//===- PTXInstrInfo.td - PTX Instruction defs -----------------*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the PTX instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "PTXInstrFormats.td" //===----------------------------------------------------------------------===// // Code Generation Predicates //===----------------------------------------------------------------------===// def Use32BitAddresses : Predicate<"!getSubtarget().use64BitAddresses()">; def Use64BitAddresses : Predicate<"getSubtarget().use64BitAddresses()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def load_global : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::GLOBAL; return false; }]>; def load_constant : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::CONSTANT; return false; }]>; def load_local : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::LOCAL; return false; }]>; def load_parameter : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::PARAMETER; return false; }]>; def load_shared : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::SHARED; return false; }]>; def store_global : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::GLOBAL; return false; }]>; def store_local : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::LOCAL; return false; }]>; def store_parameter : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::PARAMETER; return false; }]>; def store_shared : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast(N)->getSrcValue()) && (PT = dyn_cast(Src->getType()))) return PT->getAddressSpace() == PTX::SHARED; return false; }]>; // Addressing modes. def ADDRrr32 : ComplexPattern; def ADDRrr64 : ComplexPattern; def ADDRri32 : ComplexPattern; def ADDRri64 : ComplexPattern; def ADDRii32 : ComplexPattern; def ADDRii64 : ComplexPattern; // Address operands def MEMri32 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops RRegu32, i32imm); } def MEMri64 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops RRegu64, i64imm); } def MEMii32 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops i32imm, i32imm); } def MEMii64 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops i64imm, i64imm); } // The operand here does not correspond to an actual address, so we // can use i32 in 64-bit address modes. def MEMpi : Operand { let PrintMethod = "printParamOperand"; let MIOperandInfo = (ops i32imm); } //===----------------------------------------------------------------------===// // PTX Specific Node Definitions //===----------------------------------------------------------------------===// // PTX allow generic 3-reg shifts like shl r0, r1, r2 def PTXshl : SDNode<"ISD::SHL", SDTIntBinOp>; def PTXsrl : SDNode<"ISD::SRL", SDTIntBinOp>; def PTXsra : SDNode<"ISD::SRA", SDTIntBinOp>; def PTXexit : SDNode<"PTXISD::EXIT", SDTNone, [SDNPHasChain]>; def PTXret : SDNode<"PTXISD::RET", SDTNone, [SDNPHasChain]>; //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// // Three-operand floating-point instruction template multiclass FLOAT3 { def rr32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, RRegf32:$b), !strconcat(opcstr, ".f32\t$d, $a, $b"), [(set RRegf32:$d, (opnode RRegf32:$a, RRegf32:$b))]>; def ri32 : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a, f32imm:$b), !strconcat(opcstr, ".f32\t$d, $a, $b"), [(set RRegf32:$d, (opnode RRegf32:$a, fpimm:$b))]>; def rr64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, RRegf64:$b), !strconcat(opcstr, ".f64\t$d, $a, $b"), [(set RRegf64:$d, (opnode RRegf64:$a, RRegf64:$b))]>; def ri64 : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a, f64imm:$b), !strconcat(opcstr, ".f64\t$d, $a, $b"), [(set RRegf64:$d, (opnode RRegf64:$a, fpimm:$b))]>; } multiclass INT3 { def rr16 : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a, RRegu16:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RRegu16:$d, (opnode RRegu16:$a, RRegu16:$b))]>; def ri16 : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a, i16imm:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RRegu16:$d, (opnode RRegu16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, RRegu32:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, RRegu32:$b))]>; def ri32 : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, i32imm:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a, RRegu64:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RRegu64:$d, (opnode RRegu64:$a, RRegu64:$b))]>; def ri64 : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a, i64imm:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RRegu64:$d, (opnode RRegu64:$a, imm:$b))]>; } // no %type directive, non-communtable multiclass INT3ntnc { def rr : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, RRegu32:$b), !strconcat(opcstr, "\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, RRegu32:$b))]>; def ri : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a, i32imm:$b), !strconcat(opcstr, "\t$d, $a, $b"), [(set RRegu32:$d, (opnode RRegu32:$a, imm:$b))]>; def ir : InstPTX<(outs RRegu32:$d), (ins i32imm:$a, RRegu32:$b), !strconcat(opcstr, "\t$d, $a, $b"), [(set RRegu32:$d, (opnode imm:$a, RRegu32:$b))]>; } multiclass PTX_LD { def rr32 : InstPTX<(outs RC:$d), (ins MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRrr32:$a))]>, Requires<[Use32BitAddresses]>; def rr64 : InstPTX<(outs RC:$d), (ins MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRrr64:$a))]>, Requires<[Use64BitAddresses]>; def ri32 : InstPTX<(outs RC:$d), (ins MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRri32:$a))]>, Requires<[Use32BitAddresses]>; def ri64 : InstPTX<(outs RC:$d), (ins MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRri64:$a))]>, Requires<[Use64BitAddresses]>; def ii32 : InstPTX<(outs RC:$d), (ins MEMii32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRii32:$a))]>, Requires<[Use32BitAddresses]>; def ii64 : InstPTX<(outs RC:$d), (ins MEMii64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRii64:$a))]>, Requires<[Use64BitAddresses]>; } multiclass PTX_LD_ALL { defm u16 : PTX_LD; defm u32 : PTX_LD; defm u64 : PTX_LD; defm f32 : PTX_LD; defm f64 : PTX_LD; } multiclass PTX_ST { def rr32 : InstPTX<(outs), (ins RC:$d, MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRrr32:$a)]>, Requires<[Use32BitAddresses]>; def rr64 : InstPTX<(outs), (ins RC:$d, MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRrr64:$a)]>, Requires<[Use64BitAddresses]>; def ri32 : InstPTX<(outs), (ins RC:$d, MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRri32:$a)]>, Requires<[Use32BitAddresses]>; def ri64 : InstPTX<(outs), (ins RC:$d, MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRri64:$a)]>, Requires<[Use64BitAddresses]>; def ii32 : InstPTX<(outs), (ins RC:$d, MEMii32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRii32:$a)]>, Requires<[Use32BitAddresses]>; def ii64 : InstPTX<(outs), (ins RC:$d, MEMii64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRii64:$a)]>, Requires<[Use64BitAddresses]>; } multiclass PTX_ST_ALL { defm u16 : PTX_ST; defm u32 : PTX_ST; defm u64 : PTX_ST; defm f32 : PTX_ST; defm f64 : PTX_ST; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// ///===- Floating-Point Arithmetic Instructions ----------------------------===// defm FADD : FLOAT3<"add", fadd>; defm FSUB : FLOAT3<"sub", fsub>; defm FMUL : FLOAT3<"mul", fmul>; ///===- Integer Arithmetic Instructions -----------------------------------===// defm ADD : INT3<"add", add>; defm SUB : INT3<"sub", sub>; ///===- Logic and Shift Instructions --------------------------------------===// defm SHL : INT3ntnc<"shl.b32", PTXshl>; defm SRL : INT3ntnc<"shr.u32", PTXsrl>; defm SRA : INT3ntnc<"shr.s32", PTXsra>; ///===- Data Movement and Conversion Instructions -------------------------===// let neverHasSideEffects = 1 in { def MOVPREDrr : InstPTX<(outs Preds:$d), (ins Preds:$a), "mov.pred\t$d, $a", []>; def MOVU16rr : InstPTX<(outs RRegu16:$d), (ins RRegu16:$a), "mov.u16\t$d, $a", []>; def MOVU32rr : InstPTX<(outs RRegu32:$d), (ins RRegu32:$a), "mov.u32\t$d, $a", []>; def MOVU64rr : InstPTX<(outs RRegu64:$d), (ins RRegu64:$a), "mov.u64\t$d, $a", []>; def MOVF32rr : InstPTX<(outs RRegf32:$d), (ins RRegf32:$a), "mov.f32\t$d, $a", []>; def MOVF64rr : InstPTX<(outs RRegf64:$d), (ins RRegf64:$a), "mov.f64\t$d, $a", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVPREDri : InstPTX<(outs Preds:$d), (ins i1imm:$a), "mov.pred\t$d, $a", [(set Preds:$d, imm:$a)]>; def MOVU16ri : InstPTX<(outs RRegu16:$d), (ins i16imm:$a), "mov.u16\t$d, $a", [(set RRegu16:$d, imm:$a)]>; def MOVU32ri : InstPTX<(outs RRegu32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RRegu32:$d, imm:$a)]>; def MOVU164ri : InstPTX<(outs RRegu64:$d), (ins i64imm:$a), "mov.u64\t$d, $a", [(set RRegu64:$d, imm:$a)]>; def MOVF32ri : InstPTX<(outs RRegf32:$d), (ins f32imm:$a), "mov.f32\t$d, $a", [(set RRegf32:$d, fpimm:$a)]>; def MOVF64ri : InstPTX<(outs RRegf64:$d), (ins f64imm:$a), "mov.f64\t$d, $a", [(set RRegf64:$d, fpimm:$a)]>; } // Loads defm LDg : PTX_LD_ALL<"ld.global", load_global>; defm LDc : PTX_LD_ALL<"ld.const", load_constant>; defm LDl : PTX_LD_ALL<"ld.local", load_local>; defm LDs : PTX_LD_ALL<"ld.shared", load_shared>; // This is a special instruction that is manually inserted for kernel parameters def LDpiU16 : InstPTX<(outs RRegu16:$d), (ins MEMpi:$a), "ld.param.u16\t$d, [$a]", []>; def LDpiU32 : InstPTX<(outs RRegu32:$d), (ins MEMpi:$a), "ld.param.u32\t$d, [$a]", []>; def LDpiU64 : InstPTX<(outs RRegu64:$d), (ins MEMpi:$a), "ld.param.u64\t$d, [$a]", []>; def LDpiF32 : InstPTX<(outs RRegf32:$d), (ins MEMpi:$a), "ld.param.f32\t$d, [$a]", []>; def LDpiF64 : InstPTX<(outs RRegf64:$d), (ins MEMpi:$a), "ld.param.f64\t$d, [$a]", []>; // Stores defm STg : PTX_ST_ALL<"st.global", store_global>; defm STl : PTX_ST_ALL<"st.local", store_local>; defm STs : PTX_ST_ALL<"st.shared", store_shared>; // defm STp : PTX_ST_ALL<"st.param", store_parameter>; // defm LDp : PTX_LD_ALL<"ld.param", load_parameter>; // TODO: Do something with st.param if/when it is needed. ///===- Control Flow Instructions -----------------------------------------===// let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def EXIT : InstPTX<(outs), (ins), "exit", [(PTXexit)]>; def RET : InstPTX<(outs), (ins), "ret", [(PTXret)]>; } ///===- Intrinsic Instructions --------------------------------------------===// include "PTXIntrinsicInstrInfo.td"