//===- FileCheck.cpp - Check that File's Contents match what is expected --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // FileCheck does a line-by line check of a file that validates whether it // contains the expected content. This is useful for regression tests etc. // // This program exits with an error status of 2 on error, exit status of 0 if // the file matched the expected contents, and exit status of 1 if it did not // contain the expected contents. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Regex.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; static cl::opt CheckFilename(cl::Positional, cl::desc(""), cl::Required); static cl::opt InputFilename("input-file", cl::desc("File to check (defaults to stdin)"), cl::init("-"), cl::value_desc("filename")); static cl::list CheckPrefixes("check-prefix", cl::desc("Prefix to use from check file (defaults to 'CHECK')")); static cl::opt NoCanonicalizeWhiteSpace("strict-whitespace", cl::desc("Do not treat all horizontal whitespace as equivalent")); static cl::list ImplicitCheckNot( "implicit-check-not", cl::desc("Add an implicit negative check with this pattern to every\n" "positive check. This can be used to ensure that no instances of\n" "this pattern occur which are not matched by a positive pattern"), cl::value_desc("pattern")); static cl::opt AllowEmptyInput( "allow-empty", cl::init(false), cl::desc("Allow the input file to be empty. This is useful when making\n" "checks that some error message does not occur, for example.")); typedef cl::list::const_iterator prefix_iterator; //===----------------------------------------------------------------------===// // Pattern Handling Code. //===----------------------------------------------------------------------===// namespace Check { enum CheckType { CheckNone = 0, CheckPlain, CheckNext, CheckNot, CheckDAG, CheckLabel, /// MatchEOF - When set, this pattern only matches the end of file. This is /// used for trailing CHECK-NOTs. CheckEOF }; } class Pattern { SMLoc PatternLoc; Check::CheckType CheckTy; /// FixedStr - If non-empty, this pattern is a fixed string match with the /// specified fixed string. StringRef FixedStr; /// RegEx - If non-empty, this is a regex pattern. std::string RegExStr; /// \brief Contains the number of line this pattern is in. unsigned LineNumber; /// VariableUses - Entries in this vector map to uses of a variable in the /// pattern, e.g. "foo[[bar]]baz". In this case, the RegExStr will contain /// "foobaz" and we'll get an entry in this vector that tells us to insert the /// value of bar at offset 3. std::vector > VariableUses; /// VariableDefs - Maps definitions of variables to their parenthesized /// capture numbers. /// E.g. for the pattern "foo[[bar:.*]]baz", VariableDefs will map "bar" to 1. std::map VariableDefs; public: Pattern(Check::CheckType Ty) : CheckTy(Ty) { } /// getLoc - Return the location in source code. SMLoc getLoc() const { return PatternLoc; } /// ParsePattern - Parse the given string into the Pattern. Prefix provides /// which prefix is being matched, SM provides the SourceMgr used for error /// reports, and LineNumber is the line number in the input file from which /// the pattern string was read. Returns true in case of an error, false /// otherwise. bool ParsePattern(StringRef PatternStr, StringRef Prefix, SourceMgr &SM, unsigned LineNumber); /// Match - Match the pattern string against the input buffer Buffer. This /// returns the position that is matched or npos if there is no match. If /// there is a match, the size of the matched string is returned in MatchLen. /// /// The VariableTable StringMap provides the current values of filecheck /// variables and is updated if this match defines new values. size_t Match(StringRef Buffer, size_t &MatchLen, StringMap &VariableTable) const; /// PrintFailureInfo - Print additional information about a failure to match /// involving this pattern. void PrintFailureInfo(const SourceMgr &SM, StringRef Buffer, const StringMap &VariableTable) const; bool hasVariable() const { return !(VariableUses.empty() && VariableDefs.empty()); } Check::CheckType getCheckTy() const { return CheckTy; } private: bool AddRegExToRegEx(StringRef RS, unsigned &CurParen, SourceMgr &SM); void AddBackrefToRegEx(unsigned BackrefNum); /// ComputeMatchDistance - Compute an arbitrary estimate for the quality of /// matching this pattern at the start of \arg Buffer; a distance of zero /// should correspond to a perfect match. unsigned ComputeMatchDistance(StringRef Buffer, const StringMap &VariableTable) const; /// \brief Evaluates expression and stores the result to \p Value. /// \return true on success. false when the expression has invalid syntax. bool EvaluateExpression(StringRef Expr, std::string &Value) const; /// \brief Finds the closing sequence of a regex variable usage or /// definition. Str has to point in the beginning of the definition /// (right after the opening sequence). /// \return offset of the closing sequence within Str, or npos if it was not /// found. size_t FindRegexVarEnd(StringRef Str, SourceMgr &SM); }; bool Pattern::ParsePattern(StringRef PatternStr, StringRef Prefix, SourceMgr &SM, unsigned LineNumber) { this->LineNumber = LineNumber; PatternLoc = SMLoc::getFromPointer(PatternStr.data()); // Ignore trailing whitespace. while (!PatternStr.empty() && (PatternStr.back() == ' ' || PatternStr.back() == '\t')) PatternStr = PatternStr.substr(0, PatternStr.size()-1); // Check that there is something on the line. if (PatternStr.empty()) { SM.PrintMessage(PatternLoc, SourceMgr::DK_Error, "found empty check string with prefix '" + Prefix + ":'"); return true; } // Check to see if this is a fixed string, or if it has regex pieces. if (PatternStr.size() < 2 || (PatternStr.find("{{") == StringRef::npos && PatternStr.find("[[") == StringRef::npos)) { FixedStr = PatternStr; return false; } // Paren value #0 is for the fully matched string. Any new parenthesized // values add from there. unsigned CurParen = 1; // Otherwise, there is at least one regex piece. Build up the regex pattern // by escaping scary characters in fixed strings, building up one big regex. while (!PatternStr.empty()) { // RegEx matches. if (PatternStr.startswith("{{")) { // This is the start of a regex match. Scan for the }}. size_t End = PatternStr.find("}}"); if (End == StringRef::npos) { SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()), SourceMgr::DK_Error, "found start of regex string with no end '}}'"); return true; } // Enclose {{}} patterns in parens just like [[]] even though we're not // capturing the result for any purpose. This is required in case the // expression contains an alternation like: CHECK: abc{{x|z}}def. We // want this to turn into: "abc(x|z)def" not "abcx|zdef". RegExStr += '('; ++CurParen; if (AddRegExToRegEx(PatternStr.substr(2, End-2), CurParen, SM)) return true; RegExStr += ')'; PatternStr = PatternStr.substr(End+2); continue; } // Named RegEx matches. These are of two forms: [[foo:.*]] which matches .* // (or some other regex) and assigns it to the FileCheck variable 'foo'. The // second form is [[foo]] which is a reference to foo. The variable name // itself must be of the form "[a-zA-Z_][0-9a-zA-Z_]*", otherwise we reject // it. This is to catch some common errors. if (PatternStr.startswith("[[")) { // Find the closing bracket pair ending the match. End is going to be an // offset relative to the beginning of the match string. size_t End = FindRegexVarEnd(PatternStr.substr(2), SM); if (End == StringRef::npos) { SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()), SourceMgr::DK_Error, "invalid named regex reference, no ]] found"); return true; } StringRef MatchStr = PatternStr.substr(2, End); PatternStr = PatternStr.substr(End+4); // Get the regex name (e.g. "foo"). size_t NameEnd = MatchStr.find(':'); StringRef Name = MatchStr.substr(0, NameEnd); if (Name.empty()) { SM.PrintMessage(SMLoc::getFromPointer(Name.data()), SourceMgr::DK_Error, "invalid name in named regex: empty name"); return true; } // Verify that the name/expression is well formed. FileCheck currently // supports @LINE, @LINE+number, @LINE-number expressions. The check here // is relaxed, more strict check is performed in \c EvaluateExpression. bool IsExpression = false; for (unsigned i = 0, e = Name.size(); i != e; ++i) { if (i == 0 && Name[i] == '@') { if (NameEnd != StringRef::npos) { SM.PrintMessage(SMLoc::getFromPointer(Name.data()), SourceMgr::DK_Error, "invalid name in named regex definition"); return true; } IsExpression = true; continue; } if (Name[i] != '_' && !isalnum(Name[i]) && (!IsExpression || (Name[i] != '+' && Name[i] != '-'))) { SM.PrintMessage(SMLoc::getFromPointer(Name.data()+i), SourceMgr::DK_Error, "invalid name in named regex"); return true; } } // Name can't start with a digit. if (isdigit(static_cast(Name[0]))) { SM.PrintMessage(SMLoc::getFromPointer(Name.data()), SourceMgr::DK_Error, "invalid name in named regex"); return true; } // Handle [[foo]]. if (NameEnd == StringRef::npos) { // Handle variables that were defined earlier on the same line by // emitting a backreference. if (VariableDefs.find(Name) != VariableDefs.end()) { unsigned VarParenNum = VariableDefs[Name]; if (VarParenNum < 1 || VarParenNum > 9) { SM.PrintMessage(SMLoc::getFromPointer(Name.data()), SourceMgr::DK_Error, "Can't back-reference more than 9 variables"); return true; } AddBackrefToRegEx(VarParenNum); } else { VariableUses.push_back(std::make_pair(Name, RegExStr.size())); } continue; } // Handle [[foo:.*]]. VariableDefs[Name] = CurParen; RegExStr += '('; ++CurParen; if (AddRegExToRegEx(MatchStr.substr(NameEnd+1), CurParen, SM)) return true; RegExStr += ')'; } // Handle fixed string matches. // Find the end, which is the start of the next regex. size_t FixedMatchEnd = PatternStr.find("{{"); FixedMatchEnd = std::min(FixedMatchEnd, PatternStr.find("[[")); RegExStr += Regex::escape(PatternStr.substr(0, FixedMatchEnd)); PatternStr = PatternStr.substr(FixedMatchEnd); } return false; } bool Pattern::AddRegExToRegEx(StringRef RS, unsigned &CurParen, SourceMgr &SM) { Regex R(RS); std::string Error; if (!R.isValid(Error)) { SM.PrintMessage(SMLoc::getFromPointer(RS.data()), SourceMgr::DK_Error, "invalid regex: " + Error); return true; } RegExStr += RS.str(); CurParen += R.getNumMatches(); return false; } void Pattern::AddBackrefToRegEx(unsigned BackrefNum) { assert(BackrefNum >= 1 && BackrefNum <= 9 && "Invalid backref number"); std::string Backref = std::string("\\") + std::string(1, '0' + BackrefNum); RegExStr += Backref; } bool Pattern::EvaluateExpression(StringRef Expr, std::string &Value) const { // The only supported expression is @LINE([\+-]\d+)? if (!Expr.startswith("@LINE")) return false; Expr = Expr.substr(StringRef("@LINE").size()); int Offset = 0; if (!Expr.empty()) { if (Expr[0] == '+') Expr = Expr.substr(1); else if (Expr[0] != '-') return false; if (Expr.getAsInteger(10, Offset)) return false; } Value = llvm::itostr(LineNumber + Offset); return true; } /// Match - Match the pattern string against the input buffer Buffer. This /// returns the position that is matched or npos if there is no match. If /// there is a match, the size of the matched string is returned in MatchLen. size_t Pattern::Match(StringRef Buffer, size_t &MatchLen, StringMap &VariableTable) const { // If this is the EOF pattern, match it immediately. if (CheckTy == Check::CheckEOF) { MatchLen = 0; return Buffer.size(); } // If this is a fixed string pattern, just match it now. if (!FixedStr.empty()) { MatchLen = FixedStr.size(); return Buffer.find(FixedStr); } // Regex match. // If there are variable uses, we need to create a temporary string with the // actual value. StringRef RegExToMatch = RegExStr; std::string TmpStr; if (!VariableUses.empty()) { TmpStr = RegExStr; unsigned InsertOffset = 0; for (unsigned i = 0, e = VariableUses.size(); i != e; ++i) { std::string Value; if (VariableUses[i].first[0] == '@') { if (!EvaluateExpression(VariableUses[i].first, Value)) return StringRef::npos; } else { StringMap::iterator it = VariableTable.find(VariableUses[i].first); // If the variable is undefined, return an error. if (it == VariableTable.end()) return StringRef::npos; // Look up the value and escape it so that we can put it into the regex. Value += Regex::escape(it->second); } // Plop it into the regex at the adjusted offset. TmpStr.insert(TmpStr.begin()+VariableUses[i].second+InsertOffset, Value.begin(), Value.end()); InsertOffset += Value.size(); } // Match the newly constructed regex. RegExToMatch = TmpStr; } SmallVector MatchInfo; if (!Regex(RegExToMatch, Regex::Newline).match(Buffer, &MatchInfo)) return StringRef::npos; // Successful regex match. assert(!MatchInfo.empty() && "Didn't get any match"); StringRef FullMatch = MatchInfo[0]; // If this defines any variables, remember their values. for (std::map::const_iterator I = VariableDefs.begin(), E = VariableDefs.end(); I != E; ++I) { assert(I->second < MatchInfo.size() && "Internal paren error"); VariableTable[I->first] = MatchInfo[I->second]; } MatchLen = FullMatch.size(); return FullMatch.data()-Buffer.data(); } unsigned Pattern::ComputeMatchDistance(StringRef Buffer, const StringMap &VariableTable) const { // Just compute the number of matching characters. For regular expressions, we // just compare against the regex itself and hope for the best. // // FIXME: One easy improvement here is have the regex lib generate a single // example regular expression which matches, and use that as the example // string. StringRef ExampleString(FixedStr); if (ExampleString.empty()) ExampleString = RegExStr; // Only compare up to the first line in the buffer, or the string size. StringRef BufferPrefix = Buffer.substr(0, ExampleString.size()); BufferPrefix = BufferPrefix.split('\n').first; return BufferPrefix.edit_distance(ExampleString); } void Pattern::PrintFailureInfo(const SourceMgr &SM, StringRef Buffer, const StringMap &VariableTable) const{ // If this was a regular expression using variables, print the current // variable values. if (!VariableUses.empty()) { for (unsigned i = 0, e = VariableUses.size(); i != e; ++i) { SmallString<256> Msg; raw_svector_ostream OS(Msg); StringRef Var = VariableUses[i].first; if (Var[0] == '@') { std::string Value; if (EvaluateExpression(Var, Value)) { OS << "with expression \""; OS.write_escaped(Var) << "\" equal to \""; OS.write_escaped(Value) << "\""; } else { OS << "uses incorrect expression \""; OS.write_escaped(Var) << "\""; } } else { StringMap::const_iterator it = VariableTable.find(Var); // Check for undefined variable references. if (it == VariableTable.end()) { OS << "uses undefined variable \""; OS.write_escaped(Var) << "\""; } else { OS << "with variable \""; OS.write_escaped(Var) << "\" equal to \""; OS.write_escaped(it->second) << "\""; } } SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, OS.str()); } } // Attempt to find the closest/best fuzzy match. Usually an error happens // because some string in the output didn't exactly match. In these cases, we // would like to show the user a best guess at what "should have" matched, to // save them having to actually check the input manually. size_t NumLinesForward = 0; size_t Best = StringRef::npos; double BestQuality = 0; // Use an arbitrary 4k limit on how far we will search. for (size_t i = 0, e = std::min(size_t(4096), Buffer.size()); i != e; ++i) { if (Buffer[i] == '\n') ++NumLinesForward; // Patterns have leading whitespace stripped, so skip whitespace when // looking for something which looks like a pattern. if (Buffer[i] == ' ' || Buffer[i] == '\t') continue; // Compute the "quality" of this match as an arbitrary combination of the // match distance and the number of lines skipped to get to this match. unsigned Distance = ComputeMatchDistance(Buffer.substr(i), VariableTable); double Quality = Distance + (NumLinesForward / 100.); if (Quality < BestQuality || Best == StringRef::npos) { Best = i; BestQuality = Quality; } } // Print the "possible intended match here" line if we found something // reasonable and not equal to what we showed in the "scanning from here" // line. if (Best && Best != StringRef::npos && BestQuality < 50) { SM.PrintMessage(SMLoc::getFromPointer(Buffer.data() + Best), SourceMgr::DK_Note, "possible intended match here"); // FIXME: If we wanted to be really friendly we would show why the match // failed, as it can be hard to spot simple one character differences. } } size_t Pattern::FindRegexVarEnd(StringRef Str, SourceMgr &SM) { // Offset keeps track of the current offset within the input Str size_t Offset = 0; // [...] Nesting depth size_t BracketDepth = 0; while (!Str.empty()) { if (Str.startswith("]]") && BracketDepth == 0) return Offset; if (Str[0] == '\\') { // Backslash escapes the next char within regexes, so skip them both. Str = Str.substr(2); Offset += 2; } else { switch (Str[0]) { default: break; case '[': BracketDepth++; break; case ']': if (BracketDepth == 0) { SM.PrintMessage(SMLoc::getFromPointer(Str.data()), SourceMgr::DK_Error, "missing closing \"]\" for regex variable"); exit(1); } BracketDepth--; break; } Str = Str.substr(1); Offset++; } } return StringRef::npos; } //===----------------------------------------------------------------------===// // Check Strings. //===----------------------------------------------------------------------===// /// CheckString - This is a check that we found in the input file. struct CheckString { /// Pat - The pattern to match. Pattern Pat; /// Prefix - Which prefix name this check matched. StringRef Prefix; /// Loc - The location in the match file that the check string was specified. SMLoc Loc; /// CheckTy - Specify what kind of check this is. e.g. CHECK-NEXT: directive, /// as opposed to a CHECK: directive. Check::CheckType CheckTy; /// DagNotStrings - These are all of the strings that are disallowed from /// occurring between this match string and the previous one (or start of /// file). std::vector DagNotStrings; CheckString(const Pattern &P, StringRef S, SMLoc L, Check::CheckType Ty) : Pat(P), Prefix(S), Loc(L), CheckTy(Ty) {} /// Check - Match check string and its "not strings" and/or "dag strings". size_t Check(const SourceMgr &SM, StringRef Buffer, bool IsLabelScanMode, size_t &MatchLen, StringMap &VariableTable) const; /// CheckNext - Verify there is a single line in the given buffer. bool CheckNext(const SourceMgr &SM, StringRef Buffer) const; /// CheckNot - Verify there's no "not strings" in the given buffer. bool CheckNot(const SourceMgr &SM, StringRef Buffer, const std::vector &NotStrings, StringMap &VariableTable) const; /// CheckDag - Match "dag strings" and their mixed "not strings". size_t CheckDag(const SourceMgr &SM, StringRef Buffer, std::vector &NotStrings, StringMap &VariableTable) const; }; /// Canonicalize whitespaces in the input file. Line endings are replaced /// with UNIX-style '\n'. /// /// \param PreserveHorizontal Don't squash consecutive horizontal whitespace /// characters to a single space. static std::unique_ptr CanonicalizeInputFile(std::unique_ptr MB, bool PreserveHorizontal) { SmallString<128> NewFile; NewFile.reserve(MB->getBufferSize()); for (const char *Ptr = MB->getBufferStart(), *End = MB->getBufferEnd(); Ptr != End; ++Ptr) { // Eliminate trailing dosish \r. if (Ptr <= End - 2 && Ptr[0] == '\r' && Ptr[1] == '\n') { continue; } // If current char is not a horizontal whitespace or if horizontal // whitespace canonicalization is disabled, dump it to output as is. if (PreserveHorizontal || (*Ptr != ' ' && *Ptr != '\t')) { NewFile.push_back(*Ptr); continue; } // Otherwise, add one space and advance over neighboring space. NewFile.push_back(' '); while (Ptr+1 != End && (Ptr[1] == ' ' || Ptr[1] == '\t')) ++Ptr; } return std::unique_ptr( MemoryBuffer::getMemBufferCopy(NewFile.str(), MB->getBufferIdentifier())); } static bool IsPartOfWord(char c) { return (isalnum(c) || c == '-' || c == '_'); } // Get the size of the prefix extension. static size_t CheckTypeSize(Check::CheckType Ty) { switch (Ty) { case Check::CheckNone: return 0; case Check::CheckPlain: return sizeof(":") - 1; case Check::CheckNext: return sizeof("-NEXT:") - 1; case Check::CheckNot: return sizeof("-NOT:") - 1; case Check::CheckDAG: return sizeof("-DAG:") - 1; case Check::CheckLabel: return sizeof("-LABEL:") - 1; case Check::CheckEOF: llvm_unreachable("Should not be using EOF size"); } llvm_unreachable("Bad check type"); } static Check::CheckType FindCheckType(StringRef Buffer, StringRef Prefix) { char NextChar = Buffer[Prefix.size()]; // Verify that the : is present after the prefix. if (NextChar == ':') return Check::CheckPlain; if (NextChar != '-') return Check::CheckNone; StringRef Rest = Buffer.drop_front(Prefix.size() + 1); if (Rest.startswith("NEXT:")) return Check::CheckNext; if (Rest.startswith("NOT:")) return Check::CheckNot; if (Rest.startswith("DAG:")) return Check::CheckDAG; if (Rest.startswith("LABEL:")) return Check::CheckLabel; return Check::CheckNone; } // From the given position, find the next character after the word. static size_t SkipWord(StringRef Str, size_t Loc) { while (Loc < Str.size() && IsPartOfWord(Str[Loc])) ++Loc; return Loc; } // Try to find the first match in buffer for any prefix. If a valid match is // found, return that prefix and set its type and location. If there are almost // matches (e.g. the actual prefix string is found, but is not an actual check // string), but no valid match, return an empty string and set the position to // resume searching from. If no partial matches are found, return an empty // string and the location will be StringRef::npos. If one prefix is a substring // of another, the maximal match should be found. e.g. if "A" and "AA" are // prefixes then AA-CHECK: should match the second one. static StringRef FindFirstCandidateMatch(StringRef &Buffer, Check::CheckType &CheckTy, size_t &CheckLoc) { StringRef FirstPrefix; size_t FirstLoc = StringRef::npos; size_t SearchLoc = StringRef::npos; Check::CheckType FirstTy = Check::CheckNone; CheckTy = Check::CheckNone; CheckLoc = StringRef::npos; for (prefix_iterator I = CheckPrefixes.begin(), E = CheckPrefixes.end(); I != E; ++I) { StringRef Prefix(*I); size_t PrefixLoc = Buffer.find(Prefix); if (PrefixLoc == StringRef::npos) continue; // Track where we are searching for invalid prefixes that look almost right. // We need to only advance to the first partial match on the next attempt // since a partial match could be a substring of a later, valid prefix. // Need to skip to the end of the word, otherwise we could end up // matching a prefix in a substring later. if (PrefixLoc < SearchLoc) SearchLoc = SkipWord(Buffer, PrefixLoc); // We only want to find the first match to avoid skipping some. if (PrefixLoc > FirstLoc) continue; // If one matching check-prefix is a prefix of another, choose the // longer one. if (PrefixLoc == FirstLoc && Prefix.size() < FirstPrefix.size()) continue; StringRef Rest = Buffer.drop_front(PrefixLoc); // Make sure we have actually found the prefix, and not a word containing // it. This should also prevent matching the wrong prefix when one is a // substring of another. if (PrefixLoc != 0 && IsPartOfWord(Buffer[PrefixLoc - 1])) FirstTy = Check::CheckNone; else FirstTy = FindCheckType(Rest, Prefix); FirstLoc = PrefixLoc; FirstPrefix = Prefix; } // If the first prefix is invalid, we should continue the search after it. if (FirstTy == Check::CheckNone) { CheckLoc = SearchLoc; return ""; } CheckTy = FirstTy; CheckLoc = FirstLoc; return FirstPrefix; } static StringRef FindFirstMatchingPrefix(StringRef &Buffer, unsigned &LineNumber, Check::CheckType &CheckTy, size_t &CheckLoc) { while (!Buffer.empty()) { StringRef Prefix = FindFirstCandidateMatch(Buffer, CheckTy, CheckLoc); // If we found a real match, we are done. if (!Prefix.empty()) { LineNumber += Buffer.substr(0, CheckLoc).count('\n'); return Prefix; } // We didn't find any almost matches either, we are also done. if (CheckLoc == StringRef::npos) return StringRef(); LineNumber += Buffer.substr(0, CheckLoc + 1).count('\n'); // Advance to the last possible match we found and try again. Buffer = Buffer.drop_front(CheckLoc + 1); } return StringRef(); } /// ReadCheckFile - Read the check file, which specifies the sequence of /// expected strings. The strings are added to the CheckStrings vector. /// Returns true in case of an error, false otherwise. static bool ReadCheckFile(SourceMgr &SM, std::vector &CheckStrings) { ErrorOr> FileOrErr = MemoryBuffer::getFileOrSTDIN(CheckFilename); if (std::error_code EC = FileOrErr.getError()) { errs() << "Could not open check file '" << CheckFilename << "': " << EC.message() << '\n'; return true; } // If we want to canonicalize whitespace, strip excess whitespace from the // buffer containing the CHECK lines. Remove DOS style line endings. std::unique_ptr F = CanonicalizeInputFile(std::move(*FileOrErr), NoCanonicalizeWhiteSpace); // Find all instances of CheckPrefix followed by : in the file. StringRef Buffer = F->getBuffer(); SM.AddNewSourceBuffer(std::move(F), SMLoc()); std::vector ImplicitNegativeChecks; for (const auto &PatternString : ImplicitCheckNot) { // Create a buffer with fake command line content in order to display the // command line option responsible for the specific implicit CHECK-NOT. std::string Prefix = std::string("-") + ImplicitCheckNot.ArgStr + "='"; std::string Suffix = "'"; std::unique_ptr CmdLine(MemoryBuffer::getMemBufferCopy( Prefix + PatternString + Suffix, "command line")); StringRef PatternInBuffer = CmdLine->getBuffer().substr(Prefix.size(), PatternString.size()); SM.AddNewSourceBuffer(std::move(CmdLine), SMLoc()); ImplicitNegativeChecks.push_back(Pattern(Check::CheckNot)); ImplicitNegativeChecks.back().ParsePattern(PatternInBuffer, "IMPLICIT-CHECK", SM, 0); } std::vector DagNotMatches = ImplicitNegativeChecks; // LineNumber keeps track of the line on which CheckPrefix instances are // found. unsigned LineNumber = 1; while (1) { Check::CheckType CheckTy; size_t PrefixLoc; // See if a prefix occurs in the memory buffer. StringRef UsedPrefix = FindFirstMatchingPrefix(Buffer, LineNumber, CheckTy, PrefixLoc); if (UsedPrefix.empty()) break; Buffer = Buffer.drop_front(PrefixLoc); // Location to use for error messages. const char *UsedPrefixStart = Buffer.data() + (PrefixLoc == 0 ? 0 : 1); // PrefixLoc is to the start of the prefix. Skip to the end. Buffer = Buffer.drop_front(UsedPrefix.size() + CheckTypeSize(CheckTy)); // Okay, we found the prefix, yay. Remember the rest of the line, but ignore // leading and trailing whitespace. Buffer = Buffer.substr(Buffer.find_first_not_of(" \t")); // Scan ahead to the end of line. size_t EOL = Buffer.find_first_of("\n\r"); // Remember the location of the start of the pattern, for diagnostics. SMLoc PatternLoc = SMLoc::getFromPointer(Buffer.data()); // Parse the pattern. Pattern P(CheckTy); if (P.ParsePattern(Buffer.substr(0, EOL), UsedPrefix, SM, LineNumber)) return true; // Verify that CHECK-LABEL lines do not define or use variables if ((CheckTy == Check::CheckLabel) && P.hasVariable()) { SM.PrintMessage(SMLoc::getFromPointer(UsedPrefixStart), SourceMgr::DK_Error, "found '" + UsedPrefix + "-LABEL:'" " with variable definition or use"); return true; } Buffer = Buffer.substr(EOL); // Verify that CHECK-NEXT lines have at least one CHECK line before them. if ((CheckTy == Check::CheckNext) && CheckStrings.empty()) { SM.PrintMessage(SMLoc::getFromPointer(UsedPrefixStart), SourceMgr::DK_Error, "found '" + UsedPrefix + "-NEXT:' without previous '" + UsedPrefix + ": line"); return true; } // Handle CHECK-DAG/-NOT. if (CheckTy == Check::CheckDAG || CheckTy == Check::CheckNot) { DagNotMatches.push_back(P); continue; } // Okay, add the string we captured to the output vector and move on. CheckStrings.push_back(CheckString(P, UsedPrefix, PatternLoc, CheckTy)); std::swap(DagNotMatches, CheckStrings.back().DagNotStrings); DagNotMatches = ImplicitNegativeChecks; } // Add an EOF pattern for any trailing CHECK-DAG/-NOTs, and use the first // prefix as a filler for the error message. if (!DagNotMatches.empty()) { CheckStrings.push_back(CheckString(Pattern(Check::CheckEOF), CheckPrefixes[0], SMLoc::getFromPointer(Buffer.data()), Check::CheckEOF)); std::swap(DagNotMatches, CheckStrings.back().DagNotStrings); } if (CheckStrings.empty()) { errs() << "error: no check strings found with prefix" << (CheckPrefixes.size() > 1 ? "es " : " "); for (size_t I = 0, N = CheckPrefixes.size(); I != N; ++I) { StringRef Prefix(CheckPrefixes[I]); errs() << '\'' << Prefix << ":'"; if (I != N - 1) errs() << ", "; } errs() << '\n'; return true; } return false; } static void PrintCheckFailed(const SourceMgr &SM, const SMLoc &Loc, const Pattern &Pat, StringRef Buffer, StringMap &VariableTable) { // Otherwise, we have an error, emit an error message. SM.PrintMessage(Loc, SourceMgr::DK_Error, "expected string not found in input"); // Print the "scanning from here" line. If the current position is at the // end of a line, advance to the start of the next line. Buffer = Buffer.substr(Buffer.find_first_not_of(" \t\n\r")); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, "scanning from here"); // Allow the pattern to print additional information if desired. Pat.PrintFailureInfo(SM, Buffer, VariableTable); } static void PrintCheckFailed(const SourceMgr &SM, const CheckString &CheckStr, StringRef Buffer, StringMap &VariableTable) { PrintCheckFailed(SM, CheckStr.Loc, CheckStr.Pat, Buffer, VariableTable); } /// CountNumNewlinesBetween - Count the number of newlines in the specified /// range. static unsigned CountNumNewlinesBetween(StringRef Range, const char *&FirstNewLine) { unsigned NumNewLines = 0; while (1) { // Scan for newline. Range = Range.substr(Range.find_first_of("\n\r")); if (Range.empty()) return NumNewLines; ++NumNewLines; // Handle \n\r and \r\n as a single newline. if (Range.size() > 1 && (Range[1] == '\n' || Range[1] == '\r') && (Range[0] != Range[1])) Range = Range.substr(1); Range = Range.substr(1); if (NumNewLines == 1) FirstNewLine = Range.begin(); } } size_t CheckString::Check(const SourceMgr &SM, StringRef Buffer, bool IsLabelScanMode, size_t &MatchLen, StringMap &VariableTable) const { size_t LastPos = 0; std::vector NotStrings; // IsLabelScanMode is true when we are scanning forward to find CHECK-LABEL // bounds; we have not processed variable definitions within the bounded block // yet so cannot handle any final CHECK-DAG yet; this is handled when going // over the block again (including the last CHECK-LABEL) in normal mode. if (!IsLabelScanMode) { // Match "dag strings" (with mixed "not strings" if any). LastPos = CheckDag(SM, Buffer, NotStrings, VariableTable); if (LastPos == StringRef::npos) return StringRef::npos; } // Match itself from the last position after matching CHECK-DAG. StringRef MatchBuffer = Buffer.substr(LastPos); size_t MatchPos = Pat.Match(MatchBuffer, MatchLen, VariableTable); if (MatchPos == StringRef::npos) { PrintCheckFailed(SM, *this, MatchBuffer, VariableTable); return StringRef::npos; } MatchPos += LastPos; // Similar to the above, in "label-scan mode" we can't yet handle CHECK-NEXT // or CHECK-NOT if (!IsLabelScanMode) { StringRef SkippedRegion = Buffer.substr(LastPos, MatchPos); // If this check is a "CHECK-NEXT", verify that the previous match was on // the previous line (i.e. that there is one newline between them). if (CheckNext(SM, SkippedRegion)) return StringRef::npos; // If this match had "not strings", verify that they don't exist in the // skipped region. if (CheckNot(SM, SkippedRegion, NotStrings, VariableTable)) return StringRef::npos; } return MatchPos; } bool CheckString::CheckNext(const SourceMgr &SM, StringRef Buffer) const { if (CheckTy != Check::CheckNext) return false; // Count the number of newlines between the previous match and this one. assert(Buffer.data() != SM.getMemoryBuffer( SM.FindBufferContainingLoc( SMLoc::getFromPointer(Buffer.data())))->getBufferStart() && "CHECK-NEXT can't be the first check in a file"); const char *FirstNewLine = nullptr; unsigned NumNewLines = CountNumNewlinesBetween(Buffer, FirstNewLine); if (NumNewLines == 0) { SM.PrintMessage(Loc, SourceMgr::DK_Error, Prefix + "-NEXT: is on the same line as previous match"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.end()), SourceMgr::DK_Note, "'next' match was here"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, "previous match ended here"); return true; } if (NumNewLines != 1) { SM.PrintMessage(Loc, SourceMgr::DK_Error, Prefix + "-NEXT: is not on the line after the previous match"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.end()), SourceMgr::DK_Note, "'next' match was here"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, "previous match ended here"); SM.PrintMessage(SMLoc::getFromPointer(FirstNewLine), SourceMgr::DK_Note, "non-matching line after previous match is here"); return true; } return false; } bool CheckString::CheckNot(const SourceMgr &SM, StringRef Buffer, const std::vector &NotStrings, StringMap &VariableTable) const { for (unsigned ChunkNo = 0, e = NotStrings.size(); ChunkNo != e; ++ChunkNo) { const Pattern *Pat = NotStrings[ChunkNo]; assert((Pat->getCheckTy() == Check::CheckNot) && "Expect CHECK-NOT!"); size_t MatchLen = 0; size_t Pos = Pat->Match(Buffer, MatchLen, VariableTable); if (Pos == StringRef::npos) continue; SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()+Pos), SourceMgr::DK_Error, Prefix + "-NOT: string occurred!"); SM.PrintMessage(Pat->getLoc(), SourceMgr::DK_Note, Prefix + "-NOT: pattern specified here"); return true; } return false; } size_t CheckString::CheckDag(const SourceMgr &SM, StringRef Buffer, std::vector &NotStrings, StringMap &VariableTable) const { if (DagNotStrings.empty()) return 0; size_t LastPos = 0; size_t StartPos = LastPos; for (unsigned ChunkNo = 0, e = DagNotStrings.size(); ChunkNo != e; ++ChunkNo) { const Pattern &Pat = DagNotStrings[ChunkNo]; assert((Pat.getCheckTy() == Check::CheckDAG || Pat.getCheckTy() == Check::CheckNot) && "Invalid CHECK-DAG or CHECK-NOT!"); if (Pat.getCheckTy() == Check::CheckNot) { NotStrings.push_back(&Pat); continue; } assert((Pat.getCheckTy() == Check::CheckDAG) && "Expect CHECK-DAG!"); size_t MatchLen = 0, MatchPos; // CHECK-DAG always matches from the start. StringRef MatchBuffer = Buffer.substr(StartPos); MatchPos = Pat.Match(MatchBuffer, MatchLen, VariableTable); // With a group of CHECK-DAGs, a single mismatching means the match on // that group of CHECK-DAGs fails immediately. if (MatchPos == StringRef::npos) { PrintCheckFailed(SM, Pat.getLoc(), Pat, MatchBuffer, VariableTable); return StringRef::npos; } // Re-calc it as the offset relative to the start of the original string. MatchPos += StartPos; if (!NotStrings.empty()) { if (MatchPos < LastPos) { // Reordered? SM.PrintMessage(SMLoc::getFromPointer(Buffer.data() + MatchPos), SourceMgr::DK_Error, Prefix + "-DAG: found a match of CHECK-DAG" " reordering across a CHECK-NOT"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data() + LastPos), SourceMgr::DK_Note, Prefix + "-DAG: the farthest match of CHECK-DAG" " is found here"); SM.PrintMessage(NotStrings[0]->getLoc(), SourceMgr::DK_Note, Prefix + "-NOT: the crossed pattern specified" " here"); SM.PrintMessage(Pat.getLoc(), SourceMgr::DK_Note, Prefix + "-DAG: the reordered pattern specified" " here"); return StringRef::npos; } // All subsequent CHECK-DAGs should be matched from the farthest // position of all precedent CHECK-DAGs (including this one.) StartPos = LastPos; // If there's CHECK-NOTs between two CHECK-DAGs or from CHECK to // CHECK-DAG, verify that there's no 'not' strings occurred in that // region. StringRef SkippedRegion = Buffer.substr(LastPos, MatchPos); if (CheckNot(SM, SkippedRegion, NotStrings, VariableTable)) return StringRef::npos; // Clear "not strings". NotStrings.clear(); } // Update the last position with CHECK-DAG matches. LastPos = std::max(MatchPos + MatchLen, LastPos); } return LastPos; } // A check prefix must contain only alphanumeric, hyphens and underscores. static bool ValidateCheckPrefix(StringRef CheckPrefix) { Regex Validator("^[a-zA-Z0-9_-]*$"); return Validator.match(CheckPrefix); } static bool ValidateCheckPrefixes() { StringSet<> PrefixSet; for (prefix_iterator I = CheckPrefixes.begin(), E = CheckPrefixes.end(); I != E; ++I) { StringRef Prefix(*I); // Reject empty prefixes. if (Prefix == "") return false; if (!PrefixSet.insert(Prefix)) return false; if (!ValidateCheckPrefix(Prefix)) return false; } return true; } // I don't think there's a way to specify an initial value for cl::list, // so if nothing was specified, add the default static void AddCheckPrefixIfNeeded() { if (CheckPrefixes.empty()) CheckPrefixes.push_back("CHECK"); } int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); cl::ParseCommandLineOptions(argc, argv); if (!ValidateCheckPrefixes()) { errs() << "Supplied check-prefix is invalid! Prefixes must be unique and " "start with a letter and contain only alphanumeric characters, " "hyphens and underscores\n"; return 2; } AddCheckPrefixIfNeeded(); SourceMgr SM; // Read the expected strings from the check file. std::vector CheckStrings; if (ReadCheckFile(SM, CheckStrings)) return 2; // Open the file to check and add it to SourceMgr. ErrorOr> FileOrErr = MemoryBuffer::getFileOrSTDIN(InputFilename); if (std::error_code EC = FileOrErr.getError()) { errs() << "Could not open input file '" << InputFilename << "': " << EC.message() << '\n'; return 2; } std::unique_ptr &File = FileOrErr.get(); if (File->getBufferSize() == 0 && !AllowEmptyInput) { errs() << "FileCheck error: '" << InputFilename << "' is empty.\n"; return 2; } // Remove duplicate spaces in the input file if requested. // Remove DOS style line endings. std::unique_ptr F = CanonicalizeInputFile(std::move(File), NoCanonicalizeWhiteSpace); // Check that we have all of the expected strings, in order, in the input // file. StringRef Buffer = F->getBuffer(); SM.AddNewSourceBuffer(std::move(F), SMLoc()); /// VariableTable - This holds all the current filecheck variables. StringMap VariableTable; bool hasError = false; unsigned i = 0, j = 0, e = CheckStrings.size(); while (true) { StringRef CheckRegion; if (j == e) { CheckRegion = Buffer; } else { const CheckString &CheckLabelStr = CheckStrings[j]; if (CheckLabelStr.CheckTy != Check::CheckLabel) { ++j; continue; } // Scan to next CHECK-LABEL match, ignoring CHECK-NOT and CHECK-DAG size_t MatchLabelLen = 0; size_t MatchLabelPos = CheckLabelStr.Check(SM, Buffer, true, MatchLabelLen, VariableTable); if (MatchLabelPos == StringRef::npos) { hasError = true; break; } CheckRegion = Buffer.substr(0, MatchLabelPos + MatchLabelLen); Buffer = Buffer.substr(MatchLabelPos + MatchLabelLen); ++j; } for ( ; i != j; ++i) { const CheckString &CheckStr = CheckStrings[i]; // Check each string within the scanned region, including a second check // of any final CHECK-LABEL (to verify CHECK-NOT and CHECK-DAG) size_t MatchLen = 0; size_t MatchPos = CheckStr.Check(SM, CheckRegion, false, MatchLen, VariableTable); if (MatchPos == StringRef::npos) { hasError = true; i = j; break; } CheckRegion = CheckRegion.substr(MatchPos + MatchLen); } if (j == e) break; } return hasError ? 1 : 0; }