//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the Raul Herbster and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the ARM machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-emitter" #include "ARMInstrInfo.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "ARMRelocations.h" #include "ARMAddressingModes.h" #include "ARM.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass { const ARMInstrInfo *II; const TargetData *TD; TargetMachine &TM; MachineCodeEmitter &MCE; public: static char ID; explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce) : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm), MCE(mce) {} Emitter(TargetMachine &tm, MachineCodeEmitter &mce, const ARMInstrInfo &ii, const TargetData &td) : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm), MCE(mce) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI); unsigned getBinaryCodeForInstr(const MachineInstr &MI); int getMachineOpValue(const MachineInstr &MI, unsigned OpIndex); unsigned getBaseOpcodeFor(const TargetInstrDescriptor *TID); void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0, unsigned PCAdj = 0 ); void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0); private: int getShiftOp(const MachineOperand &MO); }; char Emitter::ID = 0; } /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code /// to the specified MCE object. FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM, MachineCodeEmitter &MCE) { return new Emitter(TM, MCE); } bool Emitter::runOnMachineFunction(MachineFunction &MF) { assert((MF.getTarget().getRelocationModel() != Reloc::Default || MF.getTarget().getRelocationModel() != Reloc::Static) && "JIT relocation model must be set to static or default!"); II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo(); TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData(); do { MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) emitInstruction(*I); } } while (MCE.finishFunction(MF)); return false; } unsigned Emitter::getBaseOpcodeFor(const TargetInstrDescriptor *TID) { return (TID->TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift; } int Emitter::getShiftOp(const MachineOperand &MO) { unsigned ShiftOp = 0x0; switch(ARM_AM::getAM2ShiftOpc(MO.getImmedValue())) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: ShiftOp = 0X2; break; case ARM_AM::lsl: ShiftOp = 0X0; break; case ARM_AM::lsr: ShiftOp = 0X1; break; case ARM_AM::ror: case ARM_AM::rrx: ShiftOp = 0X3; break; } return ShiftOp; } int Emitter::getMachineOpValue(const MachineInstr &MI, unsigned OpIndex) { intptr_t rv = 0; const MachineOperand &MO = MI.getOperand(OpIndex); if (MO.isRegister()) { assert(MRegisterInfo::isPhysicalRegister(MO.getReg())); rv = ARMRegisterInfo::getRegisterNumbering(MO.getReg()); } else if (MO.isImmediate()) { rv = MO.getImmedValue(); } else if (MO.isGlobalAddress() || MO.isExternalSymbol() || MO.isConstantPoolIndex() || MO.isJumpTableIndex()) { if (MO.isGlobalAddress()) { emitGlobalAddressForCall(MO.getGlobal(), true); } else if (MO.isExternalSymbol()) { emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative); } else if (MO.isConstantPoolIndex()) { emitConstPoolAddress(MO.getConstantPoolIndex(), ARM::reloc_arm_relative); } else if (MO.isJumpTableIndex()) { emitJumpTableAddress(MO.getJumpTableIndex(), ARM::reloc_arm_relative); } } return rv; } /// emitGlobalAddressForCall - Emit the specified address to the code stream /// assuming this is part of a function call, which is PC relative. /// void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), ARM::reloc_arm_branch, GV, 0, DoesntNeedStub)); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES)); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp /* = 0 */, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, PCAdj)); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTI, PCAdj)); } void Emitter::emitInstruction(const MachineInstr &MI) { NumEmitted++; // Keep track of the # of mi's emitted MCE.emitWordLE(getBinaryCodeForInstr(MI)); } unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) { const TargetInstrDescriptor *Desc = MI.getInstrDescriptor(); const unsigned opcode = MI.getOpcode(); unsigned Value = 0xE0000000; unsigned op; switch (Desc->TSFlags & ARMII::AddrModeMask) { case ARMII::AddrModeNone: { switch(Desc->TSFlags & ARMII::FormMask) { default: { assert(0 && "Unknown instruction subtype!"); if(opcode == ARM::CLZ) { // set first operand op = getMachineOpValue(MI,0); Value |= op << 12; // set second operand op = getMachineOpValue(MI,1); Value |= op; } break; } case ARMII::MulFrm: { Value |= 9 << 4; unsigned char BaseOpcode = getBaseOpcodeFor(Desc); Value |= BaseOpcode << 20; bool isMUL = opcode == ARM::MUL; bool isMLA = opcode == ARM::MLA; // set first operand op = getMachineOpValue(MI,0); Value |= op << (isMUL || isMLA ? 16 : 12); // set second operand op = getMachineOpValue(MI,1); Value |= op << (isMUL || isMLA ? 0 : 16); // set third operand op = getMachineOpValue(MI,2); Value |= op << (isMUL || isMLA ? 8 : 0); if (!isMUL) { op = getMachineOpValue(MI,3); Value |= op << (isMLA ? 12 : 8); } break; } case ARMII::Branch: { unsigned BaseOpcode = getBaseOpcodeFor(Desc); Value |= BaseOpcode << 24; op = getMachineOpValue(MI,0); Value |= op; break; } case ARMII::BranchMisc: { unsigned char BaseOpcode = getBaseOpcodeFor(Desc); Value |= BaseOpcode << 4; Value |= 0x12fff << 8; if (opcode == ARM::BX_RET) op = 0xe; else op = getMachineOpValue(MI,0); Value |= op; break; } case ARMII::Pseudo: break; } break; } case ARMII::AddrMode1: { unsigned char BaseOpcode = getBaseOpcodeFor(Desc); Value |= BaseOpcode << 21; unsigned Format = (Desc->TSFlags & ARMII::FormMask); if (Format == ARMII::DPRdMisc) { Value |= getMachineOpValue(MI,0) << 12; Value |= getMachineOpValue(MI,1); switch(opcode) { case ARM::MOVsra_flag: { Value |= 0x1 << 6; Value |= 0x1 << 7; break; } case ARM::MOVsrl_flag: { Value |= 0x1 << 5; Value |= 0x1 << 7; break; } case ARM::MOVrx: { Value |= 0x3 << 5; break; } } break; } bool IsDataProcessing3 = false; if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS || Format == ARMII::DPRSoRegS) { Value |= 1 << 20; IsDataProcessing3 = true; } bool IsDataProcessing1 = Format == ARMII::DPRdIm || Format == ARMII::DPRdReg || Format == ARMII::DPRdSoReg; bool IsDataProcessing2 = Format == ARMII::DPRnIm || Format == ARMII::DPRnReg || Format == ARMII::DPRnSoReg; IsDataProcessing3 = Format == ARMII::DPRIm || Format == ARMII::DPRReg || Format == ARMII::DPRSoReg || IsDataProcessing3; // set first operand op = getMachineOpValue(MI,0); if (IsDataProcessing1 || IsDataProcessing3) { Value |= op << 12; } else if (IsDataProcessing2) { Value |= op << 16; } if (IsDataProcessing3) { op = getMachineOpValue(MI,1); Value |= op << 16; } unsigned OperandIndex = IsDataProcessing3 ? 2 : 1; // set shift operand switch (Format) { case ARMII::DPRdIm: case ARMII::DPRnIm: case ARMII::DPRIm: case ARMII::DPRImS: { Value |= 1 << 25; const MachineOperand &MO = MI.getOperand(OperandIndex); op = ARM_AM::getSOImmVal(MO.getImmedValue()); Value |= op; break; } case ARMII::DPRdReg: case ARMII::DPRnReg: case ARMII::DPRReg: case ARMII::DPRRegS: { op = getMachineOpValue(MI,OperandIndex); Value |= op; break; } case ARMII::DPRdSoReg: case ARMII::DPRnSoReg: case ARMII::DPRSoReg: case ARMII::DPRSoRegS: { op = getMachineOpValue(MI,OperandIndex); Value |= op; const MachineOperand &MO1 = MI.getOperand(OperandIndex + 1); const MachineOperand &MO2 = MI.getOperand(OperandIndex + 2); bool IsShiftByRegister = MO1.getReg() > 0; switch(ARM_AM::getSORegShOp(MO2.getImmedValue())) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: { if(IsShiftByRegister) Value |= 0x5 << 4; else Value |= 0x1 << 6; break; } case ARM_AM::lsl: { if(IsShiftByRegister) Value |= 0x1 << 4; break; } case ARM_AM::lsr: { if(IsShiftByRegister) Value |= 0x3 << 4; else Value |= 0x1 << 5; break; } case ARM_AM::ror: { if(IsShiftByRegister) Value |= 0x7 << 4; else Value |= 0x3 << 5; break; } case ARM_AM::rrx: { Value |= 0x3 << 5; break; } } if(ARM_AM::getSORegShOp(MO2.getImmedValue()) != ARM_AM::rrx) if(IsShiftByRegister) { assert(MRegisterInfo::isPhysicalRegister(MO1.getReg())); op = ARMRegisterInfo::getRegisterNumbering(MO1.getReg()); assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); Value |= op << 8; } else { op = ARM_AM::getSORegOffset(MO2.getImm()); Value |= op << 7; } break; } default: assert(false && "Unknown operand type!"); break; } break; } case ARMII::AddrMode2: { Value |= 1 << 26; unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask); if (Index == ARMII::IndexModePre || Index == 0) Value |= 1 << 24; if (Index == ARMII::IndexModePre) Value |= 1 << 21; unsigned Format = (Desc->TSFlags & ARMII::FormMask); if (Format == ARMII::LdFrm) Value |= 1 << 20; unsigned BitByte = getBaseOpcodeFor(Desc); Value |= BitByte << 22; // set first operand op = getMachineOpValue(MI,0); Value |= op << 12; // addressing mode op = getMachineOpValue(MI,1); Value |= op << 16; const MachineOperand &MO2 = MI.getOperand(2); const MachineOperand &MO3 = MI.getOperand(3); Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << 23; if (!MO2.getReg()) { // is immediate if (ARM_AM::getAM2Offset(MO3.getImm())) Value |= ARM_AM::getAM2Offset(MO3.getImm()); break; } Value |= 1 << 25; assert(MRegisterInfo::isPhysicalRegister(MO2.getReg())); Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) { unsigned ShiftOp = getShiftOp(MO3); Value |= ShiftOp << 5; Value |= ShImm << 7; } break; } case ARMII::AddrMode3: { unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask); if (Index == ARMII::IndexModePre || Index == 0) Value |= 1 << 24; unsigned Format = (Desc->TSFlags & ARMII::FormMask); if (Format == ARMII::LdFrm) Value |= 1 << 20; unsigned char BaseOpcode = getBaseOpcodeFor(Desc); Value |= BaseOpcode << 4; // set first operand op = getMachineOpValue(MI,0); Value |= op << 12; // addressing mode op = getMachineOpValue(MI,1); Value |= op << 16; const MachineOperand &MO2 = MI.getOperand(2); const MachineOperand &MO3 = MI.getOperand(3); Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << 23; if (MO2.getReg()) { Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); break; } if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) { Value |= 1 << 22; Value |= (ImmOffs >> 4) << 8; // immedH Value |= (ImmOffs & ~0xF); // immedL } break; } case ARMII::AddrMode4: { Value |= 1 << 27; unsigned Format = (Desc->TSFlags & ARMII::FormMask); if (Format == ARMII::LdFrm) Value |= 1 << 20; unsigned OpIndex = 0; // set first operand op = getMachineOpValue(MI,OpIndex); Value |= op << 16; // set addressing mode const MachineOperand &MO = MI.getOperand(OpIndex + 1); ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm()); switch(Mode) { default: assert(0 && "Unknown addressing sub-mode!"); case ARM_AM::ia: Value |= 0x1 << 23; break; case ARM_AM::ib: Value |= 0x2 << 23; break; case ARM_AM::da: break; case ARM_AM::db: Value |= 0x1 << 24; break; } // set flag W if (ARM_AM::getAM4WBFlag(MO.getImm())) Value |= 0x1 << 21; // set registers for (unsigned i = OpIndex + 4, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MOR = MI.getOperand(i); unsigned RegNumber = ARMRegisterInfo::getRegisterNumbering(MOR.getReg()); assert(MRegisterInfo::isPhysicalRegister(MOR.getReg()) && RegNumber < 16); Value |= 0x1 << RegNumber; } break; } } return Value; }