//===-- Interpreter.h ------------------------------------------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file defines the interpreter structure // //===----------------------------------------------------------------------===// #ifndef LLI_INTERPRETER_H #define LLI_INTERPRETER_H #include "llvm/Function.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/DataTypes.h" namespace llvm { class IntrinsicLowering; struct FunctionInfo; template class generic_gep_type_iterator; class ConstantExpr; typedef generic_gep_type_iterator gep_type_iterator; // AllocaHolder - Object to track all of the blocks of memory allocated by // alloca. When the function returns, this object is popped off the execution // stack, which causes the dtor to be run, which frees all the alloca'd memory. // class AllocaHolder { friend class AllocaHolderHandle; std::vector Allocations; unsigned RefCnt; public: AllocaHolder() : RefCnt(0) {} void add(void *mem) { Allocations.push_back(mem); } ~AllocaHolder() { for (unsigned i = 0; i < Allocations.size(); ++i) free(Allocations[i]); } }; // AllocaHolderHandle gives AllocaHolder value semantics so we can stick it into // a vector... // class AllocaHolderHandle { AllocaHolder *H; public: AllocaHolderHandle() : H(new AllocaHolder()) { H->RefCnt++; } AllocaHolderHandle(const AllocaHolderHandle &AH) : H(AH.H) { H->RefCnt++; } ~AllocaHolderHandle() { if (--H->RefCnt == 0) delete H; } void add(void *mem) { H->add(mem); } }; typedef std::vector ValuePlaneTy; // ExecutionContext struct - This struct represents one stack frame currently // executing. // struct ExecutionContext { Function *CurFunction;// The currently executing function BasicBlock *CurBB; // The currently executing BB BasicBlock::iterator CurInst; // The next instruction to execute std::map Values; // LLVM values used in this invocation std::vector VarArgs; // Values passed through an ellipsis CallSite Caller; // Holds the call that called subframes. // NULL if main func or debugger invoked fn AllocaHolderHandle Allocas; // Track memory allocated by alloca }; // Interpreter - This class represents the entirety of the interpreter. // class Interpreter : public ExecutionEngine, public InstVisitor { GenericValue ExitValue; // The return value of the called function TargetData TD; IntrinsicLowering *IL; // The runtime stack of executing code. The top of the stack is the current // function record. std::vector ECStack; // AtExitHandlers - List of functions to call when the program exits, // registered with the atexit() library function. std::vector AtExitHandlers; public: explicit Interpreter(ModuleProvider *M); ~Interpreter(); /// runAtExitHandlers - Run any functions registered by the program's calls to /// atexit(3), which we intercept and store in AtExitHandlers. /// void runAtExitHandlers(); static void Register() { InterpCtor = create; } /// create - Create an interpreter ExecutionEngine. This can never fail. /// static ExecutionEngine *create(ModuleProvider *M, std::string *ErrorStr = 0, CodeGenOpt::Level = CodeGenOpt::Default, bool GVsWithCode = true); /// run - Start execution with the specified function and arguments. /// virtual GenericValue runFunction(Function *F, const std::vector &ArgValues); /// recompileAndRelinkFunction - For the interpreter, functions are always /// up-to-date. /// virtual void *recompileAndRelinkFunction(Function *F) { return getPointerToFunction(F); } /// freeMachineCodeForFunction - The interpreter does not generate any code. /// void freeMachineCodeForFunction(Function *F) { } // Methods used to execute code: // Place a call on the stack void callFunction(Function *F, const std::vector &ArgVals); void run(); // Execute instructions until nothing left to do // Opcode Implementations void visitReturnInst(ReturnInst &I); void visitBranchInst(BranchInst &I); void visitSwitchInst(SwitchInst &I); void visitBinaryOperator(BinaryOperator &I); void visitICmpInst(ICmpInst &I); void visitFCmpInst(FCmpInst &I); void visitAllocationInst(AllocationInst &I); void visitFreeInst(FreeInst &I); void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitPHINode(PHINode &PN) { assert(0 && "PHI nodes already handled!"); } void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); void visitFPTruncInst(FPTruncInst &I); void visitFPExtInst(FPExtInst &I); void visitUIToFPInst(UIToFPInst &I); void visitSIToFPInst(SIToFPInst &I); void visitFPToUIInst(FPToUIInst &I); void visitFPToSIInst(FPToSIInst &I); void visitPtrToIntInst(PtrToIntInst &I); void visitIntToPtrInst(IntToPtrInst &I); void visitBitCastInst(BitCastInst &I); void visitSelectInst(SelectInst &I); void visitCallSite(CallSite CS); void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); } void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); } void visitUnwindInst(UnwindInst &I); void visitUnreachableInst(UnreachableInst &I); void visitShl(BinaryOperator &I); void visitLShr(BinaryOperator &I); void visitAShr(BinaryOperator &I); void visitVAArgInst(VAArgInst &I); void visitInstruction(Instruction &I) { cerr << I; assert(0 && "Instruction not interpretable yet!"); } GenericValue callExternalFunction(Function *F, const std::vector &ArgVals); void exitCalled(GenericValue GV); void addAtExitHandler(Function *F) { AtExitHandlers.push_back(F); } GenericValue *getFirstVarArg () { return &(ECStack.back ().VarArgs[0]); } //FIXME: private: public: GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I, gep_type_iterator E, ExecutionContext &SF); private: // Helper functions // SwitchToNewBasicBlock - Start execution in a new basic block and run any // PHI nodes in the top of the block. This is used for intraprocedural // control flow. // void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF); void *getPointerToFunction(Function *F) { return (void*)F; } void initializeExecutionEngine() { } void initializeExternalFunctions(); GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF); GenericValue getOperandValue(Value *V, ExecutionContext &SF); GenericValue executeTruncInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeSExtInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeZExtInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeFPTruncInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeFPExtInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeFPToUIInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeFPToSIInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeUIToFPInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeSIToFPInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executePtrToIntInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeIntToPtrInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeBitCastInst(Value *SrcVal, const Type *DstTy, ExecutionContext &SF); GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal, const Type *Ty, ExecutionContext &SF); void popStackAndReturnValueToCaller(const Type *RetTy, GenericValue Result); }; } // End llvm namespace #endif