//===-- MipsTargetMachine.cpp - Define TargetMachine for Mips -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements the info about Mips target spec. // //===----------------------------------------------------------------------===// #include "MipsTargetMachine.h" #include "Mips.h" #include "MipsFrameLowering.h" #include "MipsInstrInfo.h" #include "MipsModuleISelDAGToDAG.h" #include "MipsOs16.h" #include "MipsSEFrameLowering.h" #include "MipsSEInstrInfo.h" #include "MipsSEISelLowering.h" #include "MipsSEISelDAGToDAG.h" #include "Mips16FrameLowering.h" #include "Mips16HardFloat.h" #include "Mips16InstrInfo.h" #include "Mips16ISelDAGToDAG.h" #include "Mips16ISelLowering.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; extern "C" void LLVMInitializeMipsTarget() { // Register the target. RegisterTargetMachine X(TheMipsTarget); RegisterTargetMachine Y(TheMipselTarget); RegisterTargetMachine A(TheMips64Target); RegisterTargetMachine B(TheMips64elTarget); } static std::string computeDataLayout(const MipsSubtarget &ST) { std::string Ret = ""; // There are both little and big endian mips. if (ST.isLittle()) Ret += "e"; else Ret += "E"; // Pointers are 64 or 32 bit depending on the ABI. if (ST.isABI_N64()) Ret += "-p:64:64:64"; else Ret += "-p:32:32:32"; // 8 and 16 bit integers only need no have natural alignment, but try to // align them to 32 bits. 64 bit integers have natural alignment. Ret += "-i8:8:32-i16:16:32-i64:64:64"; // 32 bit registers are always available and the stack is at least 64 bit // aligned. On N64 64 bit registers are also available and the stack is // 128 bit aligned. if (ST.isABI_N64()) Ret += "-n32:64-S128"; else Ret += "-n32-S64"; return Ret; } // On function prologue, the stack is created by decrementing // its pointer. Once decremented, all references are done with positive // offset from the stack/frame pointer, using StackGrowsUp enables // an easier handling. // Using CodeModel::Large enables different CALL behavior. MipsTargetMachine:: MipsTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), Subtarget(TT, CPU, FS, isLittle, RM, this), DL(computeDataLayout(Subtarget)), InstrInfo(MipsInstrInfo::create(*this)), FrameLowering(MipsFrameLowering::create(*this, Subtarget)), TLInfo(MipsTargetLowering::create(*this)), TSInfo(*this), InstrItins(Subtarget.getInstrItineraryData()), JITInfo() { initAsmInfo(); } void MipsTargetMachine::setHelperClassesMips16() { InstrInfoSE.swap(InstrInfo); FrameLoweringSE.swap(FrameLowering); TLInfoSE.swap(TLInfo); if (!InstrInfo16) { InstrInfo.reset(MipsInstrInfo::create(*this)); FrameLowering.reset(MipsFrameLowering::create(*this, Subtarget)); TLInfo.reset(MipsTargetLowering::create(*this)); } else { InstrInfo16.swap(InstrInfo); FrameLowering16.swap(FrameLowering); TLInfo16.swap(TLInfo); } assert(TLInfo && "null target lowering 16"); assert(InstrInfo && "null instr info 16"); assert(FrameLowering && "null frame lowering 16"); } void MipsTargetMachine::setHelperClassesMipsSE() { InstrInfo16.swap(InstrInfo); FrameLowering16.swap(FrameLowering); TLInfo16.swap(TLInfo); if (!InstrInfoSE) { InstrInfo.reset(MipsInstrInfo::create(*this)); FrameLowering.reset(MipsFrameLowering::create(*this, Subtarget)); TLInfo.reset(MipsTargetLowering::create(*this)); } else { InstrInfoSE.swap(InstrInfo); FrameLoweringSE.swap(FrameLowering); TLInfoSE.swap(TLInfo); } assert(TLInfo && "null target lowering in SE"); assert(InstrInfo && "null instr info SE"); assert(FrameLowering && "null frame lowering SE"); } void MipsebTargetMachine::anchor() { } MipsebTargetMachine:: MipsebTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} void MipselTargetMachine::anchor() { } MipselTargetMachine:: MipselTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} namespace { /// Mips Code Generator Pass Configuration Options. class MipsPassConfig : public TargetPassConfig { public: MipsPassConfig(MipsTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) { // The current implementation of long branch pass requires a scratch // register ($at) to be available before branch instructions. Tail merging // can break this requirement, so disable it when long branch pass is // enabled. EnableTailMerge = !getMipsSubtarget().enableLongBranchPass(); } MipsTargetMachine &getMipsTargetMachine() const { return getTM(); } const MipsSubtarget &getMipsSubtarget() const { return *getMipsTargetMachine().getSubtargetImpl(); } virtual void addIRPasses(); virtual bool addInstSelector(); virtual void addMachineSSAOptimization(); virtual bool addPreEmitPass(); }; } // namespace TargetPassConfig *MipsTargetMachine::createPassConfig(PassManagerBase &PM) { return new MipsPassConfig(this, PM); } void MipsPassConfig::addIRPasses() { TargetPassConfig::addIRPasses(); if (getMipsSubtarget().os16()) addPass(createMipsOs16(getMipsTargetMachine())); if (getMipsSubtarget().inMips16HardFloat()) addPass(createMips16HardFloat(getMipsTargetMachine())); addPass(createPartiallyInlineLibCallsPass()); } // Install an instruction selector pass using // the ISelDag to gen Mips code. bool MipsPassConfig::addInstSelector() { if (getMipsSubtarget().allowMixed16_32()) { addPass(createMipsModuleISelDag(getMipsTargetMachine())); addPass(createMips16ISelDag(getMipsTargetMachine())); addPass(createMipsSEISelDag(getMipsTargetMachine())); } else { addPass(createMipsISelDag(getMipsTargetMachine())); } return false; } void MipsPassConfig::addMachineSSAOptimization() { addPass(createMipsOptimizePICCallPass(getMipsTargetMachine())); TargetPassConfig::addMachineSSAOptimization(); } void MipsTargetMachine::addAnalysisPasses(PassManagerBase &PM) { if (Subtarget.allowMixed16_32()) { DEBUG(errs() << "No "); //FIXME: The Basic Target Transform Info // pass needs to become a function pass instead of // being an immutable pass and then this method as it exists now // would be unnecessary. PM.add(createNoTargetTransformInfoPass()); } else LLVMTargetMachine::addAnalysisPasses(PM); DEBUG(errs() << "Target Transform Info Pass Added\n"); } // Implemented by targets that want to run passes immediately before // machine code is emitted. return true if -print-machineinstrs should // print out the code after the passes. bool MipsPassConfig::addPreEmitPass() { MipsTargetMachine &TM = getMipsTargetMachine(); const MipsSubtarget &Subtarget = TM.getSubtarget(); addPass(createMipsDelaySlotFillerPass(TM)); if (Subtarget.enableLongBranchPass()) addPass(createMipsLongBranchPass(TM)); if (Subtarget.inMips16Mode() || Subtarget.allowMixed16_32()) addPass(createMipsConstantIslandPass(TM)); return true; } bool MipsTargetMachine::addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) { // Machine code emitter pass for Mips. PM.add(createMipsJITCodeEmitterPass(*this, JCE)); return false; }