//===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Devang Patel and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Loop Index Splitting Pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-index-split" #include "llvm/Transforms/Scalar.h" #include "llvm/Function.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumIndexSplit, "Number of loops index split"); namespace { class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopIndexSplit() : LoopPass((intptr_t)&ID) {} // Index split Loop L. Return true if loop is split. bool runOnLoop(Loop *L, LPPassManager &LPM); void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } private: class SplitInfo { public: SplitInfo() : SplitValue(NULL), SplitCondition(NULL) {} // Induction variable's range is split at this value. Value *SplitValue; // This compare instruction compares IndVar against SplitValue. ICmpInst *SplitCondition; // Clear split info. void clear() { SplitValue = NULL; SplitCondition = NULL; } }; private: /// Find condition inside a loop that is suitable candidate for index split. void findSplitCondition(); /// Find loop's exit condition. void findLoopConditionals(); /// Return induction variable associated with value V. void findIndVar(Value *V, Loop *L); /// processOneIterationLoop - Current loop L contains compare instruction /// that compares induction variable, IndVar, agains loop invariant. If /// entire (i.e. meaningful) loop body is dominated by this compare /// instruction then loop body is executed only for one iteration. In /// such case eliminate loop structure surrounding this loop body. For bool processOneIterationLoop(SplitInfo &SD); /// If loop header includes loop variant instruction operands then /// this loop may not be eliminated. bool safeHeader(SplitInfo &SD, BasicBlock *BB); /// If Exit block includes loop variant instructions then this /// loop may not be eliminated. bool safeExitBlock(SplitInfo &SD, BasicBlock *BB); /// removeBlocks - Remove basic block BB and all blocks dominated by BB. void removeBlocks(BasicBlock *InBB, Loop *LP); /// Find cost of spliting loop L. unsigned findSplitCost(Loop *L, SplitInfo &SD); bool splitLoop(SplitInfo &SD); void initialize() { IndVar = NULL; IndVarIncrement = NULL; ExitCondition = NULL; StartValue = NULL; ExitValueNum = 0; SplitData.clear(); } private: // Current Loop. Loop *L; LPPassManager *LPM; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; DominanceFrontier *DF; SmallVector SplitData; // Induction variable whose range is being split by this transformation. PHINode *IndVar; Instruction *IndVarIncrement; // Loop exit condition. ICmpInst *ExitCondition; // Induction variable's initial value. Value *StartValue; // Induction variable's final loop exit value operand number in exit condition.. unsigned ExitValueNum; }; char LoopIndexSplit::ID = 0; RegisterPass X ("loop-index-split", "Index Split Loops"); } LoopPass *llvm::createLoopIndexSplitPass() { return new LoopIndexSplit(); } // Index split Loop L. Return true if loop is split. bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) { bool Changed = false; L = IncomingLoop; LPM = &LPM_Ref; SE = &getAnalysis(); DT = &getAnalysis(); LI = &getAnalysis(); DF = getAnalysisToUpdate(); initialize(); findLoopConditionals(); if (!ExitCondition) return false; findSplitCondition(); if (SplitData.empty()) return false; // First see if it is possible to eliminate loop itself or not. for (SmallVector::iterator SI = SplitData.begin(), E = SplitData.end(); SI != E; ++SI) { SplitInfo &SD = *SI; if (SD.SplitCondition->getPredicate() == ICmpInst::ICMP_EQ) { Changed = processOneIterationLoop(SD); if (Changed) { ++NumIndexSplit; // If is loop is eliminated then nothing else to do here. return Changed; } } } unsigned MaxCost = 99; unsigned Index = 0; unsigned MostProfitableSDIndex = 0; for (SmallVector::iterator SI = SplitData.begin(), E = SplitData.end(); SI != E; ++SI, ++Index) { SplitInfo SD = *SI; // ICM_EQs are already handled above. if (SD.SplitCondition->getPredicate() == ICmpInst::ICMP_EQ) continue; unsigned Cost = findSplitCost(L, SD); if (Cost < MaxCost) MostProfitableSDIndex = Index; } // Split most profitiable condition. Changed = splitLoop(SplitData[MostProfitableSDIndex]); if (Changed) ++NumIndexSplit; return Changed; } /// Return true if V is a induction variable or induction variable's /// increment for loop L. void LoopIndexSplit::findIndVar(Value *V, Loop *L) { Instruction *I = dyn_cast(V); if (!I) return; // Check if I is a phi node from loop header or not. if (PHINode *PN = dyn_cast(V)) { if (PN->getParent() == L->getHeader()) { IndVar = PN; return; } } // Check if I is a add instruction whose one operand is // phi node from loop header and second operand is constant. if (I->getOpcode() != Instruction::Add) return; Value *Op0 = I->getOperand(0); Value *Op1 = I->getOperand(1); if (PHINode *PN = dyn_cast(Op0)) { if (PN->getParent() == L->getHeader() && isa(Op1)) { IndVar = PN; IndVarIncrement = I; return; } } if (PHINode *PN = dyn_cast(Op1)) { if (PN->getParent() == L->getHeader() && isa(Op0)) { IndVar = PN; IndVarIncrement = I; return; } } return; } // Find loop's exit condition and associated induction variable. void LoopIndexSplit::findLoopConditionals() { BasicBlock *ExitBlock = NULL; for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; if (!L->isLoopExit(BB)) continue; if (ExitBlock) return; ExitBlock = BB; } if (!ExitBlock) return; // If exit block's terminator is conditional branch inst then we have found // exit condition. BranchInst *BR = dyn_cast(ExitBlock->getTerminator()); if (!BR || BR->isUnconditional()) return; ICmpInst *CI = dyn_cast(BR->getCondition()); if (!CI) return; ExitCondition = CI; // Exit condition's one operand is loop invariant exit value and second // operand is SCEVAddRecExpr based on induction variable. Value *V0 = CI->getOperand(0); Value *V1 = CI->getOperand(1); SCEVHandle SH0 = SE->getSCEV(V0); SCEVHandle SH1 = SE->getSCEV(V1); if (SH0->isLoopInvariant(L) && isa(SH1)) { ExitValueNum = 0; findIndVar(V1, L); } else if (SH1->isLoopInvariant(L) && isa(SH0)) { ExitValueNum = 1; findIndVar(V0, L); } if (!IndVar) ExitCondition = NULL; else if (IndVar) { BasicBlock *Preheader = L->getLoopPreheader(); StartValue = IndVar->getIncomingValueForBlock(Preheader); } } /// Find condition inside a loop that is suitable candidate for index split. void LoopIndexSplit::findSplitCondition() { SplitInfo SD; // Check all basic block's terminators. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; // If this basic block does not terminate in a conditional branch // then terminator is not a suitable split condition. BranchInst *BR = dyn_cast(BB->getTerminator()); if (!BR) continue; if (BR->isUnconditional()) continue; ICmpInst *CI = dyn_cast(BR->getCondition()); if (!CI || CI == ExitCondition) return; // If one operand is loop invariant and second operand is SCEVAddRecExpr // based on induction variable then CI is a candidate split condition. Value *V0 = CI->getOperand(0); Value *V1 = CI->getOperand(1); SCEVHandle SH0 = SE->getSCEV(V0); SCEVHandle SH1 = SE->getSCEV(V1); if (SH0->isLoopInvariant(L) && isa(SH1)) { SD.SplitValue = V0; SD.SplitCondition = CI; if (PHINode *PN = dyn_cast(V1)) { if (PN == IndVar) SplitData.push_back(SD); } else if (Instruction *Insn = dyn_cast(V1)) { if (IndVarIncrement && IndVarIncrement == Insn) SplitData.push_back(SD); } } else if (SH1->isLoopInvariant(L) && isa(SH0)) { SD.SplitValue = V1; SD.SplitCondition = CI; if (PHINode *PN = dyn_cast(V0)) { if (PN == IndVar) SplitData.push_back(SD); } else if (Instruction *Insn = dyn_cast(V0)) { if (IndVarIncrement && IndVarIncrement == Insn) SplitData.push_back(SD); } } } } /// processOneIterationLoop - Current loop L contains compare instruction /// that compares induction variable, IndVar, against loop invariant. If /// entire (i.e. meaningful) loop body is dominated by this compare /// instruction then loop body is executed only once. In such case eliminate /// loop structure surrounding this loop body. For example, /// for (int i = start; i < end; ++i) { /// if ( i == somevalue) { /// loop_body /// } /// } /// can be transformed into /// if (somevalue >= start && somevalue < end) { /// i = somevalue; /// loop_body /// } bool LoopIndexSplit::processOneIterationLoop(SplitInfo &SD) { BasicBlock *Header = L->getHeader(); // First of all, check if SplitCondition dominates entire loop body // or not. // If SplitCondition is not in loop header then this loop is not suitable // for this transformation. if (SD.SplitCondition->getParent() != Header) return false; // If loop header includes loop variant instruction operands then // this loop may not be eliminated. if (!safeHeader(SD, Header)) return false; // If Exit block includes loop variant instructions then this // loop may not be eliminated. if (!safeExitBlock(SD, ExitCondition->getParent())) return false; // Update CFG. // As a first step to break this loop, remove Latch to Header edge. BasicBlock *Latch = L->getLoopLatch(); BasicBlock *LatchSucc = NULL; BranchInst *BR = dyn_cast(Latch->getTerminator()); if (!BR) return false; Header->removePredecessor(Latch); for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch); SI != E; ++SI) { if (Header != *SI) LatchSucc = *SI; } BR->setUnconditionalDest(LatchSucc); Instruction *Terminator = Header->getTerminator(); Value *ExitValue = ExitCondition->getOperand(ExitValueNum); // Replace split condition in header. // Transform // SplitCondition : icmp eq i32 IndVar, SplitValue // into // c1 = icmp uge i32 SplitValue, StartValue // c2 = icmp ult i32 vSplitValue, ExitValue // and i32 c1, c2 bool SignedPredicate = ExitCondition->isSignedPredicate(); Instruction *C1 = new ICmpInst(SignedPredicate ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, SD.SplitValue, StartValue, "lisplit", Terminator); Instruction *C2 = new ICmpInst(SignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, SD.SplitValue, ExitValue, "lisplit", Terminator); Instruction *NSplitCond = BinaryOperator::createAnd(C1, C2, "lisplit", Terminator); SD.SplitCondition->replaceAllUsesWith(NSplitCond); SD.SplitCondition->eraseFromParent(); // Now, clear latch block. Remove instructions that are responsible // to increment induction variable. Instruction *LTerminator = Latch->getTerminator(); for (BasicBlock::iterator LB = Latch->begin(), LE = Latch->end(); LB != LE; ) { Instruction *I = LB; ++LB; if (isa(I) || I == LTerminator) continue; if (I == IndVarIncrement) I->replaceAllUsesWith(ExitValue); else I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } LPM->deleteLoopFromQueue(L); // Update Dominator Info. // Only CFG change done is to remove Latch to Header edge. This // does not change dominator tree because Latch did not dominate // Header. if (DF) { DominanceFrontier::iterator HeaderDF = DF->find(Header); if (HeaderDF != DF->end()) DF->removeFromFrontier(HeaderDF, Header); DominanceFrontier::iterator LatchDF = DF->find(Latch); if (LatchDF != DF->end()) DF->removeFromFrontier(LatchDF, Header); } return true; } // If loop header includes loop variant instruction operands then // this loop can not be eliminated. This is used by processOneIterationLoop(). bool LoopIndexSplit::safeHeader(SplitInfo &SD, BasicBlock *Header) { Instruction *Terminator = Header->getTerminator(); for(BasicBlock::iterator BI = Header->begin(), BE = Header->end(); BI != BE; ++BI) { Instruction *I = BI; // PHI Nodes are OK. if (isa(I)) continue; // SplitCondition itself is OK. if (I == SD.SplitCondition) continue; // Induction variable is OK. if (I == IndVar) continue; // Induction variable increment is OK. if (I == IndVarIncrement) continue; // Terminator is also harmless. if (I == Terminator) continue; // Otherwise we have a instruction that may not be safe. return false; } return true; } // If Exit block includes loop variant instructions then this // loop may not be eliminated. This is used by processOneIterationLoop(). bool LoopIndexSplit::safeExitBlock(SplitInfo &SD, BasicBlock *ExitBlock) { for (BasicBlock::iterator BI = ExitBlock->begin(), BE = ExitBlock->end(); BI != BE; ++BI) { Instruction *I = BI; // PHI Nodes are OK. if (isa(I)) continue; // Induction variable increment is OK. if (IndVarIncrement && IndVarIncrement == I) continue; // Check if I is induction variable increment instruction. if (!IndVarIncrement && I->getOpcode() == Instruction::Add) { Value *Op0 = I->getOperand(0); Value *Op1 = I->getOperand(1); PHINode *PN = NULL; ConstantInt *CI = NULL; if ((PN = dyn_cast(Op0))) { if ((CI = dyn_cast(Op1))) IndVarIncrement = I; } else if ((PN = dyn_cast(Op1))) { if ((CI = dyn_cast(Op0))) IndVarIncrement = I; } if (IndVarIncrement && PN == IndVar && CI->isOne()) continue; } // I is an Exit condition if next instruction is block terminator. // Exit condition is OK if it compares loop invariant exit value, // which is checked below. else if (ICmpInst *EC = dyn_cast(I)) { if (EC == ExitCondition) continue; } if (I == ExitBlock->getTerminator()) continue; // Otherwise we have instruction that may not be safe. return false; } // We could not find any reason to consider ExitBlock unsafe. return true; } /// Find cost of spliting loop L. Cost is measured in terms of size growth. /// Size is growth is calculated based on amount of code duplicated in second /// loop. unsigned LoopIndexSplit::findSplitCost(Loop *L, SplitInfo &SD) { unsigned Cost = 0; BasicBlock *SDBlock = SD.SplitCondition->getParent(); for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; // If a block is not dominated by split condition block then // it must be duplicated in both loops. if (!DT->dominates(SDBlock, BB)) Cost += BB->size(); } return Cost; } /// removeBlocks - Remove basic block BB and all blocks dominated by BB. void LoopIndexSplit::removeBlocks(BasicBlock *InBB, Loop *LP) { SmallVector, 8> WorkList; WorkList.push_back(std::make_pair(InBB, succ_begin(InBB))); while (!WorkList.empty()) { BasicBlock *BB = WorkList.back(). first; succ_iterator SIter =WorkList.back().second; // If all successor's are processed then remove this block. if (SIter == succ_end(BB)) { WorkList.pop_back(); for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); BBI != BBE; ++BBI) { Instruction *I = BBI; I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } LPM->deleteSimpleAnalysisValue(BB, LP); DT->eraseNode(BB); DF->removeBlock(BB); LI->removeBlock(BB); BB->eraseFromParent(); } else { BasicBlock *SuccBB = *SIter; ++WorkList.back().second; if (DT->dominates(BB, SuccBB)) { WorkList.push_back(std::make_pair(SuccBB, succ_begin(SuccBB))); continue; } else { // If SuccBB is not dominated by BB then it is not removed, however remove // any PHI incoming edge from BB. for(BasicBlock::iterator SBI = SuccBB->begin(), SBE = SuccBB->end(); SBI != SBE; ++SBI) { if (PHINode *PN = dyn_cast(SBI)) PN->removeIncomingValue(BB); else break; } // If BB is not dominating SuccBB then SuccBB is in BB's dominance // frontiner. DominanceFrontier::iterator BBDF = DF->find(BB); DF->removeFromFrontier(BBDF, SuccBB); } } } } bool LoopIndexSplit::splitLoop(SplitInfo &SD) { BasicBlock *Preheader = L->getLoopPreheader(); // True loop is original loop. False loop is cloned loop. bool SignedPredicate = ExitCondition->isSignedPredicate(); //[*] Calculate True loop's new Exit Value in loop preheader. // TLExitValue = min(SplitValue, ExitValue) //[*] Calculate False loop's new Start Value in loop preheader. // FLStartValue = min(SplitValue, TrueLoop.StartValue) Value *TLExitValue = NULL; Value *FLStartValue = NULL; if (isa(SD.SplitValue)) { TLExitValue = SD.SplitValue; FLStartValue = SD.SplitValue; } else { Value *C1 = new ICmpInst(SignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, SD.SplitValue, ExitCondition->getOperand(ExitValueNum), "lsplit.ev", Preheader->getTerminator()); TLExitValue = new SelectInst(C1, SD.SplitValue, ExitCondition->getOperand(ExitValueNum), "lsplit.ev", Preheader->getTerminator()); Value *C2 = new ICmpInst(SignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, SD.SplitValue, StartValue, "lsplit.sv", Preheader->getTerminator()); FLStartValue = new SelectInst(C2, SD.SplitValue, StartValue, "lsplit.sv", Preheader->getTerminator()); } //[*] Clone loop. Avoid true destination of split condition and // the blocks dominated by true destination. DenseMap ValueMap; Loop *FalseLoop = CloneLoop(L, LPM, LI, ValueMap, this); BasicBlock *FalseHeader = FalseLoop->getHeader(); //[*] True loop's exit edge enters False loop. PHINode *IndVarClone = cast(ValueMap[IndVar]); BasicBlock *ExitBlock = ExitCondition->getParent(); BranchInst *ExitInsn = dyn_cast(ExitBlock->getTerminator()); assert (ExitInsn && "Unable to find suitable loop exit branch"); BasicBlock *ExitDest = ExitInsn->getSuccessor(1); if (L->contains(ExitDest)) { ExitDest = ExitInsn->getSuccessor(0); ExitInsn->setSuccessor(0, FalseHeader); } else ExitInsn->setSuccessor(1, FalseHeader); // Collect inverse map of Header PHINodes. DenseMap InverseMap; for (BasicBlock::iterator BI = L->getHeader()->begin(), BE = L->getHeader()->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PHINode *PNClone = cast(ValueMap[PN]); InverseMap[PNClone] = PN; } else break; } // Update False loop's header for (BasicBlock::iterator BI = FalseHeader->begin(), BE = FalseHeader->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PN->removeIncomingValue(Preheader); if (PN == IndVarClone) PN->addIncoming(FLStartValue, ExitBlock); else { PHINode *OrigPN = cast(InverseMap[PN]); Value *V2 = OrigPN->getIncomingValueForBlock(ExitBlock); PN->addIncoming(V2, ExitBlock); } } else break; } // Update ExitDest. Now it's predecessor is False loop's exit block. BasicBlock *ExitBlockClone = cast(ValueMap[ExitBlock]); for (BasicBlock::iterator BI = ExitDest->begin(), BE = ExitDest->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(ExitBlock)], ExitBlockClone); PN->removeIncomingValue(ExitBlock); } else break; } if (DT) { DT->changeImmediateDominator(FalseHeader, ExitBlock); DT->changeImmediateDominator(ExitDest, cast(ValueMap[ExitBlock])); } assert (!L->contains(ExitDest) && " Unable to find exit edge destination"); //[*] Split Exit Edge. SplitEdge(ExitBlock, FalseHeader, this); //[*] Eliminate split condition's false branch from True loop. BasicBlock *SplitBlock = SD.SplitCondition->getParent(); BranchInst *BR = cast(SplitBlock->getTerminator()); BasicBlock *FBB = BR->getSuccessor(1); BR->setUnconditionalDest(BR->getSuccessor(0)); removeBlocks(FBB, L); //[*] Update True loop's exit value using new exit value. ExitCondition->setOperand(ExitValueNum, TLExitValue); //[*] Eliminate split condition's true branch in False loop CFG. BasicBlock *FSplitBlock = cast(ValueMap[SplitBlock]); BranchInst *FBR = cast(FSplitBlock->getTerminator()); BasicBlock *TBB = FBR->getSuccessor(0); FBR->setUnconditionalDest(FBR->getSuccessor(1)); removeBlocks(TBB, FalseLoop); return true; }