; NumEntries &= 3; } if (Ty >= CompactionTable.size()) CompactionTable.resize(Ty+1); if (!CompactionTable[Ty].empty()) throw std::string("Compaction table plane contains multiple entries!"); if (Ty == Type::TypeTyID) { for (unsigned i = 0; i != NumEntries; ++i) { const Type *Typ = getGlobalTableType(read_vbr_uint(Buf, End)); CompactionTable[Type::TypeTyID].push_back(const_cast(Typ)); } CompactionTable.resize(NumEntries+Type::FirstDerivedTyID); } else { const Type *Typ = getType(Ty); // Push the implicit zero CompactionTable[Ty].push_back(Constant::getNullValue(Typ)); for (unsigned i = 0; i != NumEntries; ++i) { Value *V = getGlobalTableValue(Typ, read_vbr_uint(Buf, End)); CompactionTable[Ty].push_back(V); } } } } void BytecodeParser::ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *End) { if (!FunctionSignatureList.empty()) throw std::string("Two ModuleGlobalInfo packets found!"); // Read global variables... unsigned VarType = read_vbr_uint(Buf, End); while (VarType != Type::VoidTyID) { // List is terminated by Void // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 = // Linkage, bit4+ = slot# unsigned SlotNo = VarType >> 5; unsigned LinkageID = (VarType >> 2) & 7; GlobalValue::LinkageTypes Linkage; switch (LinkageID) { default: assert(0 && "Unknown linkage type!"); case 0: Linkage = GlobalValue::ExternalLinkage; break; case 1: Linkage = GlobalValue::WeakLinkage; break; case 2: Linkage = GlobalValue::AppendingLinkage; break; case 3: Linkage = GlobalValue::InternalLinkage; break; case 4: Linkage = GlobalValue::LinkOnceLinkage; break; } const Type *Ty = getType(SlotNo); if (!isa(Ty)) throw std::string("Global not pointer type! Ty = " + Ty->getDescription()); const Type *ElTy = cast(Ty)->getElementType(); // Create the global variable... GlobalVariable *GV = new GlobalVariable(ElTy, VarType & 1, Linkage, 0, "", TheModule); BCR_TRACE(2, "Global Variable of type: " << *Ty << "\n"); insertValue(GV, SlotNo, ModuleValues); if (VarType & 2) // Does it have an initializer? GlobalInits.push_back(std::make_pair(GV, read_vbr_uint(Buf, End))); VarType = read_vbr_uint(Buf, End); } // Read the function objects for all of the functions that are coming unsigned FnSignature = read_vbr_uint(Buf, End); while (FnSignature != Type::VoidTyID) { // List is terminated by Void const Type *Ty = getType(FnSignature); if (!isa(Ty) || !isa(cast(Ty)->getElementType())) throw std::string("Function not ptr to func type! Ty = " + Ty->getDescription()); // We create functions by passing the underlying FunctionType to create... Ty = cast(Ty)->getElementType(); // When the ModuleGlobalInfo section is read, we load the type of each // function and the 'ModuleValues' slot that it lands in. We then load a // placeholder into its slot to reserve it. When the function is loaded, // this placeholder is replaced. // Insert the placeholder... Function *Func = new Function(cast(Ty), GlobalValue::InternalLinkage, "", TheModule); insertValue(Func, FnSignature, ModuleValues); // Keep track of this information in a list that is emptied as functions are // loaded... // FunctionSignatureList.push_back(Func); FnSignature = read_vbr_uint(Buf, End); BCR_TRACE(2, "Function of type: " << Ty << "\n"); } if (hasInconsistentModuleGlobalInfo) align32(Buf, End); // Now that the function signature list is set up, reverse it so that we can // remove elements efficiently from the back of the vector. std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end()); // This is for future proofing... in the future extra fields may be added that // we don't understand, so we transparently ignore them. // Buf = End; } void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf, const unsigned char *EndBuf) { unsigned Version = read_vbr_uint(Buf, EndBuf); // Unpack version number: low four bits are for flags, top bits = version Module::Endianness Endianness; Module::PointerSize PointerSize; Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian; PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32; bool hasNoEndianness = Version & 4; bool hasNoPointerSize = Version & 8; RevisionNum = Version >> 4; // Default values for the current bytecode version hasInconsistentModuleGlobalInfo = false; hasExplicitPrimitiveZeros = false; hasRestrictedGEPTypes = false; switch (RevisionNum) { case 0: // LLVM 1.0, 1.1 release version // Base LLVM 1.0 bytecode format. hasInconsistentModuleGlobalInfo = true; hasExplicitPrimitiveZeros = true; // FALL THROUGH case 1: // LLVM 1.2 release version // LLVM 1.2 added explicit support for emitting strings efficiently. // Also, it fixed the problem where the size of the ModuleGlobalInfo block // included the size for the alignment at the end, where the rest of the // blocks did not. // LLVM 1.2 and before required that GEP indices be ubyte constants for // structures and longs for sequential types. hasRestrictedGEPTypes = true; // FALL THROUGH case 2: // LLVM 1.3 release version break; default: throw std::string("Unknown bytecode version number!"); } if (hasNoEndianness) Endianness = Module::AnyEndianness; if (hasNoPointerSize) PointerSize = Module::AnyPointerSize; TheModule->setEndianness(Endianness); TheModule->setPointerSize(PointerSize); BCR_TRACE(1, "Bytecode Rev = " << (unsigned)RevisionNum << "\n"); BCR_TRACE(1, "Endianness/PointerSize = " << Endianness << "," << PointerSize << "\n"); } void BytecodeParser::ParseModule(const unsigned char *Buf, const unsigned char *EndBuf) { unsigned Type, Size; readBlock(Buf, EndBuf, Type, Size); if (Type != BytecodeFormat::Module || Buf+Size != EndBuf) throw std::string("Expected Module packet! B: "+ utostr((unsigned)(intptr_t)Buf) + ", S: "+utostr(Size)+ " E: "+utostr((unsigned)(intptr_t)EndBuf)); // Hrm, not a class? BCR_TRACE(0, "BLOCK BytecodeFormat::Module: {\n"); FunctionSignatureList.clear(); // Just in case... // Read into instance variables... ParseVersionInfo(Buf, EndBuf); align32(Buf, EndBuf); while (Buf < EndBuf) { const unsigned char *OldBuf = Buf; readBlock(Buf, EndBuf, Type, Size); switch (Type) { case BytecodeFormat::GlobalTypePlane: BCR_TRACE(1, "BLOCK BytecodeFormat::GlobalTypePlane: {\n"); ParseGlobalTypes(Buf, Buf+Size); break; case BytecodeFormat::ModuleGlobalInfo: BCR_TRACE(1, "BLOCK BytecodeFormat::ModuleGlobalInfo: {\n"); ParseModuleGlobalInfo(Buf, Buf+Size); break; case BytecodeFormat::ConstantPool: BCR_TRACE(1, "BLOCK BytecodeFormat::ConstantPool: {\n"); ParseConstantPool(Buf, Buf+Size, ModuleValues, ModuleTypeValues); break; case BytecodeFormat::Function: { BCR_TRACE(1, "BLOCK BytecodeFormat::Function: {\n"); ParseFunction(Buf, Buf+Size); break; } case BytecodeFormat::SymbolTable: BCR_TRACE(1, "BLOCK BytecodeFormat::SymbolTable: {\n"); ParseSymbolTable(Buf, Buf+Size, &TheModule->getSymbolTable(), 0); break; default: Buf += Size; if (OldBuf > Buf) throw std::string("Expected Module Block!"); break; } BCR_TRACE(1, "} end block\n"); align32(Buf, EndBuf); } // After the module constant pool has been read, we can safely initialize // global variables... while (!GlobalInits.empty()) { GlobalVariable *GV = GlobalInits.back().first; unsigned Slot = GlobalInits.back().second; GlobalInits.pop_back(); // Look up the initializer value... // FIXME: Preserve this type ID! unsigned TypeSlot = getTypeSlot(GV->getType()->getElementType()); if (Constant *CV = getConstantValue(TypeSlot, Slot)) { if (GV->hasInitializer()) throw std::string("Global *already* has an initializer?!"); GV->setInitializer(CV); } else throw std::string("Cannot find initializer value."); } if (!FunctionSignatureList.empty()) throw std::string("Function expected, but bytecode stream ended!"); BCR_TRACE(0, "} end block\n\n"); } void BytecodeParser::ParseBytecode(const unsigned char *Buf, unsigned Length, const std::string &ModuleID) { unsigned char *EndBuf = (unsigned char*)(Buf + Length); // Read and check signature... unsigned Sig = read(Buf, EndBuf); if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) throw std::string("Invalid bytecode signature!"); TheModule = new Module(ModuleID); try { ParseModule(Buf, EndBuf); } catch (std::string &Error) { freeState(); // Must destroy handles before deleting module! delete TheModule; TheModule = 0; throw; } }