//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a useful analysis step to figure out what numbered slots // values in a program will land in (keeping track of per plane information). // // This is used when writing a file to disk, either in bytecode or assembly. // //===----------------------------------------------------------------------===// #include "SlotCalculator.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/TypeSymbolTable.h" #include "llvm/Type.h" #include "llvm/ValueSymbolTable.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; #ifndef NDEBUG #include "llvm/Support/Streams.h" #include "llvm/Support/CommandLine.h" static cl::opt SlotCalculatorDebugOption("scdebug",cl::init(false), cl::desc("Enable SlotCalculator debug output"), cl::Hidden); #define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X #else #define SC_DEBUG(X) #endif void SlotCalculator::insertPrimitives() { // Preload the table with the built-in types. These built-in types are // inserted first to ensure that they have low integer indices which helps to // keep bytecode sizes small. Note that the first group of indices must match // the Type::TypeIDs for the primitive types. After that the integer types are // added, but the order and value is not critical. What is critical is that // the indices of these "well known" slot numbers be properly maintained in // Reader.h which uses them directly to extract values of these types. SC_DEBUG("Inserting primitive types:\n"); // See WellKnownTypeSlots in Reader.h getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert"); // Above here *must* correspond 1:1 with the primitive types. getOrCreateTypeSlot(Type::Int1Ty ); // 4: BoolTySlot getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot } SlotCalculator::SlotCalculator(const Module *M) { assert(M); TheModule = M; insertPrimitives(); processModule(); } // processModule - Process all of the module level function declarations and // types that are available. // void SlotCalculator::processModule() { SC_DEBUG("begin processModule!\n"); // Add all of the global variables to the value table... // for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) CreateSlotIfNeeded(I); // Scavenge the types out of the functions, then add the functions themselves // to the value table... // for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) CreateSlotIfNeeded(I); // Add all of the module level constants used as initializers // for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) if (I->hasInitializer()) CreateSlotIfNeeded(I->getInitializer()); // Now that all global constants have been added, rearrange constant planes // that contain constant strings so that the strings occur at the start of the // plane, not somewhere in the middle. // for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { if (const ArrayType *AT = dyn_cast(Types[plane])) if (AT->getElementType() == Type::Int8Ty) { TypePlane &Plane = Table[plane]; unsigned FirstNonStringID = 0; for (unsigned i = 0, e = Plane.size(); i != e; ++i) if (isa(Plane[i]) || (isa(Plane[i]) && cast(Plane[i])->isString())) { // Check to see if we have to shuffle this string around. If not, // don't do anything. if (i != FirstNonStringID) { // Swap the plane entries.... std::swap(Plane[i], Plane[FirstNonStringID]); // Keep the NodeMap up to date. NodeMap[Plane[i]] = i; NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; } ++FirstNonStringID; } } } // Scan all of the functions for their constants, which allows us to emit // more compact modules. SC_DEBUG("Inserting function constants:\n"); for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) { for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa(*OI) && !isa(*OI)) || isa(*OI)) CreateSlotIfNeeded(*OI); } getOrCreateTypeSlot(I->getType()); } } // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... SC_DEBUG("Inserting SymbolTable values:\n"); processTypeSymbolTable(&TheModule->getTypeSymbolTable()); processValueSymbolTable(&TheModule->getValueSymbolTable()); // Now that we have collected together all of the information relevant to the // module, compactify the type table if it is particularly big and outputting // a bytecode file. The basic problem we run into is that some programs have // a large number of types, which causes the type field to overflow its size, // which causes instructions to explode in size (particularly call // instructions). To avoid this behavior, we "sort" the type table so that // all non-value types are pushed to the end of the type table, giving nice // low numbers to the types that can be used by instructions, thus reducing // the amount of explodage we suffer. if (Types.size() >= 64) { unsigned FirstNonValueTypeID = 0; for (unsigned i = 0, e = Types.size(); i != e; ++i) if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) { // Check to see if we have to shuffle this type around. If not, don't // do anything. if (i != FirstNonValueTypeID) { // Swap the type ID's. std::swap(Types[i], Types[FirstNonValueTypeID]); // Keep the TypeMap up to date. TypeMap[Types[i]] = i; TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID; // When we move a type, make sure to move its value plane as needed. if (Table.size() > FirstNonValueTypeID) { if (Table.size() <= i) Table.resize(i+1); std::swap(Table[i], Table[FirstNonValueTypeID]); } } ++FirstNonValueTypeID; } } NumModuleTypes = getNumPlanes(); SC_DEBUG("end processModule!\n"); } // processTypeSymbolTable - Insert all of the type sin the specified symbol // table. void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) { for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end(); TI != TE; ++TI ) getOrCreateTypeSlot(TI->second); } // processSymbolTable - Insert all of the values in the specified symbol table // into the values table... // void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) { for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end(); VI != VE; ++VI) CreateSlotIfNeeded(VI->second); } void SlotCalculator::CreateSlotIfNeeded(const Value *V) { // Check to see if it's already in! if (NodeMap.count(V)) return; const Type *Ty = V->getType(); assert(Ty != Type::VoidTy && "Can't insert void values!"); if (const Constant *C = dyn_cast(V)) { if (isa(C)) { // Initializers for globals are handled explicitly elsewhere. } else if (isa(C) && cast(C)->isString()) { // Do not index the characters that make up constant strings. We emit // constant strings as special entities that don't require their // individual characters to be emitted. if (!C->isNullValue()) ConstantStrings.push_back(cast(C)); } else { // This makes sure that if a constant has uses (for example an array of // const ints), that they are inserted also. for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) CreateSlotIfNeeded(*I); } } unsigned TyPlane = getOrCreateTypeSlot(Ty); if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. Table.resize(TyPlane+1, TypePlane()); // If this is the first value to get inserted into the type plane, make sure // to insert the implicit null value. if (Table[TyPlane].empty()) { // Label's and opaque types can't have a null value. if (Ty != Type::LabelTy && !isa(Ty)) { Value *ZeroInitializer = Constant::getNullValue(Ty); // If we are pushing zeroinit, it will be handled below. if (V != ZeroInitializer) { Table[TyPlane].push_back(ZeroInitializer); NodeMap[ZeroInitializer] = 0; } } } // Insert node into table and NodeMap... NodeMap[V] = Table[TyPlane].size(); Table[TyPlane].push_back(V); SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << NodeMap[V] << "\n"); } unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) { TypeMapType::iterator TyIt = TypeMap.find(Ty); if (TyIt != TypeMap.end()) return TyIt->second; // Insert into TypeMap. unsigned ResultSlot = TypeMap[Ty] = Types.size(); Types.push_back(Ty); SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" ); // Loop over any contained types in the definition, ensuring they are also // inserted. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) getOrCreateTypeSlot(*I); return ResultSlot; } void SlotCalculator::incorporateFunction(const Function *F) { SC_DEBUG("begin processFunction!\n"); // Iterate over function arguments, adding them to the value table... for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) CreateFunctionValueSlot(I); SC_DEBUG("Inserting Instructions:\n"); // Add all of the instructions to the type planes... for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { CreateFunctionValueSlot(BB); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { if (I->getType() != Type::VoidTy) CreateFunctionValueSlot(I); } } SC_DEBUG("end processFunction!\n"); } void SlotCalculator::purgeFunction() { SC_DEBUG("begin purgeFunction!\n"); // Next, remove values from existing type planes for (DenseMap::iterator I = ModuleLevel.begin(), E = ModuleLevel.end(); I != E; ++I) { unsigned PlaneNo = I->first; unsigned ModuleLev = I->second; // Pop all function-local values in this type-plane off of Table. TypePlane &Plane = getPlane(PlaneNo); assert(ModuleLev < Plane.size() && "module levels higher than elements?"); for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) { NodeMap.erase(Plane.back()); // Erase from nodemap Plane.pop_back(); // Shrink plane } } ModuleLevel.clear(); // Finally, remove any type planes defined by the function... while (Table.size() > NumModuleTypes) { TypePlane &Plane = Table.back(); SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " << Plane.size() << "\n"); for (unsigned i = 0, e = Plane.size(); i != e; ++i) NodeMap.erase(Plane[i]); // Erase from nodemap Table.pop_back(); // Nuke the plane, we don't like it. } SC_DEBUG("end purgeFunction!\n"); } void SlotCalculator::CreateFunctionValueSlot(const Value *V) { assert(!NodeMap.count(V) && "Function-local value can't be inserted!"); const Type *Ty = V->getType(); assert(Ty != Type::VoidTy && "Can't insert void values!"); assert(!isa(V) && "Not a function-local value!"); unsigned TyPlane = getOrCreateTypeSlot(Ty); if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. Table.resize(TyPlane+1, TypePlane()); // If this is the first value noticed of this type within this function, // remember the module level for this type plane in ModuleLevel. This reminds // us to remove the values in purgeFunction and tells us how many to remove. if (TyPlane < NumModuleTypes) ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size())); // If this is the first value to get inserted into the type plane, make sure // to insert the implicit null value. if (Table[TyPlane].empty()) { // Label's and opaque types can't have a null value. if (Ty != Type::LabelTy && !isa(Ty)) { Value *ZeroInitializer = Constant::getNullValue(Ty); // If we are pushing zeroinit, it will be handled below. if (V != ZeroInitializer) { Table[TyPlane].push_back(ZeroInitializer); NodeMap[ZeroInitializer] = 0; } } } // Insert node into table and NodeMap... NodeMap[V] = Table[TyPlane].size(); Table[TyPlane].push_back(V); SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << NodeMap[V] << "\n"); }